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Tight-binding analysis of energy-band structures in quantum wires
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The tight-binding method is applied to the analysis of the energy bands of GaAs-Al& Ga„As
quantum wires parallel to the [110]orientation. The results indicate that the effective mass of elec-

trons parallel to the quantum wires in the lowest conduction band in a typical case studied can be as

much as 50%%uo larger than that of bulk GaAs and that in the second-lowest conduction band even

larger. In the valence band, the reduced symmetry of the quantum wire causes enhanced heavy-

hole —light-hole mixing and therefore increased nonparabolicities and reduced effective masses of the

uppermost valence band. In a case studied this mass was reduced by a factor of 0.65 compared with

a similarly dimensioned quantum well. The negative-effective-mass properties of the lower valence
subbands are also increased relative to quantum wells. These changes in the energy-band structure
would significantly affect mobilities, the transitions between subbands, and lasing characteristics of
quantum-wire devices.

INTRODUCTION

In quantum-wire structures, quantization of the energy
levels of electrons occurs in two transverse directions
(parallel to the x and y axes), and a one-dimensional elec-
tron gas can be formed. In these structures, it was pre-
dicted that the electron mobility could be drastically
enhanced at low temperature. ' This enhancement results
from the suppression of impurity scattering due to the
two-dimensional confinement of electrons. Moreover,
theoretical analysis also predicted that characteristics of
semiconductor lasers, such as threshold current, modula-
tion dynamics, and spectral properties, can be
significantly improved with quantum-wire structures un-
less there is strong coupling between the electron wave
functions in neighboring wires. In most of these stud-
ies, however, the same effective mass as that of the GaAs
bulk material was assumed for motion in the wire direc-
tion. Also, recently there have been a number of studies
concerning transitions between confined subbands for the
generation and absorption of radiation in the infrared
wavelength range. The spectral properties are usually es-
timated using the above assumption for the effective
masses of both subbands. This assumption is not suitable
for more rigorous discussion of device characteristics.

On the other hand, the tight-binding method, in which
the wave functions of electrons and holes in the quantum
wires are described as linear combinations of orbitals on
each atom, is now well known to be useful for analyzing
the energy-band structure of quantum wells even when
the wells are thin. Previous results for quantum wells
have revealed that the in plane (i.e., -parallel to the
quantum-well plane) band structures are quite different

from those of the bulk states. In addition, we recently
applied this tight-binding calculation to the analysis of
the conduction band. The results show that in the cases
considered the effective mass of electrons can be in-
creased by a factor of 1.45 compared to the effective mass
of the GaAs bulk material, which slightly reduces the ad-
vantage of using the quantum wires for high-electron-
mobility transport devices. In order to clarify the
characteristics of optical devices, the influence of the
change in the effective mass in the direction of the quan-
tum wires and the nonparabolicity of the energy-band
structures should also be carefully examined.

In zinc-blende semiconductors such as GaAs, the or-
bitals that compose the bulk band structure near the
band gap are well known. Near the I point the lowest
conduction band mainly consists of s orbitals and the
upper valence bands mainly consist of p orbitals. As the
energy of the state departs from the zone-center energy,
the contribution from the other orbital type gradually in-
creases. The p orbitals have three directions, which can
be chosen as p„, p, and p, . In the valence band, these
orbitals combine to make the heavy, light, and spin-orbit
split-off bands, which are relatively closely spaced in en-
ergy. The quantum confinement is effective in mixing
these bands, causing dramatic changes in the band struc-
ture as compared with the bulk. In quantum wells, which
have only one quantized direction, the valence-band
structures have been quite well analyzed. Specifically, the
in-plane effective mass of the heavy hole becomes smaller
than that of the light hole. In addition, the light hole can
take on a negative effective mass, depending on the sub-
band energy spacing. Also, the interaction of the sub-
bands causes strong distortions away from the zone
center. In this paper, we apply the tight-binding method
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to the analysis of the energy-band structure of GaAs-
Al& Ga„As quantum wires.

)(
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APPLICATION OF THE TIGHT-BINDING METHOD
TO QUANUM WIRES

The tight-binding method has some advantages and
some disadvantages as compared with other methods. Its
main advantage is that it includes the actual atomic posi-
tions explicitly. It therefore automatically includes sym-
metry effects correctly. In terms of the band structure,
this means that band mixings, splittings, degeneracies,
and band crossings are relatively accurately produced.
Also, the boundary conditions are automatically included
and the current conservation requirement satisfied. For
thin quantum wires, simplifying assumptions that other
methods use, such as cylindrical or rectangular symme-

try, infinite-barrier boundary conditions, or the setting of
the barrier mass equal to the mass equal to the mass in-

side the wire may cause inaccuracies that are not a prob-
lem here, in that the quanum-wire position and boundary
is simply defined by the alloy composition of the actual
atoms at their actual positions. Also, anisotropies in the
band structures are accurately produced and spin, espe-
cially important for the valence band, is also easily incor-
porated. A discussion of some of these considerations
within the context of the k.p model can be found in Ref.
10.

Its main disadvantage is that the size of the Hamiltoni-
an matrix that must be di.agonalized is large and increases
with the wire cross section. For the quantum well the
problem of matrix size has been solved using the reduced
Hamiltonian method, ' but it is not straightforward to
extend this to the quantum-wire case. Another disadvan-
tage is that if only nearest-neighbor interactions are in-

cluded, as is the case here, the conduction band near the
X point is not well reproduced. Therefore, questions con-
cerning I and X mixing in the conduction band are best
dealt with using other methods. "

In our calculation model, the direction of the wire is

parallel to [110],with the directions of confinement there-
fore being [001] and [110]. The coordinates are defined
so that the x, y, and z directions are parallel to [001],

Wx Bx

= x[001]

FIG. 1. Schematic cross-sectional illustration of a quantum
wire.

[110],and [110],respectively. In Fig. 1, a cross-sectional
view of the periodic quantum-wire structure is illustrated.
Here, the thicknesses of the wells are equal to L~„and
L ~y and the barriers are equal to L~ and Lzy . This unit
cell is periodically repeated in the two quantized direc-
tions with periods L and L . The periodic boundary
conditions are represented by elements in the Hamiltoni-
an matrix in the upper right and lower left corners by the
Bloch phase factor times the overlap integral between or-
bitals in adjacent cells.

In our calculation five orbitals per atom (s,x,y, z, s*)
are used, assuming nearest-neighbor overlaps. ' '' This
produces 20 bulk states per material, including spin. In
our analysis, each atom is numbered by expanding the
two-dimensional array of atoms in a cross-sectional plane
of the quantum wire into a one-dimensional array. The
electron wave function %' for the quantum wire can be ex-
pressed as a linear combination of the quantum-wire sin-
gle orbital Bloch functions %z, where J and M label the
Jth orbital on the Mth atom in the unit cell, as follows:

qg yy( MqpM

J M

CJ is the local-orbital coefficient, which is determined as
an eigenvector of the following Hamiltonian matrix:

(+&M ~H~+J~) =—g g g g g gexpt —i [(j—j')k, .a+(n —n')k D +(m —m')k~ D~]]M

j j' n n' m m'

X (a ' (r —L'„.—rM ) ~H~aJ (r —L,„rM ) ), —

where the vectors 0 and L „are defined as follows:

L
D =(O, O, L„), D = —(

—1, 1,0), a=a(1, 1,0), L „=ja+nD +mDJ x y

L and Ly are L~„+L~ and L~y+Lpy respectively. a is the lattice constant. k, is the wave vector in the direction of
the quantum wires [110]. k and k are the wave vectors in the directions of quantization. rM is the position of the
Mth atom in the unit cell. The aJ are the local atomic orbitals. The total amplitude of the quantum-wire Bloch func-

tion on the Mth atom of the crystal can be written 4 and expressed by the following equation:

'Il = pe g ++exp[ —i(jk, a+nk, .D, +mk .D~)]aJ (r —L,„—rM)
J j n m

(4)
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The summation within the parentheses in Eq. (4) is 4J . The basis set used for the Hamiltonian matrix is

I s,j, 1 &, Is,j, l &, Ip. ,j, 1' ), Ip„,j, l &, Ip»,j, t &, I p»,j, l &, Ip„j, l &, Ip„j, 4 &, ~
s,j, t &, ~

s,j, l &,

where j =a or c for anion or cation. The interactions be-
tween orbitals with the same spin are

E„=&sj IHl~,j &, E», = &p. j IHlp. j &

E„=&s,a IHI sc, &, E „=&p„,clHlp„, a &,

=&p„,c(H)p, a), E,„„=&s,a)H)p, c),
E, „=&s,c[H[p„a), E, , =&s',jlHls*,j &,

E, = &s* alHlp„, c & E, = &s*,clHlp a )

justed in order to more accurately reproduce the energy
bands in the vicinity of the valence- and conduction-band
edges, especially the effective masses. The effect of spin is
small in the conduction band, so that in order to reduce
the matrix size, it was omitted there. For the valence
band the s* components of the wave functions are very
small, so that it was omitted there. The Ali „Ga„As pa-
rameters are weighted averages of GaAs and A1As pa-
rameters. A value for the valence-band offset of 43% of
the direct-band-gap difference is used, Miller s discon-
tinuity.

&p„j, )~H~p„g, g&= X, ,

&p. ,j, l (H(p„j, l ) =i X, ,

The A, are chosen to reproduce the spin splitting in the
valence band. '

Using Eqs. (l)—(4) and these matrix elements, we calcu-
late the eigenvalues and eigenvectors of the Hamiltonian
matrix to obtain the wave functions (4) and the energies.
The values of the parameters that were used in our calcu-
lation are summarized in Table I. They are slightly
modified versions of those listed in Ref. 6. They were ad-

TABLE I. Empirical tight-binding parameters in eV for
GaAs and AlAs.

Parameter GaAs AlAs

Ess (0,0, 0)a

Epp (0, 0, 0)a

Ess (0,0,0)c

Epp (0,0, 0)c

4Ess(1/2, 1/2, 1/2)

4Exx (1/2, 1/2, 1/2)

4Exy (1/2, 1/2, 1/2)

4Esx (1/2, 1/2, 1/2)ac

sx (1/2, 1/2, 1/2)ca

Eggs s (0,0,0)a

Eggs s (0,0,0)c
4E

. ') s' x (1/2, 1'/2, 1/2)ac
4E gs x (1/2„1/2, 1/2)ca

—8.4570
0.9275

—2.7788
3.5547

—6.4513
1.9546
4.7700
4.6800
7.8500
8.4755

6.000
4.7000
7.0000
0.3900
0.174

—7.6201
0.8905

—1.1786
3.4939

—6.6642
1.8780
3.8600
5.1106
7.1000
7.3905

6.6339
4.5216
6.9000
0.3500
0.0240

where again j =a or c. The additional interactions due to
the spin-orbit component of the Hamiltonian are

&p„,j, t~H~p„j, T &
= ik, —,

&p„j,&~H p„j,»= —~, ,

Quantum-wire conduction-band structure

First we discuss the conduction-band structure of the
quantum wire. The electron effective mass in the direc-
tion of the quantum wire is a critical factor in determin-
ing election mobilities and intersubband optical transi-
tions mentioned above. %'e have previously discussed the
electron effective mass and its effect on electron mobili-
ty. The wire had a periodic unit cell of width 90
0 0
A (L„=L =90 A) and barrier layers consisting of
Alo. 4Ga0. 6As The results show that the electron effective
mass of a quantum wire with dimensions
(Ln,„=35A)X(Ln»=30 A) is increased by factor of
1.45 compared to that of the GaAs bulk, and that of a
quantum wire with (Lu, =50 A)X(Ln, =50 A) is in-

creased by a factor of 1.26.
For these two cases the electrons are strongly confined

and the miniband width is small (less than 6 meV) in the
two quantized directions. This result suggests that the
increase of the effective mass in the quantum-wire direc-
tion is caused by the strong confinement for these cases.
Of course when the wire width becomes small and the
wave function leaks more and more into the barrier, the
Al, „Ga As effective mass will be approached, but even
for rather thin barriers the confinement in the wire is
quite strong and it is the band-gap enhancement caused
by the quantum confinement that increases the effective
masses.

Figure 2 shows the calculated effective masses for the
cases mentioned above. For decreasing L~ with, for ex-

0

ample, Lz fixed at 50 A, the effective mass is seen to in-
0

crease. For L~ less than 10 A the miniband width in-

creases beyond 15 meV and the Al& „Ga As effective
mass is approached due to wave-function smearing. For
larger L~ the increase of the effective mass is caused
mainly by the strong confinement.

The increase of the effective mass for the strong-
confinement case can be understood from a k-p theory
viewpoint. As is well known, in the simplest approxima-
tion the conduction-band effective mass is roughly pro-
portional to the band gap in semiconductors having simi-
lar wave functions and therefore similar momentum ma-
trix elements at k=0. The multiplicity of subbands for
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FIG. 2. The ratio of the electron effective mass of the quan-
tum wire to that of bulk GaAs. L~, is fixed at 20, 35, 50, or 90
0
A, with L~~ varying.

quantum wells and wires, especially for the valence band,
complicates this picture, but for the conduction sub-
bands, which are relatively widely spaced, the rule should
still be, and is, approximately followed.

This increase in the effective mass is consistent with
the change in the wave function observed for increasing
confinement. k.p theory predicts that the p-orbital com-
ponent of the quantum-wire wave function should in-
crease in a simple way as the energy of the state increases
above the bulk GaAs conduction-band minimum ener-
gy. ' We calculated the wave function for a
GaAs/Alo 4Gao 6As quantum wire with (L&=35 A)X(L~ =30 A) with a periodic unit of 90 A.
The electron effective mass of the wire in the lowest con-
duction band was 0.097 mo. Figure 3 shows the lowest
conduction-band wave function plotted through the
center of the wire in the [001] direction. Here the total
squared amplitudes of the s- and p-orbital components
are shown. The electrons are strongly confined even in
this thin-quantum-wire structure. The wave function of
the p-orbital component has peaks at the
GaAs/Al, „Ga„As interface as is predicted by the
boundary conditions of the simple k.p two-band model
for such a state. '

0.0 0.02 0.04
k, a/21t

0.06

FIG. 4. Conduction-band structure in the [110]direction for
a Lwx =50 A, LBx 50 Ap Lpy 40 A& L» 40 A
GaAs/Alo 4Gao 6As quantum wire.

Next we discuss the higher subbands. Here the first-,
second-, and third-highest conduction bands (CB11,
CB12, CB21) of the GaAs/Al, „Ga„As quantum wire
are shown in Fig. 4. The notation "CBmn" indicates the
numbers of nodes plus one in the x and y directions. The
zero of energy is the GaAs valence-band maximum. L~

0
and L~ are equal to 50 A, and Lz and L~ are equal to
40 A. The electron effective mass of CB12 is 0.108mo,
significantly larger than that of CB11. In the analysis of
optical transitions between subbands (e.g. , CB11 to CB12)
the electron effective masses of both bands are usually
considered to be that of bulk GaAs. With such an as-
sumption the spectral linewidth of the absorption is quite
narrow because the transition energy for all k vectors has
the same constant value as at k =0. However consider-
ing the conduction-band structures shown in Fig. 4, the
transition energy does not have a constant value and in
fact decreases with increasing k vector due to the larger
effective mass of the higher subband. Therefore the spec-
tral width of the absorption becomes wider in the low-
energy direction below the k =0 band gap. In addition,
increasing the n-doping concentration would cause an in-

x10
1

s orbital [001]
12

x1

p orbital [001]

ani

cat

(b)

GaAs (35A)
Alo. 4Gao.eAs (55A)

GaAs (35A)
Alo 4Gao 6As (5SA)

0 0 0 0FIG. 3. The electron wave function for a L~x =35 A, Lzx =55 A, L ~~
=30 A, L» =60 A GaAs/Alo 4Gao 6As quantum wire plot-

ted along a line through the wire center parallel to [001].
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Lw. Lay

45 A
31 A
11 A

L~x, L~y

17 A
31 A
51 A

VB1

—0.0722
—0.1213
—0.3981

VB2

—0.1201
—0.1987
—0.5192

VB3

—0.1264
—0.2036
—0.6434

TABLE II. The energy of the top three valence bands of a
0

GaAs/AlAs quantum wire whose periodic unit is 62 A. Ener-
gies are in eV.

0.0

CD -0.&

CB
CDc -0.2

UJ

-0.3

VB1( hh1)

VB2( Ih 1)

the top three valence bands at the zone center for each.
The dimensions of the three cases are (a) L~ =L~~
=45 A, L~„=L~ =17 A; (b) L@„=L~=31 A,
Lz„Lz =31——A; and (c) L~ =L~ =11 A, Lz„=L~~
=51 A. The confinement is larger for the larger wires,
resulting in energies closer to the bulk GaAs valence-
band maximum and more closely spaced subbands. The
simultaneous decrease in barrier width with increasing
wire width is a secondary unimportant effect here. For
cases (a) and (b) the energy of VB2 (the second uppermost
valence band) is located close to VB3 (the third upper-
most valence band) near the zone center causing a strong
k.p repulsion between the two and a resulting negative
effective mass for VB2 (relative to the normal sign of the
mass) similar to that found in quantum wells. In addi-
tion, the repulsion between VB2 and VB3 causes VB2 and
VB1 (the uppermost valence band) to anticross away
from the zone center. On the other hand, as the width of
the GaAs wire region becomes smaller as in case (c), the
quantized energy of VB3 at the zone center approaches
the AlAs valence-band barrier height, the wave function
of VB3 spreads into the barrier layers, and the separation
of the quantized energy levels is relatively large. In this
case the mixing between bands becomes weak. Thus the
degree of confinement affects the valence-band structures
through the mixing of the bands with each other.

Comparison between quantum wires and quantum wells

Next we compare the valence-band structures of quan-
tum wires and quantum wells. The calculated valence-
band structure of a 40X40A quantum wire in the direc-
tion of the wire is shown in Fig. 7. The result for the
[110]direction in-plane dispersion of the valence band of

0.0

VB1

0.04

k, a/2z
0.08

FIG. 8. Valence-band structure in the [110] direction for a
GaAs(40 A)/A1As(34 A) quantum well whose orientation is
{001).

a GaAs (40 A)-A1As(34 A) quantum well whose plane is
normal to (001) [i.e., the direction of quantization is
parallel to (001)] is shown in Fig. 8. For simplicity we
have here plotted the average of the energies of the two
closely spaced spin-split band pairs. As can be seen, in
the quantum-well structure strong nonparabolicities of
the dispersion curve are observable. Moreover, the
effective masses of the heavy holes 1 and 2 (VB1 and
VB3) in the in-plane directions are much smaller than
that of the light hole (VB2), in contrast to the quantized
direction. In addition, the effective mass of light-hole 1

(VB2) in the in-plane direction is slightly negative. These
properties are well-known typical features of quantum
wells.

On the other hand, the calculation for the quantum
wire shown in Fig. 7 indicates that both nonparabolicites
and the negative-e6'ective-mass nature of the second up-
permost valence band (VB2) are more enhanced com-
pared to that of the similarly dimensioned quantum well.
The effective mass of the first uppermost valence band
(VB1) is 65% of that of the quantum well. In Table III,
the values of the effective masses in the lowest conduction
band and the uppermost valence band are summarized.
In addition, the results indicate that the effective mass of
the third band, VB3, is also slightly negative. VB2 ap-
proaches VB3 at the zone center and approaches VB1 a
little away from zone center. Thus the valence bands of
the quantum wires are strongly mixed with one another.

In Table IV, the miniband width in the confined direc-
tions of each subband in the valence band is summarized
for the quantum well and wire. In the quantum well, the
miniband width of the light hole (VB2) is larger than that

~ -0.1
CD

CD

CDc -0.2
LU

-0.3
0 0.04 0.08

TABLE III. Summary of the effective masses in the lowest
conduction band (CB1) and the uppermost valence band (VB1)
of the 40X40 A GaAs/A1As quantum wire, (001) GaAs(40
A)/A1As(34 A) quantum well, and bulk GaAs. The direction is
[110]. Here, mo is the mass of an electron.

k, a/2z
FIG. 7. Valence-band structure in the [110] direction for a

Lwx 40 A~ LBx 34 A~ Lwy 40 A& L8& 34 A GaAs/AlAs
quantum wire.

Wire
Well
GaAs

CB1

0.103m o

0.082m o

0.066m o

VB1

0.168m o
0.258m o

0.749m o
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TABLE IV. Miniband width of valence bands in meV for the

quantum wires shown in Fig. 7 and (001) GaAs(40 A)/A1As(34
A) quantum wells.

Direction

Wire [001]
Wire [110]
Well [001]

CB1

0.47
0.98
0.57

VB1

0.0726
0.0847
0.0070

VB2

0.020
0.059
0.781

VB3

0.252
0.775
0.050

of the heavy holes (VB1 and VB3), which is a typical
feature of quantum wells. On the other hand, in the
quantum wire the miniband width of VB2 is almost the
same as that of VB1 and is much smaller than that of
VB3. Characterization of the wire subbands as heavy- or
light-hole-like must be done with caution, however, due
to the heavy-hole —light-hole mixing. The complications
of the valence-band structures would be expected to
inAuence the lasing properties of wires, especially in so
far as the density of states is affected. Details will be dis-
cussed eleswhere. 17

trons increases the effective mass in the wire direction
due to the increased band gap. The effective mass of the
quantum wire with a 50XSOA cross section is 1.27 times
as large as that of bulk GaAs, while the miniband width
is quite small. Moreover, the electron effective masses of
higher subbands are not the same as the lowest subband,
but are indeed significantly larger. These results would
influence the electron mobility of quantum wires and the
absorption coefticients of transitions between the sub-
bands. In the valence band, the results indicate that
strong nonparabolicities and band Inixings are occurring,
depending on subband spacings, due to the decreased
symmetry of the wire relative to the well. The effective
mass of VB1 in a case studied was reduced by 65%%uo rela-
tive to that of a similarly dimensioned quantum well, re-
sulting in a value of 0.168mp. Also, the negative effective
mass of VB2 was enhanced and that of VB3 became
slightly negative. The results obtained in this paper sug-
gest the importance of considering the band structure in
the design of quantum-wire devices utilizing valence
bands such as semiconductor lasers. '

CONCLUSION

In conclusion, we have calculated the energy bands of
GaAs-Al& „Ga As quantum wires that are parallel to
the [110] direction using the tight-binding method. In
the conduction bands of GaAs-Alp 4Gap 6As quantum
wires, the results indicate that the confinement of elec-
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