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Resonant tunneling via quantum bound states in a classically unbound system
of crossed, narrow channels
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We consider the ballistic transport of noninteracting electrons in intersecting narrow channels of
finite length. The structure we study consists of two perpendicular channels, one of which connects
two reservoirs of two-dimensional (2D) electrons. When a weak potential difference is applied to
the 2D-electron-gas regions, ballistic transport of electrons occurs within subbands as for a single
channel ~ In addition to the subband transport, we predict that there are sharp resonances associat-
ed with bound quantum states located at the intersection of the channels. For longer channels the
conductance G associated with this kind of resonant tunneling appears to be quantized as
G =2e X/h, where N =1 or 2. In addition to the peaks in G associated with resonant tunneling,
there are also deep "antiresonances" that severely distort the quantized plateaus in G obtained for a
single channel.

I. INTRODUCTION

Current lithographic and etching techniques make it
possible to shape quasi-two-dimensional (2D) electrons at
the interface of semiconductors into nanopatterns such as
very narrow channels, grids, rings, dots, etc. ' Because
of the smallness of such structures quantum-mechanical
effects are strongly manifested. For example, in narrow
channels the de Broglie wavelength can be of the same
order as the width of the channel itself. Hence quantiza-
tion of the transverse motion becomes an important issue.
Electrons propagate in one-dimensional subbands, of
which only a few may be occupied. Transport properties
of electron waveguides must therefore be discussed in
terms of such subbands. In high-mobility samples like
Al„Ga& „As/GaAs the mean free path exceeds several
pm. In short channels, connecting, e.g. , two 2D reser-
voirs, one therefore encounters ballistic transport and a
remarkable quantization of the conductance, G =2e N/
h, where N is the number of occupied 10 subbands. ' N
may be altered by varying the width of the channel via an
applied gate voltage.

Another remarkable feature of narrow channels has re-
cently been studied by Peeters ' and Schult, Ravenhall,
and Wyld, who considered two perpendicular, perfect
channels of infinite length. Quantum-mechanical calcula-
tions show that bound states reside at the intersection of
the two channels. From a classical point of view the po-
tential is open. The quantum-mechanical trapping of
electrons in such a potential may thus seem less obvious
and appears to be a phenomenon that has attracted little
attention in the past. On the other hand, the existence of
trapped modes in waveguides for microwaves has been
known for many years. With the new possibilities of also
fabricating narrow electron waveguides it is natural that
the problem of trapped waves now also surfaces in a

quantum-mechanical context. The purpose of the present
work is to explore the possibility of observing, at least in
principle, the bound states in two intersecting electron
waveguides by resonant tunneling. From a conceptual
point of view it is interesting that one may encounter res-
onant tunneling also in a situation where there are no
classical potential barriers to be penetrated. In passing
we will also recover how the transport in crossed chan-
nels differs very much from the case of a single channel.

In Sec. II we present the model and the theoretical
framework. In principle the formalism is elementary, but
we prefer to present it in quite some detail because we be-
lieve it to be useful to general readers. Section III gives
calculational aspects and numerical results. In particular
it is shown that the bound states give rise to sharp peaks
in the current. These peaks are associated with tunnel-
ing. Section IV, finally, contains a brief summary and
comments.

II. THEORETICAL MODEL

There are a number of recent theoretical studies' of
charged-particle motion in intersecting narrow wires
(four-terminal junctions). The emphasis is on magneto-
transport and the quenching of the low-field Hall resis-
tance. Channels are assumed to be infinitely long and
there is a finite magnetic field B. In the present case,
however, we wish to probe bound states by means of tun-
neling. It is then essential that channels are of finite
length. We will also let B =0 since we wish to focus at-
tention to open potentials. The geometry that we will
consider is given in Fig. 1, in which the cross should have
a size consistent with some "effective" size of the bound-
state wave functions, i.e., these functions should fit well
into the crossbar region.

The detailed shape of the potential which confines the
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that the wave function vanishes at the onset of the infinite
barriers; m * is the effective mass.

When a weak potential difference is applied to the 2D
reservoirs we have to consider the process by which elec-
trons are injected into the channel connecting the 2D re-
gions and emitted from it. Doing so we will use
Kirczenow's" analogous ballistic model for a single short
channel in between two 2D reservoirs. Consider a free
electron with wave vector k = (ir, k) and energy
E(k)=A (ir +k )/2m* incident on the channel opening
from the left. For x & —(d +w/2), its wave function can
be written as

(xy)e i ax +iky+ f dk i g(k i )e
iv'x+ i k'y

w

FIG. 1. Schematic representation of the crossbar structure
connecting left and right reservoirs of 2D electrons with equal
Fermi energy. When the potential difference is applied elec-
trons Bow from L to R. The regions I—V are used in the expan-
sion of wave functions. The size of the crossbar region is as-
sumed to be roughly the same as the "effective" extension of the
bound-state wave functions of Schult, Ravenhall, and Wyld
(Ref. 9). Therefore the cross may appear to electrons at the
bound-state energies more or less to be infinite. As drawn here
the crossbar geometry could, of course, also be referred to as a
quantum dot or cavity.

g~(x, y)= J dk' Az(k')e" (2)

In the channel region I in Fig. 1 the wave function may
be expanded in terms of exact solutions as

g, (x,y)= g(B, „e " +C, „e "
)

X sin (y + tU /2 )
w

where K' may be either real or imaginary, i.e., evanescent
waves are included. The quantity i~' = [2m *E(k ) /
A' —(k') ]'~ is real and positive for ~k'~ &(2m*E)'~ /fi,
while for k'~ greater than this value we choose a'/i to be
positive.

For the emitted electron in x ) (d +w/2), the wave
function is

electron to the channels is not important in determining
the very presence of bound states at the intersection and
the associated resonant tunneling. We will therefore as-
surne an inifinite square-well lateral-confinement poten-
tial of width w and well bottom at energy Ep. For simpli-
city we let Ep take the same value as the bottom of the
surrounding 2D-electron-gas regions. This is a reason-
able assumption except for close to pinchoff, but suffices
for the considerations here. Choosing Ep=O we there-
fore have the Hamiltonian H = —fi (i) /Bx +8 /dy )/
2m * outside the barriers, with the boundary condition

I

with n =1,2, 3, . . . . If the energy of the injected elec-
tron is less than a sublevel E„=Pi (n~/tii) /2m* the
quantity q„ is real, q„=[E„—2m*E(k)/pi~]'~ . In the
opposite case, E(k)) E„, we write q„=i [2m*E(k)/

E„]'~~, i.e. ,
—exponential states turn into freely propa-

gating states. The wave function P»&(x, y) associated
with channel region III follows from Eq. (3) by replacing
index I by III. In the usual way g~ is now matched to P&

at x = —(d +w/2) and gz to P», at x =(d+w/2) by
requiring that amplitudes and derivatives with respect to
x are equal. AL(k') and Az(k') may be eliminated"
which results in

n

gnW —
q (d+w/2) q„w q (d+w/2) =2i Ke

—Iv(d + w/2'M
k, m (4a)

~n W q (d+w/2) gnW —
q (d+w/2)

m n ~n m III,n+ Tm, n+ ~n m III, n (4b)

where

+ w/2
Mk „= dy sin—w/2

n~ w

w 2
y+ iky

and

+ dk'
m n K'Mk. M

2 '77
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In the case of a single channel, i.e., if we remove the stubs in Fig. 1 (d'=d"=0), Eqs. (4a) and (4b) are identical with
Kirczenow's expressions. "

We now turn to the interior of the cross. When expanding and matching wave functions we may then follow Schult,
Ravenhall, and Wyld who considered the rather similar case of two infinitely long, perpendicular channels. The
difference is that both types of exponential solutions, decreasing and increasing, must be allowed for here as in Eq. (3).
In regions II and IV the combination of the two types of solutions is, however, fixed by the condition that g»(x, y) and
itj,v(x, y) must vanish at the end of the stubs, i.e.,

q [y —(d'+ w/2) ]
—

q [y —(d'+ w i2)]
gii x,y = Dii„e" —e " sin (x +w/2)

W

and similarly for P,v(x, y). In the central region V, finally, the expansion reads

fv(x, y) = g sin (y +w/2) (E„e " +F„e " )+ g sin
N

(x+w/2) (G„e " +H„e "
) .

W

Equating amplitudes at x = —w/2 we have from Eqs. (3) and (8)
—

q /z +q„ /2 —
q /z q„ /z

i, ne i, ne ne ne

When matching the derivatives it is convenient to Fourier expand the exponentials e " in the interval
—w /2 &y & w/2 and then equate Fouirer coefficients, which gives

q„(8, „e " —C, „e ' E„e "—+F„e "
) g — [G f„(q )+H f„(—q )]=0,

LU

(10)

where III. NUMERICAL CALCULATIONS AND RESULTS

f„(+q )=—I dy e '" sin (y+w/2) . (11)
N —w/2 LU

Similar relations as in Eqs. (9) and (10) are obtained from
matching at the remaining boundaries. If X „ trans-
verse modes are included in the expansions of it) there are
10K,„ linear equations determining the (complex) ex-

pansion coefficients C=(8, „;C,„8„„,. '. . ;H„).
The current J at T=0 K is evaluated as outlined by

Kirczenow. " Assume that there is a weak potential
difference V between the two 20 reservoirs, which causes
a Aow of electrons from left to right. Because of the Pau-
li principle only incident waves in the narrow window
(E~ —eV, E~) at the Fermi energy E„will contribute to
the current. The conductance G is then

1

h

2e F
(12)

where j(k) is the current associated with an incident
wave with k=k~(cos(q)), sin(q))) and kz is the Fermi
wave number. If we use it), of channel I to evaluate j(k)
we have

eh *. aj (k)= J dy Re it)ii
L

eA m g Im[q„(Bi „+C,„)*(Bi„—Ci „)] .
m*

n

(13)

We now turn to calculational aspects and actual re-
sults. In practice the number of basis functions in the ex-
pansions of gi, . . . , itjv must be finite. In general we have
found good convergence, which means that the inclusion
of X „=6—8 transverse modes su%ces quite well for our
purposes. If the two stubs in Fig. 1 are removed by
choosing d'=d" =0 in the present formalism we return
to the case of a single ballistic channel already analyzed
in detail by Kirczenow. " We have therefore used this
limit to test our numerical results against his and found
good agreement in general. The computed conductance
is essentially steplike and in gross agreement with obser-
vations. Superimposed on the "ideal" conductance pla-
teaus G =2e X/h there is an oscillatory pattern due to
longitudinal resonant states. For finite d' and d" this
picture is considerably modified.

The calculated conductance in the crossbar geometry
in Fig. 1 is displayed in Figs. 2(a)—2(d) as a function E~
while d'' ' and w are kept constant. In practice one
would vary u rather than EI; but the qualitative picture
of filling successive subbands would remain the same.
The calculations have been performed with
m *=0.067m 0 which is appropriate for the
Al Ga& As/GaAs interface. We first discuss the two
sharp peaks at energies E' and E". These are located at
the energies at which bound states at the intersection are
to be expected according to Schult, Ravenhall, and
Wyld, namely E' =0.66E, and E"=0.93Ez, where

E, =iri (rr/w) /(2m*) and E2=4Ei are the two lowest
sublevels. The two peaks thus correspond to resonant
tunneling via such bound states. At the lowest peak the
conductance is 6 =2e /h. Also at the second peak the
conductance takes a quantized value, 6 =4e /h, provid-
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FIG. 2. Calculated conductance in units of {2e /h) as a func-
tion of the Fermi energy (in meV). The length of the channel
connecting the 20 regions and its width are kept constant,
w = 100 nm and d =50 nm, and the effective mass is
m*=0.067mo. Cases (a)—(d) refer to d'=d"=75, 60, 50, and
40 nm, respectively. The positions for the two lowest sublevels
E, and E2 are indicated by arrows labeled (1) and (2). E', E",
and E'" denote bound-state energies.

that E"' develops into a quasibound or resonant state
when it is pushed into the second subband. We have in-
vestigated this point by considering the possibility of
bound states in an infinitely long channel with stubs as in
Fig. I (d —+ ~ ). The expansions of g, and g», then have
to be modified such that only exponentially decaying or
outgoing waves are included. Equations (I), (2), (4a) and
(4b) will not enter the discussion at all. Matching of wave
functions as above, but now at the intersection only, leads
a set of linear homogeneous equations for the expansion
coefficients. The requirement for nontrivial solutions and
bound states is that the corresponding determinant van-
ishes. Proceeding in this way we have reconfirmed that
the two sharp peaks at E' and E" actually correspond to
the bound states predicted by Schult, Ravenhall, and
Wyld. Our calculations also show that for shorter
wings, d'=d" —50—60 nm, the state at E"' ceases to be a
bound state in the sense that the determinant cannot be
made to vanish in the appropriate energy range. Rather
it transforms into a quasibound state. Also the remaining
bound states will eventually experience the same fate as
d' and d" get sufFiciently small. This brings previous
theories of magnetotransport in four-terminal junctions
into mind. ' In these theories only freely propagating
electrons could carry a current so that resonant rather
than bound states at the intersection were probed. Apart
from being at higher energies, these states are reminiscent
of the bound states discussed here.

ed the stubs are suSciently extended, e.g. , d'=d"=90
nm. In addition to the resonance peaks we notice how
the quantized plateaus associated with a single channel
have now been washed out. Strong interference effects, of
a kind already found for four-terminal junctions' and for
T-shaped electron waveguides, ' give rise to a vanishing
conductance at EF —1.2 meV.

The positions of the peaks marked by E' and E" in
Figs. 2(a)—2(d) are insensitive to the extension of the
sidearms. The reason for this is that the wave functions
are well localized at the center of the cross and thus hard-
ly extend to the far end of the stubs. Consequently, elec-
trons in these states effectively behave as for an infinite
cross. Our main objective has been to show how these
kinds of states can give rise to resonant tunneling. In
addition to the resonance peaks at E' and E" there is,
however, a third peak at E"' in Figs. 2(a)—2(d). This peak
behaves quite differently. Thus it is sensitive to variations
in d' and d". The reason for this is that the correspond-
ing wave function is mainly localized in the stubs. To a
very rough approximation we have E"'=Pi /2m*[(n. /
d') + (m /w) ], i.e., simple quantization in a box.
Presumably there are more states of this kind at higher
energies, but we will not pursue this issue here, since our
main concern is with bound states related to an infinite
cross. The state E'" would not appear in a four-terminal
probe.

While the resonance peaks at E' and E" remain sharp
as d' and d" decrease, the peak at E"' becomes consider-
ably broadened and eventually fades away as the sidearms
are made progressively shorter. The reason for this is

IV. BRIEF SUMMARY

In summary we have shown by an exact model calcula-
tion that the bound states in a crossbar geometry in be-
tween two 2D reservoirs give rise to resonant tunneling
somewhat akin to transverse tunneling through double
barriers in semiconductor heterostructures' ' and reso-
nant transmission through zero-dimensional states in a
one-dimensional electron interferometer at high magnetic
fields. ' For suSciently long sidearms the conductance is
quantized as 6 =2e X/h where X =1 or 2. We there-
fore suggest that measurements of the tunneling current
could be a way of observing such bound states. We re-
call, however, that the calculations here are based on a
very idealized model potential. For example, in a real
semiconductor structure corners are likely to be rounded
rather than sharp. ' For this reason it would be of in-
terest to improve the present model by introducing a
smoother lateral confinement. While interference pat-
terns may turn out to be more smeared, peaks associated
with resonant tunneling should remain intact. Only the
position should be shifted.

Other factors that would complicate measurements
are, of course, disorder due to scattering centers and vari-
ations in the channel width. Close to pinch off such fac-
tors may lead to badly defined channels and low mobility.
Inaccurate lithography could also complicate the picture
in the sense that the second bound state at E" requires
that the widths of the two channels are equal. If the re-
striction to equal widths is relaxed, the state with E"
thus disappears, but at the same time new ones turn up
under appropriate conditions. These new models also
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give rise to resonant tunneling in the way we have dis-
cussed here. In summary one may thus remain optimistic
about the possibility of measuring resonant tunneling in
the present type of semiconductor structures.

Note added in proof. The quantum-mechanical trap-
ping of electrons has also been studied theoretically by J.
L. D'Amato, H. P. Pastawski, and J. F. Weisz [Phys.
Rev. B 39, 3554 (1989)], who considered T-shaped cir-
cuits and finite rings with leads in a tight-binding model.
Most recently structures consisting of a short channel
with one to four stubs (a finite lattice of T:s) have been
studied experimentally by R. J. Haug, K. Y. Lee, and J.
M. Hong [in Nanostructures: Fabrication and Physics,
Proceedings of Symposium Y, 1990 Fall Meeting of the
Materials Research Society, edited by S. D. Berger, H. G.
Craighead, D. Kern, and T. P. Smith III (Materials
Research Society, Pittsburgh, 1990)]. The measured con-

ductance shows a rich structure which indicates that res-
onant tunneling of the kind discussed here might be a real
possibility.
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