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Structure and phases of the Au(111) surface: X-ray-scattering measurements
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The results of a comprehensive synchrotron x-ray-scattering study of the clean, reconstructed
Au(111) surface between 300 and 1250 K are presented. Two surface phases are identified and
characterized. For T <865 K, the reconstruction consists of a series of discommensurations,
separating surface regions with the correct face-centered-cubic (fcc) 4ABC stacking sequence from
regions with a faulted 4B A stacking sequence. A key feature of this phase is the existence of an
equilibrium density of kinks between rotationally equivalent domains. At 865 K, the reconstruction
starts to lose long-range order. The first-order transformation to a disordered phase is complete by
880 K. In this phase, the topmost layer has hexagonal symmetry and is on the average isotropically
compressed compared with bulk (111) planes. Between 880 and 1250 K the translational correlation
length and the average compression of the overlayer evolve only slightly. Interpretation of the x-ray
reflectivity, both specular and nonspecular, establishes, however, that the occupation of fcc C sites
and faulted A sites is approximately constant throughout the temperature range studied. In addi-
tion, the separation between the top two layers is expanded 3% relative to the bulk (111) interlayer
spacing and the surface-normal vibrational amplitude in the surface layers is enhanced with respect
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to the bulk value.

I. INTRODUCTION

Perhaps the most surprising reconstruction of a metal
surface is that of the close-packed (111) face of gold. The
ideal (111) surface of an elemental face-centered-cubic
(fcc) material is hexagonally close packed. This appears
to be the lowest-energy configuration of the (111) surface
of most fcc metals. In contrast, the Au(111) surface layer
is denser than the bulk (111) planes. This reconstruction
has been studied by a variety of experimental tech-
niques.' "!1° As a result, it is believed that at room tem-
perature the reconstruction is comprised of a series of
linear discommensurations running parallel to the (112)
directions separating surface regions with the correct
face-centered-cubic ABC stacking sequence from regions
with a faulted AB A stacking sequence [(s XV'3) recon-
struction, with s =23]. Such a phase, incommensurate in
only one direction, is often called a stripe-domain phase.'!
Little is known, however, about the structural behavior
of the Au(111) surface at elevated temperatures. For this
reason, we have carried out a comprehensive synchrotron
x-ray diffraction study of the clean Au(111) surface be-
tween 300 and 1250 K. Owur results have particular
relevance to the suggestion that the relief of surface stress
gives rise to the Au(111) reconstruction'?”!* and to re-
cent predictions that high-symmetry surfaces, which
reconstruct into one of several rotationally equivalent
structures, are unstable to the formation of domains.'> A
complete account of our procedures, data, and analysis is
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given in this paper; a summary has appeared previously.!®

We have identified and characterized two distinct
phases. For sample temperatures less than 865 K, the
surface structure is well ordered. However, the x-ray
diffraction pattern cannot be understood on the basis of
the stripe-domain reconstruction described above. In-
stead, its interpretation leads to a structural model in-
volving an equilibrium density of kinks separating
domains whose discommensuration orientations differ by
120°. The kinks are themselves ordered and produce a
structure in which two of the three possible rotationally
equivalent domains of the stripe-domain structure alter-
nate periodically across the surface. We call this the
chevron phase. The presence of isolated kinks is evident
in the transmission electron microscopy (TEM) studies of
Refs. 4 and 5, and in the scanning tunneling microscopy
(STM) study of Ref. 10. Very recently, we have learned
of elegant STM results that independently lead to the
same structural model at 300 K.!” The appearance of
differently oriented domains suggests that there are com-
peting interactions which compromise at the equilibrium
kink separation. Vanderbilt'® has suggested that a possi-
ble origin of this phenomenon may lie in the anisotropic
stress that arises when a surface reconstructs with a bro-
ken orientational symmetry.'3

The chevron structure is characterized by two incom-
mensurate wave vectors: the discommensuration wave
vector 8 and the kink wave vector 8. Both wave vec-
tors increase monotonically with increasing temperature,
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which corresponds to an overall contraction of the chev-
ron unit cell relative to the bulk lattice constants. The
average discommensuration periodicity varies smoothly
from L =22.5a at 300 K to L, =20.9a at 850 K, where
a is the ideal fcc nearest-neighbor separation. (At 300 K,
a =2.885 A.) The average kink periodicity is approxi-
mately  constant between 300 and 700 K
(Lg=112.4a=324.3 A) and decreases rapidly between
700 and 850 K (at which temperature Ly =70.4a =204.9
A). The ratio of the two wave vectors (8x /8p) varies
from =0.2 at 300 K to ==0.3 at 850 K. Remarkably, the
kink ordering extends the farthest when the ratio is close
to one-quarter. At one-quarter, the unit-cell dimensions
are such that the distance between kinks, perpendicular
to the discommensurations, exactly equals four complete
discommensuration periods. With regard to the chevron
model, it is important to add that calculated intensities
based on the chevron structure quantitatively describe
the observed variation of the peak intensities with the ra-
tio 8 /8p.

At 865 K, the reconstruction begins to lose long-range
order. The transformation to a partially disordered
phase is complete by 880 K. However, there is no ac-
companying surface roughening!® 2! or surface melt-
ing.?? Results of x-ray reflectivity measurements, both
specular and nonspecular,??” 2% establish that for length
scales less than the translational correlation length (&)
the surface is well ordered with the atoms in the topmost
layer occupying well-defined atomic positions up to the
highest temperatures studied.?’” In this phase, the top-
most layer exhibits hexagonal symmetry and is on the
average isotropically, but not uniformly, compressed rela-
tive to the bulk Au(111) planes. Remarkably, the transla-
tional correlation length is only weakly temperature
dependent (£=105 A) between 900 and 1250 K.
Furthermore, it barely exceeds the surface periodicity (70
A). In this respect, the configuration of faulted and un-
faulted regions is very disordered. For this reason we call
this phase the discommensuration fluid phase.?* 3° Near
the phase transformation, there is an evolution of the
discommensuration-fluid-phase scattering function; how-
ever, the transformation to the chevron phase is discon-
tinuous (first order).

The only previous study that included measurements
performed at high temperatures was the TEM study of
Ref. 5, where the low-temperature phase was observed to
evolve gradually to a disordered phase over a wide range
of temperature. In contrast, we observe a narrow tem-
perature range of coexistence between the two phases (15
K). In the TEM study, the reconstruction was observed
to disappear by 1170 K. However, we find that the sur-
face is still reconstructed at 1250 K.?’

Further results of the present study, which emerge
from an analysis of the x-ray reflectivity, include a deter-
mination that the layer spacing between the topmost and
second layer (d,,;) is expanded by 3% relative to the bulk
(111) interlayer spacing. In addition, we find a nearly
sinusoidal variation of the displacement field from faulted
to unfaulted regions and that the ratio of sizes of the
faulted and unfaulted regions is 0.7. Finally, we em-
phasize that only the topmost layer participates in the
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reconstruction, in contrast to the suggestion of Ref. 7
that there are two layers with lattice constants different
from those of the bulk.

The format of this paper is as follows: We review the
relevant features of x-ray scattering as applied to surface
structures and describe our experimental procedures in
Sec. II. In Sec. III we present our data. Section III A de-
scribes measurements of the x-ray reflectivity of the
Au(111) surface, both specular and nonspecular, for tem-
peratures between 300 and 1250 K. Fine-resolution,
glancing incidence measurements of the in-plane
diffraction pattern for the chevron phase are reported in
Sec. III B. Section III C details fine-resolution measure-
ments of the discommensuration-fluid-phase scattering
function, while Sec. III D describes details of the phase
transformation. Finally, in Sec. IV, we present our con-
clusions.

II. METHODS AND PROCEDURES

A. Scattering geometry and coordinate system

As shown in Sec. II B, the x-ray-scattering cross sec-
tion from a crystal surface consists of lines in reciprocal
space, which extend from Bragg reflections of the bulk
crystal in directions normal to the surface (truncation
rods). If the surface exhibits a reconstruction, there are,
in addition, lines of scattering through the new wave vec-
tors which are associated with the reconstruction (over-
layer rods). The overlayer rods are also normal to the
surface. Figure 1 shows a schematic view of the recipro-
cal space of a (111) terminated Au crystal. (For clarity
we do not show the overlayer rods.) Because of its three-
fold rotational symmetry about the surface normal—the
cubic [111] direction—the points at which the truncation
rods (heavy lines) intersect the surface plane are arranged
on a hexagonal lattice. It is therefore convenient to em-
ploy a hexagonal coordinate system, which is related to
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FIG. 1. Reciprocal space as defined by the hexagonal coordi-
nate system. The scattering geometry and positions of bulk
Bragg reflections (open circles) are also illustrated.
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the cubic coordinate system as follows.>! For the cubic

system, we define a,, a,, and a; to be vectors that span the
conventional fcc unit cell, with |al |= |a2‘ = |a3| =ay,
where a is the length of the side of the unit cell. (At 300
K, a;=4.078 A.) We take them to lie along the x, y, and
z directions, respectively. We also define a=a,/V'2,
which is the ideal nearest-neighbor separation. The real-
space hexagonal coordinate system is then given by
A,=—a;/2+a,/2=ay(—4,1,0)

cubic

A,=—a,/2+a;/2=a,(0, —

o1y
227 ’cubic »
and

A,=a, +a,+a,=ay(1,1,1)

cubic *

A, and A, point to nearest-neighbor atoms 120° apart on
an ideal fcc (111) plane and A; is normal to that plane.
When viewed along the surface-normal direction, an ideal
fcc crystal is composed of hexagonally close-packed lay-
ers separated along the surface-normal direction by
| A3| /3. In addition, the layers are translated from each
other in the periodic sequence ABCABC. .. with in-
plane translations 8§ , = —8-,=(A,— A,)/3 and 6;=0.
The reciprocal basis of the hexagonal coordinate system
is given by

B,=27/a,(—

W&
S

l) .
» 323 /cubic

— 1 1 1
B;=2m/a4(5, % 5 )cubic -

An arbitrary vector in reciprocal space, G, is referenced
in the hexagonal reciprocal basis by the indices H, K, and
L and in the cubic reciprocal basis by the indices 4, k,
and /. Thus,

G=HB,+KB,+LB,=hb,+kb,+Ib, ,

where b, b,, and by are reciprocal-lattice vectors of the
cubic coordinate system. In the hexagonal coordinate
system, the wave-vector transfer normal to the surface is
labeled by the single index L. This coordinate system is
employed in Fig. 1. The units of the reciprocal coordi-
nate system are as follows: for wave-vector transfers

arallel to the surface the units are a* =47 /V'3a =2.52
A~ 'at 300 K and for positions along the surface-normal
direction, ¢*=27/V3a,=0.89 A~' at 300 K. The
above relation for G allows us to solve for the cubic in-
dices hkl in terms of the indices HKL of the hexagonal

coordinate system and vice versa. The solutions
for the cubic indices in terms of the hexagonal
indices are h=—4H/3—2K/3+L/3, k=2H/3

—2K/3+L/3, and [=2H/3+4K/3+L/3. For
example, (1,1,1),1ic=(0,0,3), (1,1,1) e =(1,0,1),
0,2,2)cpic=(1,0,4), (0,0,2).15ic=(0,1,2), and (1,1,3)p;c
=(0,1,5). Henceforth, we will always denote positions in
reciprocal space and real space by means of the hexago-
nal coordinates. In Fig. 1 the wave vector of the incident
(k;) and scattered (k) x rays are shown subtending an-
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gles a and (3, respectively, with the surface plane. The
scattering wave vector is Q=k,—k;. By suitably varying
the scattering angle (26) and the crystal orientation, it is
possible to measure the scattered x-ray intensity along
each rod of scattering. We refer to that scattered intensi-
ty, normalized by the incident intensity, as the x-ray
reflectivity.

B. X-ray cross section

In this subsection we write down a general expression
for the x-ray-scattering cross section and then apply it to
the scattering from surface structures. For mono-
chromatic x rays incident on a sample, let
g(6,,9,)d6,dy, be the probability that an x ray is in-
cident between 6, and 6;+d6, within the scattering
plane (in plane) and between 3, and ¢, +d v, perpendicu-
lar to the scattering plane (out of plane).>? If all incident
x rays strike the sample, we have

Je6,9d0dy,=1. (1

After the sample, x rays are scattered at an angle 6,
within the diffraction plane and 1, out of the diffraction
plane. If the detector acceptance is described by a func-
tion G(6,,vY,), the number of photons per second scat-
tered into the detector (n,) divided by the number in-
cident (n;) is

ns/ni:7117fd61d92d1/11d1/z2g(91,¢1)G(92,¢2)da/dﬂ ,
0

(2)

where do /d € is the x-ray-scattering cross section, n; is
the number of x rays incident per second, and A is the
cross-sectional area of the incident beam. For diffuse
scattering, do /d Q} depends smoothly on angle and may
be brought outside of the integral:

n, /n,= Ai(da/dnmezmpz
0

=L dosdaomo=-Lr5Quaa,  ®
A, A,
where AQ is the total (solid angular) acceptance of the
detector and r,=2.818 X 10 '* m is the Thomson radius.
This equation defines the scattering function S (Q), which
is a function of only the wave-vector transfer (Q).

The x-ray-scattering cross section from a crystal with a
well-ordered surface is

2.2
do 4mryd
a0~ 2 QIR QI

TX ,Ty

2
d, —W,(Q)

x| > pQ(n)eiQZ "e , (4)
n=0

where A is the illuminated area, I' is the area of the two-
dimensional unit cell, and F(Q) is the atomic form fac-
tor. W,(Q) is the Debye-Waller factor for the nth layer

and d, is the coordinate of the nth layer normal to the
surface. 7, and 7, correspond to periodicities parallel to
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the surface plane, and

poln)=3 explit x, , *iT,y, , +iQ,Az, ,,) (5)
m

is the amplitude of that density wave in the nth layer. In
Eq. (), x, ,, and y,, are atomic positions within the
two-dimensional unit cell in the nth layer, and Az, ,, is
the deviation of the mth atom in the nth layer from its
ideal, bulk position in the direction normal to the surface.

When the diffractometer is set to accept a particular
Tx» Ty, and @, using Eq. (4) in Eq. (2), we find that

4mri A © i _ 2
n /n=——5—|FQP| 3 polnle®™e 'Y
r AO n=0
X Lo(AQ, /A6, , 6)

where AQ, is the range of Q, that falls within the
diffractometer acceptance, and Ly=(k3sin20)" ! is the
Lorentz factor. AQ, can be limited either by the in-plane
collimation (A6, and/or A6,), or in the case of nonspecu-
lar measurements at small incidence angles, by the out-
of-plane acceptance (Aw,). It is possible to require that
the angle of incidence (a) and the angle of exit be equal
to each other. Then, at large incidence angles,

AQ, =2k A6 cos8sinb /sina ,

provided that the longitudinal resolution is determined
by A8, (and not by A6,) as is the case in the present ex-
periments.’* At large incidence angles it is straightfor-
ward to ensure that all of the x rays passed by slits in
front of the sample are incident on the sample, so that
A/ Ay=1/sina, and Eq. (6) becomes

2.2
41ry

%k %sina

2
had ezQZd”e -W,(Q)

|F(Q)|?

ng/n; =

)

According to Eq. (7), the reflectivity (#n, /n;) need not de-
pend on the instrumental parameters, so that absolute
measurements are possible.>

Near glancing incidence, AQ, =k A, /cosa and

2772r(2) A
ng /ni: - ‘F( )‘2
Ik %cosa sinfcosf | Ag Q
* 0d —wl|
X |3 polme@he "'V (ay, /00, ®)
n=0

which depends on the ratio Ay,/A6,. In this case, it is
difficult to prevent spillover of the incident beam because
of the finite divergence of the x-ray source in the out-of-
plane direction (Ay;). Therefore, A is limited by the
sample dimensions.

For the case of scattering from a single monolayer, an
important consideration is the extent to which diffuse
scattering from the bulk masks the surface signal. In the
one-phonon approximation, the contribution of thermal
vibrations to the cross section may be written*®
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kT

Mo*(Q)

M is the mass of a gold atom, W (Q) is the bulk Debye-
Waller factor, w,(Q) is the dispersion relation of the sth
phonon branch, and e,(Q) is its eigenvector. N is the
number of atoms in the scattering volume. We may write
N = AApy/2, where A is the illuminated area and p, is
the number density. The penetration depth A depends on
the angle of incidence (a) according to A= Agsina, where
Ay is the attenuation length. From Eq. (3) we, therefore,
find

d_a-,—_Nr(Z)lF(Q”Ze—ZW(Q) >

70 Qe Q. 9

ng/n; = $Aeporg |F(Q)|Pe 2M'Y

X kp [Q-e,(Q)2AQ (10)
2 Yok 1@ ’

independent of . This can be contrasted with Eq. (7),
where n,/n; falls off as (sina) % Therefore, at
sufficiently large «, the bulk thermal diffuse scattering
overwhelms the surface signal. The contribution from
thermal vibrations, at grazing incidence, is

n/n= LAgp |50 R Qe W@
0
X ks T [Q-e,(Q)]’AQ §§))
ES‘, MoX(Q) Q-e,(Q ,

which depends linearly on sina. In the Appendix we
show that thermal diffuse scattering accounts both for
the magnitude of the background in these experiments
and for its Q dependence, except at small scattering an-
gles.

Because of the phenomenon of total external reflection,
all of our expressions for n; /n; are modified by a factor
| T (a)]*, where T (a) is the Fresnel (amplitude) transmis-
sion coefficient.’’ (This form follows when the angles of
incidence and exit are held equal.) However, T () differs
appreciably from unity only for incidence angles less than
or of the order of the critical angle (a,=0.45° at E =10
keV). Also, for a<a,, the x-ray penetration depth is
significantly reduced from the simple result given above
and the scattering from bulk thermal vibrations is much
reduced.

C. Experiment

The experiments described in this paper were carried
out using Beamline X20A at the National Synchrotron
Light Source (NSLS). Approximately 4 mrad of syn-
chrotron radiation from a bending magnet were collected
and focused by a platinum-coated, bent, cylindrical,
float-glass mirror. Monochromatic x rays of energy
E =10 or 10.5 keV were selected by a pair of perfect
Si(111) or Ge(111) crystals. At the sample position, we
obtained on the order of 3X 10!! photons in a bandwidth
AE /E =2X 10" *and a spot size approximately 1.0X0.5
mm?. The incident x-ray collimation was determined by
the vertical angular divergence of the source (Af,=0.2
mrad) and the horizontal acceptance of the mirror
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(AY,=4 mrad).

The experiments were performed using a four-circle
diffractometer® with a vertical scattering plane. For the
glancing incidence measurements (a=0.2°), a large
(80X 30 mm?) perfect Ge(111) crystal was employed as
an analyzer crystal on the detector arm to provide fine
resolution within the scattering plane (A8,=0.1 mrad ac-
ceptance). Slits were used to define the out-of-plane ac-
ceptance (A®,=20 mrad). At glancing incidence, the
diffuse direction of the cross section [Eq. (7)] is matched
to the large out-of-plane acceptance, while the in-plane
resolution is uncompromised. This is the principal ad-
vantage of the glancing incidence geometry. The fine-
resolution measurements described in Secs. IIIB and
III C were carried out mainly at wave-vector transfers
near 2.5 A~ !, where the radial resolution is AQ, =0.0009
A~ full width at half maximum (FWHM) and the trans-
verse resolution is AQ, ~0.0002 A~' FWHM.* For the
reflectivity measurements which were performed with
larger incidence angles, slits were used to determine both
the in-plane acceptance (A6,=2 mrad) and the out-of-
plane acceptance (Ay, =10 mrad).

Two different gold samples were used in these experi-
ments. They were cut from the same boule at Oak Ridge
National Laboratory (ORNL), where the sample charac-
terization was performed. Initial sample heating resulted
in segregation of Ca to the surface, forming localized Ca
deposits, as revealed by scanning electron microscopy
and- electron-induced x-ray fluorescence. After cleaning
by Art ion bombardment and annealing, no Ca was
detected by Auger electron spectroscopy (AES); in addi-
tion, the low-energy-electron-diffraction (LEED) pattern
reproduced earlier results in detail.? Following pro-
longed periods at elevated temperatures, trace amounts of
Ca became observable in AES, but were readily removed
by sputtering.

For the x-ray diffraction experiments reported here,
the sample was contained within a small vacuum
chamber***® which mounts directly onto a Huber six-
circle diffractometer.*! Sample heating was provided by a
small potted heater. The sample temperature was moni-
tored by means of a Chromel-Alumel thermocouple and
by direct measurement of the gold lattice constant. The
pressure in the chamber was typically 3X10~° Torr,
while the sample was held at elevated temperatures.
During the experiment, clean surfaces were periodically
prepared by Ar" ion bombardment (500 V and 1 HA).
Previous experience with x-ray experiments on the
Au(001) surface has shown that results obtained on gold
surfaces prepared and studied in this way are identical to
those obtained when demonstrably clean gold surfaces
are studied in an x-ray diffraction chamber with in situ
AES* As in our earlier experiments on gold sur-
faces,**° the bulk mosaicity of the sample was improved
from =0.2° to =0.02° by annealing at high temperatures
(1250 K). The x-ray measurements presented in Sec. III
were obtained for several cycles of the temperature, both
increasing and decreasing. At each temperature, the
sample was allowed to equilibrate for at least 30 min be-
fore measurements were performed. The x-ray
diffraction pattern was found to be reproducible for ex-
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tended periods and from one sample to the other. After
the x-ray measurements, the samples were returned to
ORNL and, after routine cleaning and annealing, again
yielded the expected LEED pattern at 300 K.?

III. RESULTS AND DISCUSSION
A. Specular and nonspecular reflectivity

In this section we present measurements of the abso-
lute x-ray reflectivity of the Au(111) surface for tempera-
tures between 300 and 1250 K. Both the specular and
nonspecular reflectivities are described. At all tempera-
tures, nonzero reflectivity was observed only along direc-
tions perpendicular to the crystallographic cubic (111)
planes of the bulk. This indicates that on length scales up
to 5000 A the surface is perfectly aligned with the cubic
(111) planes.*> This is expected from high-temperature
studies of gold equilibrium crystal shapes,*® which show
that there is a range of forbidden surface orientations
both near the cubic [111] and [001] directions. We there-
fore believe that any small, macroscopic, surface
misalignment from the cubic (111) planes plays no role in
these experiments. Presumably, the development of large
(111) facets results from annealing at high temperatures,
where surface diffusion rates are high. We have observed
similar behavior in our studies of Au(001) surfaces.*’

The absolute x-ray reflectivity at 300 K measured
through a number of bulk Bragg peaks is shown in Fig. 2
plotted on a logarithmic scale. Each profile corresponds
to a different in-plane wave vector. Sharp peaks locate
bulk Bragg reflections. The spacing between Bragg
reflections in a given profile is AL =3, but they occur at
different values of L for different in-plane wave-vector
transfers. The dashed line is the reflectivity expected for
an unreconstructed, unrelaxed surface (ideal termina-
tion). By unrelaxed, we mean that the interlayer spacings
between near-surface layers are unchanged from those in
the interior. An unreconstructed surface is one for which
the in-plane symmetry and lattice constants are identical
to that of a bulk plane. For the measurements reported
in this section, the detector acceptance was determined
by slits (A8,=2 mrad, Ay,=10 mrad). Each data point
(open and solid circles) corresponds to the integrated in-
tensity obtained by rocking the crystal through the
reflection condition [Eq. (4)]. Thermal diffuse scattering
from the bulk was subtracted in all cases (see the Appen-
dix). The data have been placed on an absolute scale [Eq.
(7)] by comparison with the intensity near the bulk Bragg
reflections. This is possible because the integrated inten-
sities near Bragg reflections depend only on the atomic
form factor of gold and on the amplitude of atomic vibra-
tions in the bulk (Debye-Waller factor), which are well es-
tablished. Therefore, they may be used to normalize all
of the data to the incident flux.

In reference to Fig. 2, the measured reflectivity in-
creases rapidly near the bulk Bragg peaks. [For example,
see Fig. 2(a) at L =3 and 6 for the specular reflectivity
and Fig. 2(b) at L =2 and 5 for the nonspecular
reflectivity along (0,1,L).] Between bulk Bragg peaks the
reflectivity is much reduced and depends sensitively on
the details of the surface structure. Noteworthy in Fig.
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FIG. 2. Au(111) reflectivity for various in-plane bulk periodi-
cities vs momentum transfer normal to the surface (L) at 300 K.
Reflectivity for three different models of the surface structure
are shown as the solid, dashed, and dot-dashed lines. The mod-
els are discussed in the text. (a) The specular reflectivity. (b),
(c), (d), (e), and (): Nonspecular reflectivity. The minima at
L =3 in (b) and (c¢) are due to interference between x rays scat-
tered by surface atoms in C-stacking and A-stacking sites.

2(a) is the slight asymmetry of the specular reflectivity
about the (0,0,3) Bragg peak and the more pronounced
asymmetry about the (0,0,6) Bragg peak relative to the
reflectivity expected for ideal termination (dashed lines).
It has been shown previously***° that an expansion of the
spacing between the top and second layers (d,; ) gives rise
to a specular profile of just this character. Another im-
portant feature of the data shown in Fig. 2 is the presence
of pronounced dips in the nonspecular reflectivity of Figs.
2(b) and 2(c), between the bulk Bragg peaks (L =3).
Figure 2(a) shows the specular reflectivity, extending
continuously from near the origin of reciprocal space and
through the (0,0,3) and (0,0,6) bulk Bragg reflections [the
cubic (1,1,1) and (2,2,2), respectively]. This corresponds
to a range of wave-vector transfer perpendlcular to the
surface extending from Q,=0.7 to 6.2 A~ The
reflectivity expected for an unreconstructed, unrelaxed
Au(111) surface (dashed lines) does not provide an ade-
quate description of the measured specular reflectivity.
The solid lines in Fig. 2 are the results of the best fit of all
of the reflectivity profiles measured at 300 K to a simple
model of the reconstruction, which allows for an expan-
sion or contraction of dy; and d,,, for a surface-normal
root-mean-square (rms) displacement amplitude in the
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near-surface layers (o,) and includes two excess atoms
within a (s XV/3) unit cell (with s =23). Both atomic vi-
brations normal to the surface and any surface corruga-
tion are subsumed into the rms displacement amplitude.*
For the specular reflectivity, the model [Eq. (7)] reduces
to

4mr} i iQ,d, —0202/2 g
n,/n;=————|F(Q)|? (n)e = ,
s Ik %sin’a FQ néopo
(12)
With do]zdo_dl and d]Z:dl—d27 and po( )_24

=1.0435 and py(n)=1 for n = 1. For these fits the pa-
rameters allowed to vary were the interlayer spacings
near the surface (d, and d,) and the surface-normal rms
displacement amplitudes. The top layer density was fixed
at po(0)=2=1.0435. We did perform fits, however, of
the specular reflectivity allowing the top layer density to
vary. These fits converge to a top layer density
po(0)=1.03£0.04. The best-fit values of dy, and d, are
reliably determined by the specular reflectivity because it
does not depend explicitly on the atomic coordinates
within the plane of the surface. In this case, we find a
value for d,; which corresponds to a 3.3+0.4% expan-
sion relative to the bulk (111) interlayer spacing. The
best-fit value of d,, corresponds to a 0.8+0.4% contrac-
tion. The excess areal density of the reconstructed layer
[1.0435 times that of bulk (111) planes] together with the
3.3% expansion imply that the volume density in the sur-
face selvedge is slightly increased relative to that in the
bulk.>»*" As for the displacement amplitudes, only that
in the top layer is significantly different from the value
expected from bulk thermal vibrations. This is consistent
with the small surface corrugation observed by STM
(Ref. 9) and He diffraction’ and a slight enhancement of
the surface vibrational amplitude.

The nonspecular reflectivities cannot be understood
solely on the basis of surface relaxation. For these
profiles [Figs. 2(b)-2(f)], there is a component of the
wave-vector transfer parallel to the surface. They are
therefore sensitive to atomic coordinates within the plane
of the surface. In particular, the pronounced dips in the
profiles of Figs. 2(b) and 2(c) result from the ABC-to-
AB A faulting.** [The dash-dotted lines of Figs. 2(b)—2(f)
show the reflectivity expected for a relaxed surface with
no stacking faults.] Motivated by Refs. 7 and 9, we have
parametrized the model stripe-domain structure as fol-
lows. We assume a rectangular (23X V/3) unit cell for a
single, reconstructed, surface layer (Fig. 3). Within that
unit cell, there are two excess gold atoms, corresponding
to an increased areal density of the top layer by a factor
of #=1.0435. This is consistent with the specular
reflectivity. Initially, atoms within the unit cell are uni-
formly spaced, but we allow for discommensurations by
including the possibility of additional displacements, as
follows. In our model unit cell, the first atom is located
at a C site, but then the displacement pattern in the 23-
fold direction (x direction) is described by a sine series
and in the V'3-fold direction (y direction) by a cosine
series. Explicitly, the fractional coordinates of the mth
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FIG. 3. Discommensuration structure of the Au(111) surface.
Solid circles represent the in-plane positions of second layer
atoms in B sites. Hatched circles represent the positions of the
surface layer atoms determined by the best fit to the reflectivity
at 300 K. The displacement from C sites to A sites is best
viewed by looking in the {(1,0,0) direction at low angles to the

page.

atom in the 23 X V'3 unit cell are given by
a . a .
X, =—m/23+——sin(2mm /23)+ ——sin(47rm /23)
21 21

+ PR 5
= b [1—cos(2mm /23)]/4V3
+b,[1—cos(4mm /23)]/4V 3+ - -

The amplitude of each  Fourier component
(a;,ay,...,b,by,...) is a possible independent fitting
parameter In the calculations, the reflectivities of each
of the three possible orientations of the (23 XV'3) struc-
ture have been added together incoherently.

The solid lines of Fig. 2 correspond to the best-fit pa-
rameters. It is clear that this model provides an excellent
description of all of the data. Firstly, note that the fitted
displacements in the V'3 direction are such that atoms at
the center of the unit cell are located at faulted A4 sites.
The best-fit parameters (a;=0.312£0.03, a,=0.022
+0.002, b, =1.009+0.1, b, =—0.151£0.02) give rise to
displacements in the V'3 3 direction at the center of the
unit cell of 0.84%0.12 A. For comparison, a displace-
ment of 0.83 A is necessary to place the atoms at A sites.
To establish that the faulted regions are indeed AB A
stacking regions, both the (1,0,L) and the (2,0,L)
profiles are important in that with any significant devia-
tion from AB A stacking either the (1,0,L) or the (2,0,L)
model profile ceases to provide a good description of the
data. Secondly, it is worth noting that to obtain the fits
shown in Fig. 2, only two terms in each of the sine and
cosine series were required. In addition, the amplitude of
the second harmonic is significantly smaller than that of
the first harmonic in both cases: Specifically, for dis-
placements in the 23-fold direction the ratio of the second
harmonic to the first is 0.07, and in the V'3-fold direction
it is 0.15. Including higher harmonics did not improve
the quality of the fit. Thus, the displacement field associ-
ated with the discommensurations is essentially
sinusoidal.!” The (23 XV/3) unit cell obtained with our
best-fit parameters is illustrated in Fig. 3. The 4 and C
sites are located at the vertices of the hexagonal lattice.
It is evident from the figure that atoms in the recon-
structed layer are confined to positions along the sides of
the hexagons (bridge sites). By assigning atoms closer to
C sites to an unfaulted region and atoms closer to 4 sites
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to a faulted region, we have determined the ratio of the
sizes of faulted to unfaulted regions to be 0.7. This is in
agreement with the results of He atomic beam
diffraction’ and STM (Ref. 17) studies.

Figure 4 shows the reflectivity obtained at three
different temperatures: 300 K (open circles, reproducing
some of the profiles of Fig. 2), 750 K (solid squares), and
1200 K (open triangles). It is clear that the data exhibit
the same general features at each temperature although
at high temperature the reflectivity between Bragg peaks,
especially at large L, is somewhat reduced. The
reflectivity cannot be described by a relaxed or unrecon-
structed surface, implying that the surface is reconstruct-
ed for all temperatures between 300 and 1200 K. Fur-
thermore, the similarity of the data at these three
different temperatures suggests that the basic picture in-
volving faulted and unfaulted surface regions remains
correct throughout this temperature range. To test this
idea, we performed fits for which the Fourier coefficients
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FIG. 4. Reflectivity profiles for various in-plane, bulk period-
icities as a function of momentum transfer normal to the surface
(L) at three temperatures. The open circles, solid squares, and
open triangles correspond to 300, 750, and 1200 K, respectively.
The solid lines are best fits to the reconstruction model.
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describing the in-plane structure were fixed at their
room-temperature, best-fit values. The amplitudes of the
surface-normal vibrations and the spacings between
near-surface layers (d,; and d,) were then allowed to
vary. The solid lines in Fig. 4 are the model profiles
which result. As may be seen, the model describes the
data very well. Quantitative results from the fits are
shown in Fig. 5. Figure 5(b) shows the fractional change
in the spacing between near-surface layers from the bulk
(111) interlayer spacing (relaxation) versus temperature.
The magnitudes of d,; and d;, both appear to decrease
slightly with increasing temperature, though the ap-
parent change is smaller than the error of our measure-
ments. Figure 5(a) shows the best-fit values of the
surface-normal displacement amplitudes. Compared to
the crystal interior, the displacement amplitudes are
significantly enhanced near the surface, decaying to the
bulk value within a few layers.?’” To obtain the fits shown
in Figs. 2 and 4, it was not necessary to allow for
enhanced vibrational amplitudes within the plane of the
surface. Nor was it necessary to consider the possibility
that two layers participate in the reconstruction, as sug-
gested in Ref. 7.

We should emphasize that in the present section, we
have examined the reflectivity obtained only at bulk
periodicities. While we have assumed a (23X V'3) unit
cell in the analysis, it is not possible to establish a specific
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FIG. 5. Results of fits to the reflectivity as a function of tem-
perature. (a) Fitted values of the surface-normal root-mean-
square displacement amplitude vs layers from the surface. (b)
Fitted values of the interlayer spacing change vs temperature.
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structural model for the reconstruction on the basis of
bulk reflectivity alone. However, we believe that the
analysis demonstrates that the structure is composed of
faulted and unfaulted regions throughout the tempera-
ture range studied. In Sec. III B, where measurements of
the in-plane diffraction pattern are described, we will
show how the basic (23 X V'3) motif fits into the structure
of the chevron phase.

B. Chevron phase

In this section we present measurements of the in-plane
diffraction pattern of the reconstructed Au(111) surface
in the temperature range between 300 and 865 K. We
will show that the existing structural model for the
Au(111) surface is incomplete and must be extended to
incorporate an equilibrium density of well-ordered kinks
between two of the three possible orientational domains
of the (sXV'3) discommensuration structure (s=23).
Because of the resultant zig-zag pattern of discommen-
surations, we call this phase the chevron phase. Firstly,
we describe the evidence for a chevron structure at 300
K. Then follows a discussion of its behavior as a function
of temperature. We will show that the apparently com-
plicated temperature evolution of the diffraction pattern
between 300 and 865 K can be readily explained in terms
of the chevron structure. Finally, we present data that
demonstrate that the chevron reconstruction is confined
to the surface layer.

Unless otherwise stated, the scans presented in this sec-
tion were all obtained at glancing incidence (L =0.12,
a=0.2°) in the neighborhood of the (0,1,L) bulk rod us-
ing a Ge(111) analyzer crystal on the detector arm to pro-
vide fine resolution. However, scans were also taken in
the neighborhood of the (0,2,L) bulk rod at L =0.12 and
near (0,1,L) at different values of L to verify our con-
clusions.

By way of introduction, Fig. 6(a) shows the HK plane
of reciprocal space for the Au(111) surface in the hexago-
nal coordinate system. Open circles in Figs. 6(a)-6(c)
represent lateral periodicities of the bulk crystal (trunca-
tion rods). The small hexagon drawn about the (0,1,L)
rod in Fig. 6(a) is reproduced in detail in Figs. 6(b) and
6(c). Solid symbols surrounding each truncation rod in
Figs. 6(a)-6(c) arise from the reconstruction (surface
rods). The diffraction pattern expected from a single
orientational domain of the striped phase is shown in Fig.
6(a) and that expected for the stripe-domain structure
with all three orientational domains present is shown in
Fig. 6(b). We have used different symbols (solid circles,
squares, and triangles) to distinguish scattering from the
three distinct, rotationally equivalent domains. In Fig.
6(b), the positions of peaks corresponding to the surface
reconstruction are displaced from the bulk truncation rod
by 8p,=2w/Lp, where L, is the period of the discom-
mensuration structure. The scattering from the three ro-
tationally equivalent domains of the reconstruction is as-
sumed to add incoherently.

Figure 7 shows a series of scans obtained at 300 K in
the neighborhood of the (0,1,L) rod. Figure 6(c) indi-
cates the paths in reciprocal space followed for each scan
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(the dot-dashed lines) and summarizes the observed
diffraction pattern. Thus, with reference to Fig. 7 (i) and
(iii) are scans along the sides of the elementary hexagon
of Fig. 6(c), while (ii) and (iv) are scans across the center
of that hexagon. The strong peak at the center of scans
(ii) and (iv) is the bulk (0,1,L) rod. Peaks may also be
discerned at the center of (i) and (iii), although they are
much weaker. Displaced from each central peak, there
are still more peaks. In the figure the vertical dashed
lines indicate multiples of a fixed separation from the cen-
tral component. It is clear that many of the observed
peaks can be categorized on this basis and correspond,
therefore, to a fundamental, new incommensurability of
the Au(111) surface (85 ). These peaks [especially those
in scans (i) and (iii)] are, however, broader than can be ac-
counted for from consideration of the spectrometer reso-
lution and sample mosaic. Additional features, which are
indicated by arrows in Fig. 7, occur at the vertices of the
hexagon of Fig. 6(c) and correspond to the overlaps of
each scan with the tails of the peaks that occur along the
other sides of the hexagon. In this context, we note that
the separation of the peaks at n=+0.04 from the bulk
rod at =0 in Fig. 7 (iv), equals the discommensuration
wave vector (8, ) at 300 K. Hence, we find that the unit

(b)
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cell of the reconstructed Au(111) surface is characterized
by two incommensurate wave vectors, 8 and §,,. At 300
K, 8 is close to 0.25 .

The difference between the observed diffraction pattern
[Fig. 6(c)] and that illustrated in Fig. 6(b) requires a more
elaborate surface structure than the (s X V'3) reconstruc-
tion proposed in earlier work.! 710 It seems clear, howev-
er, that the (s XV'3) motif is an essential component of
the Au(111) surface structure. Therefore, it is natural to
consider a structure involving an ordered array of defects
separating rotationally equivalent domains of the
(s XV'3) reconstruction. The simplest realization of this
idea is a kink, as illustrated in Fig. 6(d). A periodic array
of kinks separating two of the three possible orientational
domains—the chevron structure—produces a surface
structure with unit-cell dimensions Ly along the (1,0,0)
directions, where Ly is twice the separation between
neighboring kinks, and 2L, /'3 along the (1,2,0) direc-
tions. The corresponding diffraction pattern consists of
peaks separated by 8y =27 /Ly along (2,1,0), and by
V38, /2 along 0,1,0). The observed diffraction pattern
[Fig. 6(c)] can be understood on this basis, provided that
scattering from all three orientationally equivalent
domains of the chevron reconstruction is included. It is

(d)

=

<1,0,0>

FIG. 6. Schematic of reciprocal space for the Au(111) surface. In (a), (b), and (c) the open circles correspond to bulk in-plane
periodicities and the solid symbols correspond to reconstruction peaks. (a) Diffraction pattern expected from a single domain of the
discommensuration structure. The small hexagon about the (0,1,L) position has been reproduced in detail in (b) and (c). (b)
Diffraction pattern expected for the Au(111) surface with three rotationally equivalent discommensuration domains. (c) Schematic of
the observed diffraction pattern in the vicinity of the (0,1,L) rod. Different solid symbols correspond to scattering from different ro-
tational domains of the chevron phase. Labels (i), (ii), (iii), and (iv) indicate different scan directions presented in Fig. 7. (d) Four unit
cells of the chevron structure. Zig-zag lines and the capital letters on the right indicate surface regions with the correct fcc stacking
(C) and the faulted ( A4) stacking. For clarity, the (s X V'3) discommensuration structure and consequently the kink structure have
been scaled in size to that s =9 for the chevrons plotted in (d).
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noteworthy that no peak appears at the hexagonal ver-
tices, in contrast to the diffraction pattern for the
(s XV'3) structure. To establish definitively by x-ray
diffraction that the discommensurations are arranged in a
chevron pattern requires that the experimentally ob-
served intensities be reproduced by this model. We will
show below that there is good agreement. We believe
that the differences between our diffraction pattern and
those obtained with electron! 3 or atom’ scattering are a
result of the finer reciprocal space resolution possible
with synchrotron x-ray scattering.

We now turn to a description of the temperature
dependence of the diffraction pattern by focusing on
profiles transverse to the K direction through
(0,1+Vv'38,/2,0.12). This corresponds to the path la-
beled (iii) in Fig. 6(c). Results of representative scans at
several temperatures between 300 and 865 K are shown
in Fig. 8. Each profile consists of a number of closely
spaced peaks. With increasing temperature, the peak
separation (8 ) increases and a complicated evolution of
the relative intensities and widths occurs. At 300 K [Fig.
8(a)], the peak at =0 is very weak and the stronger
peaks at 7= =18 and 7==£28y are relatively broad com-
pared to equivalent peaks at higher temperatures. Also
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FIG. 7. High-resolution glancing angle scans through recon-
struction peaks in the vicinity of (0,1,0.12). The different scan
directions, (i), (ii), (iii), and (iv) are displayed in Fig. 6(c).
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evident is that the widths of the peaks at =125, are
broader than those at y==86 [half width at half max-
imum (HWHM)=0.0026a* for mn=328; versus
HWHM=0.0009a* for n==28g]. There are broad
shoulders near =138, but they are too broad and weak
to be resolved as distinct peaks at 300 K. At 590 K [Fig.
8(b)], the peaks at y=0 and =138, are more intense
than at 300 K. In contrast, at 750 K [Fig. 8(c)] the peaks
at =0 and n==*38 are much weaker. Furthermore,
the value of 8y has increased relative to its value at 590
K. At 800 K [Fig. 8(d)], 8x has increased still further
and the peaks are noticeably narrower. The peak at n=0
regains considerable intensity, while those at n==138,
are no longer visible. By 850 K, the peak at =0 has fur-
ther intensified and those at =128 have become much
weaker.

To extract reliable peak intensities, positions, and
widths, we have fit the transverse scans of Fig. 8 and
those obtained at intermediate temperatures to a model
composed of five Lorentzians. The amplitude and width
of each was an independent fitting parameter. However,
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FIG. 8. Scans transverse to (0,1+V38,/2,0.12) as a func-
tion of temperature, i.e., along the path labeled (iii) in Fig. 6(c).
The peaks are separated by the kink wave vector, 8. Trans-
verse scans at (a) 300, (b) 590, (¢) 750, (d) 800, and (e) 850 K.
The solid lines are best fits as discussed in the text.
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the peak positions were constrained to be equally spaced.
The resultant best-fit model profiles are shown as solid
lines in Fig. 8. The model provides a reasonable descrip-
tion of the data, and the discrepancies are readily under-
stood: The peak near n=—0.02 originates from a
different rotational domain of the chevron structure [see
Fig. 6(c)]. In addition, the model does not not account
for all of the observed scattering at large displacements
from =0 which is the result of diffuse peaks at
n=138g. The intensities of these features are too small
and too near the other peaks to be sensibly included in
the fit. Nevertheless, the model line shapes provide an
accurate measure of the intensities, widths, and spacing
of the peaks at =0, =8, £25.

Figure 9 shows the temperature dependence of the two
incommensurate wave vectors (8, and 8y). Both wave
vectors increase monotonically with increasing tempera-
ture, corresponding to a contraction of the unit cell rela-
tive to the bulk lattice spacing. However, while the aver-
age discommensuration periodicity varies smoothly from
Lj=22.5a at 300 K to 20.9a at 850 K, the average kink
periodicity is essentially constant between 300 and 700 K
(Lg=112.4a=324.3 A). Beyond 700 K, the kink densi-
ty increases rapidly, so that by the disordering transfor-
mation the kink periodicity has decreased by a factor of
1.6 to Ly =70.4a =204.9 A. The ratio of 8g over §p
varies from =0.2 at 300 K to =0.3 at 850 K, as shown
in Fig. 10.

Figure 11 displays the fitted HWHM in the transverse
direction of the various peaks shown in Fig. 8 as a func-
tion of temperature. Widths of the peak at =0 are
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FIG. 9. Results of glancing angle measurements of surface
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suration wave vector vs temperature. (b) Kink wave vector vs
temperature.
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FIG. 10. Ratio of the kink wave vector to the discommen-
suration wave vector plotted as a function of temperature.

shown as crosses, those of the peaks at n==x8y are
shown as solid circles and solid squares, and those of the
peaks at =128 are shown as open circles and open
squares. The measured width of the central peak (crosses
in Fig. 11) is entirely the result of the finite sample mosa-
ic. The excess width of the other peaks arises because of
positional disorder within the reconstructed layer. It is
clear from Fig. 11 that the peaks corresponding to the
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FIG. 11. Half widths at half maximum vs temperature for
peaks transverse to (0,1+V'38,/2,0.12). Data for n=0 are
plotted as crosses. Solid circles are the data for 7= 08 and solid
squares are the data for n= — 8. Open circles are the data for
1n=28 and open squares are the data for = —28x. Widths of
the peak at =0 are due to the sample mosaic. The excess
width of the peaks at n==84 and £28 is due to the rms fluc-
tuation in Lg.
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density wave at 28, are significantly broader than those
for the density wave at 8. However, the temperature
variation of the width of the peak at 2865 mimics that at
O8g. In Fig. 11 the line through the widths of the peaks at
28 illustrates a factor of 4 larger excess width than does
the line through the widths of the peaks at =85. There-
fore, our data are consistent with an %° scaling. This
would result if the distance between kinks were a Gauss-
ian random variable with a variance that grows linearly
with distance across the surface.*> This observation pro-
vides an explanation of why the peaks at =138y are so
broad (Fig. 8). Within the context of this model, the
deconvolved HWHM (k,,) for a Lorentzian peak at
n=1tmdg is given by «,, Ly =m?8%0% /2, where oy is
the root-mean-square fluctuation in L. At its minimum

between 700 and 800 K, o =Lg V/(k,, /7m?8;)=23
A; at 300 K, it is ~50 A. The fluctuation in Ly is small-
est when the ratio of the kink wave vector to the discom-
mensuration wave vector is close to one-quarter. At
one-quarter, the unit-cell dimensions are such that the
distance along the {0,1,0) directions (perpendicular to
the discommensurations) between kinks exactly equals
four complete discommensuration periods.

Figure 12(a) shows the temperature dependence of the
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Solid circles are for =258k, solid squares are for n= — &, open
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Solid lines were generated via a structure-factor calculation for
the nonideal chevron unit cell described in the text. Integrated
intensities have been plotted (a) vs temperature and (b) vs the
wave-vector ratio (8 /8 ).
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integrated intensities. The intensities of the peak at =0
are shown as the crosses, the intensities of the peaks at
=18 are plotted as solid circles and solid squares, and
the intensities of the peaks at n==+28; are plotted as
open circles and open squares. Evident from these data is
the change in the weight of the scattering from larger 7
towards small 1 with increasing temperature. In addi-
tion, it is striking that there is a minimum in the intensity
of the central peak at approximately 730 K. To compare
these data to a calculation of the intensities expected for
the chevron structure, it is convenient to display them
not as a function of temperature but rather as a function
of 8x /8p. This is shown in Fig. 12(b). The minimum in
the intensity of the central peak (%=0) occurs at
8x /85 =0.22 and the weight of the intensity shifts from
larger 7 to smaller 1 as 85 /8, increases. Our initial ap-
proach to understanding this behavior was to calculate
the peak intensities on the basis of a chevron reconstruc-
tion with abrupt kinks between the different domains of
(s XV'3) reconstruction. Encouragingly, the model pre-
dicts that there is a minimum in the intensity of the cen-
tral peak and that the weight of the scattering moves
from large to small 7 as the wave-vector ratio increases.
However, it predicts that the minimum occurs at
85 /6p=0.25 and not at 0.22. In fact, all of the mea-
sured peak intensities appear to be displaced to smaller
wave-vector ratios than the model predictions. This sug-
gests that, rather than being abrupt, the kinks are more
gradual. Accordingly, we have constructed a plausible
model for the structure of the chevron unit cell incor-
porating a gradual kink between orientational domains of
the discommensuration structure. The atomic positions
in the unit cell are plotted in Fig. 6(d). In the calculation,
the kink is of fixed size, the discommensuration period is
fixed, and the wave-vector ratio is varied by varying the
separation between kinks. As a result, at the largest
wave-vector ratios, the kink occupies approximately 21%
of the unit-cell area, and at the smallest it is 13% of the
unit-cell area. The calculated intensities based on the
chevron structure model are shown as the solid lines in
Figs. 12(a) and 12(b). Evidently, the model is able to
quantitatively account for the observed variation of the
intensity with wave-vector ratio. On this basis, it is clear
that the rather dramatic intensity changes, which did not
suggest a priori that a single structure is maintained be-
tween 300 and 865 K, may be accounted for. In addition,
the chevron model accounts for the absence of peaks with
observable intensity in the lower part of Fig. 6(c). In
view of the simplicity of the model, we regard the overall
agreement as convincing confirmation that the chevron
model for the Au(l11) reconstruction is correct for all
temperatures between 300 and 865 K, although there
remains uncertainty as to the atomic positions in the kink
region.

We now briefly discuss radial scans taken through the
surface rod at (0,1,0.12) and the reconstruction peak at
(0,14+V'38,/2,0.12). These scans are plotted in Fig. 13.
We have plotted the data obtained at 300 K as solid cir-
cles and at 850 K as open circles. For clarity, only these
two temperatures are shown. From these scans (and
analogous scans at intermediate temperatures) it is evi-
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FIG. 13. Radial scans at two temperatures, 300 and 850 K.
The scans pass through the sg_rface rod at (0,1,0.12) and the
reconstruction peak at (0,1+Vv38,,/2,0.12).

dent that &, increases with temperature. Also evident is
the significantly greater intensity of the =0 reconstruc-
tion peak at 850 K as compared with 300 K. For all tem-
peratures between 300 and 865 K the radial scans are
resolution limited.

The presence of an equilibrium density of kinks on the
reconstructed Au(111) surface immediately suggests the
existence of competing interactions, which compromise
to produce a structure characterized by the new, incom-
mensurate wave vector, 8. Recently, Alerhand et al.!®
have proposed that reconstructed, high-symmetry sur-
faces, which can reconstruct into one of several, rotation-
ally equivalent structures, are unstable to the formation
of domains. The origin of domain formation is the ac-
companying reduction of elastic stress induced in the
bulk crystal. Candidates for showing this phenomenon
include the (2X 1) reconstructed Si(001) surface,'>*® the
reconstructed Au(111) surface,'® and, indeed, any ab-
sorbed monolayer which forms a structure that breaks a
rotational symmetry of the surface and induces an elastic
deformation in the substrate. In the context of the
Au(111) surface, the elastic energy is smaller for smaller
kink separations, but this must be balanced against the
energetic cost of locally disrupting the favorable (s X V'3)
structure in the neighborhood of each kink. (It is as-
sumed that a kink is energetically unfavorable.) The
competition between these two contributions determines
the kink wave vector. It is amusing to note that, since
there are three possible rotationally equivalent domains
of the chevron reconstruction, it, likewise, may be unsta-
ble to domain formation.

Finally, we present data that explicitly establish that
only one layer participates in the chevron reconstruction.
To examine the depth of a reconstruction requires that
measurements be performed at large wave-vector
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transfers normal to the surface, i.e., large L. In the
scattering geometry necessary to do this, it is not practi-
cal to make fine-resolution measurements to distinguish
properly between peaks separated by only 8,. Therefore,
we have performed coarse resolution measurements (no
analyzer crystal) of the overlayer reflectivity and have
simply summed together the integrated intensities of indi-
vidual rods. This procedure is adequate for answering
the question in-hand: How many layers reconstruct?
The inset to Fig. 14 shows a typical transverse scan
(L=1.80) across the rods of scattering at
K=1 +\/38D /2, obtained at 300 K. This profile should
be compared with the profile of Fig. 7 (iii), L =0.12. Be-
cause of the coarser resolution employed for the scan at
large L, only two peaks are apparent in the inset. Figure
14 shows the measured reflectivity obtained by integrat-
ing the intensity of both peaks at different values of L.
Evidently, the reflectivity varies smoothly and monotoni-
cally with L. The scatter near L =1 is a result of the
large thermal diffuse background emanating from the
bulk Bragg reflection at (1,0,L). The absence of
significant modulation of the intensity as a function of L
indicates that only one layer is involved in the recon-
struction. Indeed, rewriting Eq. (7) for the case of a sin-
gle layer characterized by lateral wave vectors different
from those of the bulk, we find

73

FZ
For the purposes of illustration, this form is shown as the
solid line in Fig. 14 with po(0)=1.04; the dashed line in

Fig. 14 shows the result of including a second recon-
structed layer.
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FIG. 14. Reflectivity profiles of a surface reconstruction rod.
Rods summed together and plotted are those transverse to
(1+v'38,/2,0,L). The gap in the data at L =1 is where the
surface signal is overwhelmed by thermal scattering from the
bulk Bragg peak at (1,0,1). Also plotted are a solid line corre-
sponding to Eq. (7) with a single-layer reconstruction and a
dashed line corresponding to a two-layer reconstruction.
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C. Discommensuration fluid phase

In this section we describe measurements obtained for
temperatures greater than 880 K in the discommensura-
tion fluid phase. In this phase, the primary peaks of
S(Q) occur along each of the bulk in-plane hexagonal
directions, showing that the reconstructed overlayer is
now isotropically compressed. Figure 15 shows a
schematic representation of reciprocal space and the
high-temperature reconstruction peaks. In the figure, the
solid ellipses indicate the positions of primary reconstruc-
tion peaks and the dashed ellipses are the secondary
peaks, obtained from the primaries by translation
through a substrate wave vector.

Figure 16 shows data typical of those obtained between
950 and 1250 K. These data were taken at glancing in-
cidence (L =0.12, «=0.2°) using the Ge(111) analyzer
crystal. Figures 16(c) and 16(d) show profiles transverse
to the wave-vector transfer, through the primary peak of
the scattering function of the reconstructed layer; Figs.
16(a) and 16(b) show scans parallel to the wave-vector
transfer. In Figs. 16(a) and 16(b), the peak at K =1.0
corresponds to bulk reflectivity (bulk truncation rod),
while the peak at K=1.038 corresponds to the recon-
structed layer. Throughout the temperature range from
950 to 1250 K, the scattering from the reconstruction is
much broader in both the radial and transverse directions
than the instrumental resolution. [The radial width
(HWHM) of the bulk rod at K =1.0000 is AQ,
=0.0002a *; its transverse width is AQ,=0.00025a*
and is due to the sample mosaic.] Therefore, the mea-
sured scattering from the reconstruction shown in Fig. 16
represents the intrinsic scattering function [S(Q)] of the
discommensuration fluid phase. Because the scattering
function is broad, indicating that positional correlations
are short ranged, we call this phase a discommensuration
fluid. That the width of the bulk rod remains resolution

FIG. 15. Schematic representation of reciprocal space and
the high-temperature reconstruction peaks. Solid ellipses are
the primary reconstruction peaks. Dashed ellipses are the
secondary reconstruction peaks. Secondary peaks are displaced
from the primary peaks by a substrate reciprocal-lattice vector.
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limited suggests that the step-free regions of the surface
still extend for greater than 5000 A. We have fit S(Q) in
the fluid phase to a Lorentzian, allowing for different
widths in the radial (,) and transverse directions («,):

B

1+(Q, — Qo) /k; + Q7 /r

S(Q)=

>

where Q, and @, are, respectively, the in-plane radial
and transverse components of Q; Q, locates the peak’s
radial position. The best-fit profiles are shown as solid
lines in Fig. 16. The parameters varied in the fits were «,,
K, Qo, and the overall intensity (B). In addition, a con-
stant background was included, determined by the resid-
ual scattering in the wings of the transverse profiles. For
scans in both directions, a Lorentzian provides an excel-
lent description of the experimental data.

Between 880 and 950 K the line shapes of radial scans
through the reconstruction peak are unchanged from
those at high temperatures and can be adequately fit with
a single Lorentzian with HWHM fixed to 0.0039a *, as at
950 K. On the other hand, in this temperature range the
transverse profiles have “shoulders” which are more pro-
nounced for temperature increasing cycles than tempera-
ture decreasing cycles as shown in Fig. 17. We do not
fully understand the origin of this line shape. However,
simple calculations of the structure factor of a single
chevron unit cell are suggestive of it for sufficiently small
kink spacing.

i T T T T —
1.00 (@) g (0KO0.12) || () (Zn1va,-2012) |
¢ c
T=940K
0.75 | 1
0.50 | i
_.0.25
[2] (o]
2 %,
> c
S R
= 0 1 1 L S
=
t T T T T
@ (b) 0,K.0.12 L d
% 1.00 | (T=1230}2 | (d) <,2—3n.|+a,;%,0.|2) ]
Z T=1230K
0.75 |
0.50 |
0.25
oas
1 1 f

.
-0.03 O 0.03 0.06
n (UNITS OF a*)

1 1
1.00 1.03 1.06 1.09
K (UNITS OF a*)

FIG. 16. Scans through the high-temperature reconstruction
peak. (a) Radial and (c) transverse scans through the discom-
mensuration fluid peak at 940 K. (b) Radial and (d) transverse
scans through the discommensuration fluid peak at 1230 K.
The solid lines are Lorentzian fits to the reconstruction peaks.
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FIG. 17. Transverse scans through the reconstruction peak
at (0,148,,0.12).

Figure 18(a) shows the best-fit values of the peak
widths (HWHM) in the radial (solid circles) and trans-
verse (open circles) directions, as the temperature is
varied. Figure 18(b) shows the peak positions. To within
the accuracy of the measurement, the peak widths
(HWHM’s) are constant and equal to 0.0038a* in the ra-
dial direction and 0.0055a¢* in the transverse direction.
The radial peak width corresponds to a translational
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FIG. 18. Results of glancing angle measurements in the
discommensuration fluid phase. (a) Half width at half max-
imum vs temperature for fits of Lorentzians to radial and trans-
verse scans through the reconstruction. (b) Misfit (8,,) of the
high-temperature reconstruction peaks vs temperature.

correlation length of £=36a =105 A. We emphasize
again that the extraction of this length does not involve a
deconvolution procedure. It is remarkable that over a
temperature range of 300 K the correlation length
evolves at most only very slightly. This behavior is quite
different from that observed near continuous phase trans-
formations, where the correlation length typically de-
creases rapidly to a few angstroms with increasing tem-
perature. However, an important additional length scale
for the Au(111) surface at high temperatures is deter-
mined by the incommensurability (or misfit)
(8,1 =Qp—1). The period of the surface unit cell is given
by L, =4m/V'38,,. As can be seen from Fig. 18(b), the
misfit increases linearly (solid line) with increasing tem-
perature; at 950 K the average surface periodicity is
L;,=28a and at 1250 K it is 25a. Thus, the translational
correlation length only exceeds the surface periodicity by
a factor of about 1.4. In this respect, the reconstruction
is very disordered. The HWHM’s have not been plotted
in Fig. 18(a) for temperatures between 860 and 950 K be-
cause transverse scans in this temperature range display
shoulders and cannot be sensibly fit with a single
Lorentzian. In addition, for consistency with our
analysis of the coexistence region (Sec. III D), we chose to
fit the radial profiles in this temperature range with
HWHM fixed at 0.0039a *, which is its value at T"=950
K. Evident in Fig. 18(b) is a suggestion of hysteresis in
the temperature dependence of the misfit. This appears
to be correlated with the appearance of shoulders in
transverse scans through the reconstruction peak (Fig.
17).

The variation of the wave vectors with temperature in
both phases implies that the overlayer contracts relative
to the bulk lattice spacing with increasing temperature.
To gain additional insight, we have plotted, in Fig. 19,
the average area occupied by each surface atom of the
Au(111) surface (solid circles), based upon the wave vec-
tors in the discommensuration fluid phase and in the
chevron phase. Specifically, we assume that the presence
of kinks does not change the surface density of the chev-
ron phase and that the density of the discommensuration
fluid phase is the same as if it were a well-ordered hexag-
onal solid. Under these assumptions, the area per atom
in the chevron phase decreases from 0.826a2 at 300 K to
0.824a?* at 865 K. Then there is a discontinuous increase
in the areal density at the transformation from the chev-
ron phase to the discommensuration fluid phase. In the
discommensuration fluid phase, the area per atom contin-
ues to decrease with increasing temperature, from
0.806a? at 880 K to 0.795a? at 1250 K. Also shown in
Fig. 19 is the area per atom for a (111) plane in the bulk
(dashed line). This represents the area per atom of a
commensurate, unreconstructed layer. The area per
atom for the reconstructed Au(001) surface is shown as
the solid line. This surface reconstructs to form an in-
commensurate hexagonal overlayer, in spite of the planes
of square symmetry lying beneath.*® [We have ignored
the small corrugation of the Au(001) surface.*] Between
300 and 1170 K, at which temperature the hexagonal
reconstruction disappears, the hexagonal lattice constants
of the reconstructed Au(001) surface are only weakly
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FIG. 19. Calculated area per atom for hexagonal or nearly
hexagonal surfaces, exposed facets, and bulk layers of Au as a
function of temperature. Solid circles are the calculated areas
per atom for atoms of the Au(111) surface. There is a discon-
tinuity in areal density at the disordering transformation.

temperature dependent relative to those of the bulk.*
Therefore, to sufficient accuracy, the area per atom for
the Au(001) surface is constant and equal to 0.793a>. Fi-
nally, the area per atom for gold atoms on the (111) mi-
crofacet of the (2X 1) reconstructed Au(110) surface is
shown at 300 K, using the structural parameters given in
Ref. 47. It is striking that the area per atom of the
Au(111) surface approaches that of the reconstructed
Au(001) surface as the temperature increases. This sug-
gests the possibility that a hexagonal overlayer of Au, on
an Au substrate, has a natural lattice constant. Recent
calculations by Dodson'? and by Needs and co-
workers'>!* indicate that unreconstructed metal surfaces
experience a tensile stress, so that the surface atoms
indeed have a smaller natural nearest-neighbor separation
than in the crystal interior.

Measurements of the reflectivity, presented in Sec.
IIT A, indicate that microscopically the atomic arrange-
ment in the discommensuration fluid phase is composed
of the same unfaulted and faulted regions as in the chev-
ron phase. A possible reconciliation of this observation
with the data of the present section is that the overlayer
structure is now composed of a disordered arrangement
of discommensurations so that all three possible orienta-
tions of the discommensuration structure are present on
length scales of order of the translational correlation
length. This leads to isotropic symmetry of the over-
layer. Nevertheless, the basic structural element remains
the (s XV'3) motif and therefore the reflectivity profiles
in the fluid phase are similar to those at lower tempera-

tures. With this interpretation, the fluid phase may
reasonably be described as a discommensuration
fluid. 8%

In addition to the peaks of S(Q) along the hexagonal
directions (primary peaks), there are satellite peaks dis-
placed from the primaries through a wave vector exactly
equal to a substrate reciprocal-lattice vector (Fig. 15).
Representative scans are shown for 970 K in Fig. 20.
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The small hexagons drawn as insets to Figs. 20(a) and
20(b) are analogous to that drawn about the (0,1,L) rod
in Fig. 6(a), except now the hexagon size is determined by
8- The ellipses illustrate, schematically, the secondary
diffraction peak and the dashed lines indicate the scan
directions through the reconstruction peak. Thus the
peak shown in Fig. 20 is displaced from the primary at
(—1—05,,14+8,,,0.12) by the (1,0,0) substrate wave vec-
tor. The widths of the peak in the scans shown in Figs.
20(a) and 20(b) are 0.0055a¢* and 0.0038a*, respectively,
which are identical to the transverse and radial widths,
respectively, of the primary peak. This corresponds pre-
cisely to a simple translation in reciprocal space, except
that the satellite peak intensity is diminished by a factor
of about 2 from that of the primary (which has intensity
equal to 1 on this scale). Modulated liquids have been
studied in detail in the context of alkali metals intercalat-
ed into graphite.** % A monolayer of Pb on a Ge sub-
strate can also form a modulated liquid phase.’! In these
examples, the fluid correlation length is only a few
angstroms and the scattering consists of a slightly modu-
lated, diffuse cylinder, surrounding each substrate
reciprocal-lattice vector.

It remains to discuss the origin of the excess peak
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FIG. 20. (a), (b) Scans through a secondary reconstruction
peak. On this intensity scale the primary reconstruction peak
has intensity equal to 1.
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width (0.0017a*) in the transverse direction. If the peak
widths were due to the decay of positional correlations
alone, one would expect the radial and transverse peak
widths to be the same because of the hexagonal symme-
try. However, if the orientation of the discommensura-
tions in the fluid phase fluctuates about the (1,2,0)
directions (Fig. 3), there will be an additional contribu-
tion to the transverse width.’>> The magnitude of the
orientational fluctuations necessary to produce the ob-
served broadening may be estimated as 0.0017a*/
0.038a *==2.6° rms.

D. Phase transformation

Figure 21 shows the evolution of the radial diffraction
profiles for temperatures between 866 and 879 K. At 879
K, the scattering corresponds to the discommensuration
fluid phase, while at 866 K it corresponds to the chevron
phase. At the intermediate temperature (872 K), there
appears to be phase coexistence. At 879 K, the
discommensuration-fluid-phase scattering function is
broad (k,=0.0039a*) and peaked at Q, (fluid)
=1.035a*, whereas at 866 K the width of the chevron

phase peak is resolution limited (AQ,=0.00025a*
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FIG. 21. Radial scans through the principal reconstruction
peak in the coexistence region. (a) Scattering profile charac-
teristic of the high-temperature discommensuration fluid phase.
The solid line is a best fit to a single Lorentzian line shape. (b)
Scattering profile characteristic of coexistence. A sharp peak at
K =1.0364 coexists with a broad fluidlike peak at K =1.0353.
(c) Scattering profile characteristic of the chevron phase.
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HWHM) and the peak position is @, (chevron)
=1.036a*. The different peak positions suggest that

there is a discontinuous density change at the transforma-
tion from chevron to discommensuration fluid phase (see
Fig. 19). This in turn requires that the phase transforma-
tion be first order. Further evidence which indicates that
the transformation is first order is provided by the data
obtained at 872 K (and at other intermediate tempera-
tures). This profile appears to be composed of two dis-
tinct components—one broad and one narrow. Further-
more, the position of the narrow component is close to
that of the chevron structure peak and the position of the
broad component is close to that of the
discommensuration-fluid-phase peak. This is exactly
what one would expect for the scattering in the case of
two-phase coexistence.

To further test the hypothesis that the transformation
is first order, we have fit radial scans in the region of the
phase transformation to a model profile composed of the
sum of a discommensuration-fluid-phase radial line shape
and of a chevron phase radial line shape. The parameters
allowed to vary in the fits were the two peak positions
and the two peak intensities. The solid lines in Fig. 22
show the model profiles corresponding to the best-fit pa-
rameters. These fits provide an adequate description of
the data and are superior to fits to a model consisting of a
single Lorentzian. Figure 23 shows the results for the in-
tensity of the chevron and discommensuration fluid
scattering as a function of temperature in the neighbor-
hood of the phase transformation. The approximately
linear behavior of the intensities is as expected in a two-
phase coexistence region.

It is worthwhile comparing the behavior of the Au(111)
surface with that of the Au(001) surface.** The Au(111)
reconstruction disorders at =870 K, while the Au(001)
reconstruction disorders at a significantly higher temper-
ature (1170 K), also via a first-order transformation. At
first sight, the difference between the disordering temper-
atures appears surprising in view of the similarity be-
tween the two reconstructed overlayers—both are nearly
hexagonally close-packed structures. However, the na-
ture of the disordered phase is quite different in the two
cases. For Au(001), the x-ray data are consistent with a
microscopically disordered surface*® while for Au(111)
the data are consistent with a locally ordered surface, but
with a disordered arrangement of discommensurations.
One reason that the Au(111) discommensuration disor-
dering temperature may be so low is that in the disor-
dered phase there is no longer anisotropic stress induced
in the bulk crystal. Alternatively, in the case that there
are only two commensurate sublattices (i.e., A4 sites and C
sites), Refs. 28 and 29 predict that for sufficiently weakly
interacting discommensurations, the stripe-domain phase
is unstable to the proliferation of free dislocations at arbi-
trarily low temperatures and thus is always a fluid. For
small repulsion between discommensurations the melting
temperature is also expected to be low. It is tempting to
suggest that the seemingly low disordering temperature
of the Au(111) surface provides a realization of this be-
havior. However, the calculations of Refs. 28 and 29 are
carried out for the case of widely separated discommen-
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FIG. 22. Radial scans in the coexistence region. The solid lines are a best fit to a model line shape composed of the sum of a
discommensuration-fluid-phase radial line shape and a chevron-phase radial line shape. Scans for (a) 871, (b) 877, and (c) 880 K.
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discommensuration-fluid-phase peaks vs temperature. Solid
symbols are the measured discommensuration-fluid and
chevron-phase intensities for decreasing temperature. Open
symbols are the discommensuration-fluid and chevron-phase in-
tensities for increasing temperature. The width of the coex-
istence region is AT =15 K.

surations and the possibility of 120° kinks is explicitly ex-
cluded. Therefore, their application to the Au(111) sur-
face is far from straightforward. Isolated dislocations,
where two discommensurations meet and end, are evident
in the STM data of Ref. 17 obtained at 300 K.

IV. CONCLUSIONS

In this paper we have presented the results of a
comprehensive synchrotron x-ray diffraction study of the
clean Au(111) surface between 300 and 1250 K. The sur-
face is reconstructed throughout this temperature range;
however, we have found two distinct phases. For temper-
atures less than 865 K, the surface structure consists of
an equilibrium density of kinks between rotationally
equivalent domains of a uniaxial reconstruction. The
uniaxial reconstruction itself is composed of a sequence
of discommensurations separating surface regions with
the correct fcc ABC stacking sequence from faulted re-
gions with an AB A stacking sequence. Both the kink
separation and the discommensuration separation evolve
to smaller values with increasing temperature. For tem-
peratures greater than 880 K, atomic positions are micro-
scopically well defined. However, the arrangement of
discommensurations and kinks is disordered. This gives
rise to a surface structure which on the average is iso-



43 STRUCTURE AND PHASES OF THE Au(111) SURFACE: X-...

tropically compressed and for which the translational
correlation length is comparable to the periodicity of the
discommensurations. Remarkably, this structure persists
to the highest temperature studied (1250 K). There is a
first-order phase transformation between these two struc-
tures with a narrow (15 K) coexistence region. The x-ray
reflectivity is always aligned with the crystallographic
(111) planes, indicating that the (111) surface is a well-
defined, smooth facet for temperatures between 300 and
1250 K.
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APPENDIX

Figure 24 shows data obtained by rocking the crystal
through the reflection condition at Q=(0,0,6.18) (hexag-
onal coordinate system) for several different tempera-
tures. Rocking curves for other values of L are qualita-
tively similar. At the peak in the center of the scan the
reflection condition is satisfied. Evidently, this is super-
imposed on a strongly temperature-dependent “back-
ground” of a rather unusual shape. In fact, the back-
ground scattering is thermal diffuse scattering from bulk
lattice vibrations (phonons) and the seemingly unusual
form of the background is readily understood on the basis
of Eq. (10) as follows. Exactly along the cubic (111)
direction the factor of (e-Q)? ensures that the diffuse in-
tensity is determined by the frequency of the longitudinal
phonons. On the other hand, rocking the crystal away
from this direction allows transverse phonons to contrib-
ute. Since transverse phonon frequencies are lower than
those of longitudinal phonons, the diffuse intensity in-
creases. Eventually, it decreases again because the wave
vector of the contributing phonons increases, thus in-
creasing their frequency. Indeed, the position of the
maximum as a function of Q can be qualitatively under-
stood on the basis of Eq. (10).

The comparison between Eq. (10) and the observed
diffuse intensity is particularly simple along the specular
direction. Equation (10) becomes
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FIG. 24. Transverse scans through the specular rod at
(0,0,6.18) as a function of temperature. The broad peaks at
w==11.5° are the result of thermal diffuse scattering.
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where Q,=Lc* is along the surface-normal direction.
Fortunately, the lattice dynamics of gold have been
characterized in detail by inelastic neutron scattering>*
and in particular the frequency of longitudinal phonons
propagating along the cubic [1,1,1] direction (w;) has
been measured. Thus a direct comparison between our
background scattering and Eq. (A1) is possible.’> Figure
25 shows the diffuse scattering at 750 and 1100 K along
the specular direction, together with the expected
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FIG. 25. Diffuse intensity along the specular rod at two
different temperatures. Solid lines are fits to the thermal diffuse
scattering (TDS) line shape. The deviation from theory at small
L is due to air scattering.
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thermal diffuse scattering calculated from Eq. (A1). The
only parameter varied to obtain the evident agreement
for both temperatures was an overall intensity; considera-
tion of first-order thermal diffuse scattering alone pro-
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duces reasonable agreement (Fig. 25). The discrepancy at
large L may be due to second-order thermal diffuse
scattering.’1*¢ The discrepancy at small L is due to air
scattering of the incident x-ray beam.
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