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We present a theoretical study of the electronic structure of ordered, partially ordered, and disor-
dered phases of the Cu3Au alloy using the scalar-relativistic linear muffin-tin orbitals (LMTO)
method in conjunction with the coherent-potential approximation. We study the change in the elec-
tronic structure caused by the gradual increase of disorder in the alloy by varying the long-range-
order parameter S continuously from its maximum (S=1) to the minimum (S=O) possible value.
Calculations for the disordered phase (S=O) are performed with and without relaxation of the lat-
tice. The relaxed-lattice calculation takes into account, in an approximate way, the possible devia-

tions from the ideal lattice structure due to the difference in the sizes of the constituent atoms. As a
side issue, we address the problem of transferability of the LMTO parameters of the individual alloy
components in the pure crystalline phase to the alloy calculation.

I. INTRODUCTION

The electronic properties of ordered and disordered
phases of the Cu3Au alloy have been studied both experi-
mentally' and theoretically' ' during the past few
years. There are several reasons for the interest in this al-
loy: (i) The Cu-based alloys provide an important test ex-
ample for the theories of allow phase stability based on
the knowledge of the underlying electronic structure. (ii)
The Cu3Au system is the canonical example of an alloy
which undergoes the order-disorder phase transforma-
tion. (iii) There are important relativistic etfects related
to the Au atoms. (iv) The d-valence states of Cu-rich al-

loys with the noble and the late transition metals are fully
occupied, justifying a one-electron description (as op-
posed to, e.g. , the case of partially filled d band of Ni
where many-body effects are important). The occupied
valence states are amenable to experimental studies via
the techniques of photoemission and x-ray spectrosco-
py.

The Cu-rich Cu-Au alloys, like the Cu-rich Cu-Pd al-
loys, are interesting from another point of view. In both
alloys there are non-negligible lattice relaxation effects
connected with the introduction of large impurity atoms
(Pd or Au) into the matrix of the smaller Cu atoms. The
fractional change in the equilibrium lattice constant (a ~-

a ")/a ~, is 7%%uo and l l%%uo for Q=pd and Au, respective-
ly. To discuss qualitatively the possible inhuence of the

size difference of the atoms on the electronic structure of
Cu-rich alloys let us consider first a single Pd or Au im-

purity atom in the Cu matrix. Let us consider the
single-muKn-tin (MT) approximation, ' which uses a
common MT radius for the host and the impurity atoms
(i.e., Pd or Au MT radius equal to the Cu MT radius in
this case). In the single site charge self-consistent calcu-
lation there is a tendency to screen the impurity potential
as much as possible since only the potential in the impuri-
ty MT sphere is perturbed. The perturbation in all the
remaining MT spheres as well as the interstitial space is
neglected. The impurity becomes overscreened due to
the limited space where self-consistency is performed. As
a result, the impurity potential becomes more attractive
and the d states are shifted to lower energies. ' The situ-
ation is similar in random alloys studied by the
self-consistent Korringa-Kohn-Rostoker —coherent-
potential approximation (KKR-CPA) method: we have
an impurity atom embedded in an etfective (CPA) medi-
um which is Cu-like for the Cu-rich alloys. The effect is
less pronounced in comparison with the single impurity
case as the common MT radii are slightly greater than
the pure crystal Cu-radius in case of Cu-rich alloys. The
second effect is the lattice expansion around the impurity,
which has been confirmed by extended x-ray-absorption
fine structure (EXAFS) measurements' ' for Cu-rich al-
loys. The actual impurity-host distance is underestimat-
ed in the single MT model. Consequently, both the
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impurity-host hoppings and the impurity bandwidths are
overestimated. ' This effect is stronger in random Cu-
rich alloys because of the nonzero probability of finding
two Pd (Au) atoms as the nearest neighbors. In the
single-impurity limit, these constraints of the single-MT
model can be removed by allowing charge transfer out-
side the impurity MT sphere. One performs self-
consistent calculations on a cluster consisting of the im-
purity MT sphere and the surrounding nearest Cu MT
spheres which are shifted outwards to accommodate the
larger impuity atom. ' Such a program cannot be, at
least at the present time, extended to concentrated alloys
within the KKR-CPA formalism.

We have demonstrated recently that in the CPA (Refs.
15—17) version of the tight-binding —linear muffin-tin or-
bitals (TB-LMTO) method' ' ' approximate treatments of
both charge self-consistency and lattice-expansion effects
are possible. The method offers the option to choose
different radii for the host and the impurity atoms. We
use the atomic-sphere approximation (ASA) version of
the LMTO method, in which the space is divided into
volume filling, and hence (slightly) overlapping Wigner-
Seitz (WS) spheres centered a,t the lattice sites and inside
these spheres the charge density and the potential are ap-
proximated by their spherical averages. The ASA is a
reasonable approximation, provided that there are very
few electrons in the interstitial region. As a rule of
thumb errors due to the ASA are small as long as the WS
spheres, filling the electron containing parts of space, do
not overlap more than 30%, i.e., s +s
—R~ (0.3s for all R, where s is the radius of the
sphere at site R. ' Sphere radii for the alloy constituents
(Cu and Au atoms in the present case) can be chosen to
be different so that the spheres are approximately neutral.
A first guess for the sphere radii alloys obeying Vegard's
law reasonably well (e.g. , Cu-Au and Cu-Pd alloys) is the
radii for the pure metals. ' '' For Cu-Au and Cu-Pd al-
loys this choice of sphere radii leads to approximately
neutral spheres, while the sphere overlaps stay within
30%. One can vary the sphere radii slightly about the
pure component values to obtain perfectly charge neutral
spheres. The TB-LMTO-CPA procedure (with neutral
spheres) that we follow has the following advantages: (i)
For an ordered alloy we automatically rule out the need
to calculate the Madelung potential. (ii) The species po-
tentials of neutral spheres, which are related to a com-
mon zero of energy within the ASA, are properly posi-
tioned with respect to each other on the energy axis.
This is of central importance for the alloy calculation and
it permits us to avoid, in the first approximation, a fully
charge self-consistent calculation. (iii) The potentials in
the spheres with radii slightly different from that of the
pure components can be calculated trivially by consider-
ing the tabulated values of the potential parameters and
their volume derivatives. Thus no self-consistent calcu-
lation for the new radii are necessary. Thus the pro-
cedure offers the computational ease of an empirical TB
scheme and the accuracy of a first-principles method. (iv)
The variations in the interatomic distances can be
modeled accurately via the variations in the TB-LMTO
hopping integrals which are related unambiguously to the

WS radii. The TB-LMTO-CPA method treats the off-

diagonal disorder on the same footing as the diagonal or
level disorder. ' '

Using the approach outlined above we calculate the
electronic structure of both ordered and disordered
phases of the Cu3Au alloy. In the disordered phase we
consider two limiting models of lattice expansions: (i)
The nearest-neighbor distances Cu-Cu, Cu-Au (Au-Cu),
and Au-Au are all chosen to be the same (unimodal dis-
tribution). This is the model commonly used in the
KKR-CPA method. (ii) The nearest-neighbor distances
are different (trimodal distribution) and approximately
equal to the arithmetic averages of the corresponding
pure consituent ones. The possible lattice relaxations are
included only in the latter model. A comparison of the
results obtained in the two models illustrates the effects of
lattice relaxations on the electronic structure.

The Cu3Au alloy is the canonical example of an aHoy
showing the order-disorder transition. In the ordered
phase the underlying face-centered cubic (fcc) lattice with
halved lattice constant is decomposed into four inter-
penetrating simple cubic (sc) lattices, of which three are
occupied by Cu atoms and the remaining one by Au
atoms. Each Au atom has twelve Cu nearest neighbors.
In the completely disordered phase all four sc sublattices
are occupied with probability 0.75 (0.25) by Cu (Au)
atoms. Partially ordered structures with varying degrees
of (dis)order exist between the two limiting cases, depend-
ing on the temperature and the thermal history of the
sample. The degree of order can be described by a con-
tinuous variable S, the long-range-order (LRO) parame-
ter. ' The LRO parameter is linearly related to the prob-
ability of finding atoms at the correct positions and varies
between the limits S =0 for the completely disordered to
S =1 for the completely ordered alloy. It can be deter-
mined experimentally from the intensity of the superlat-
tice lines. Since the origin of the interatomic interactions
that are responsible for the ordering tendecy is electronic,
a reliable study of the variation of the electronic structure
with atomic arrangements is of central importance for
the explanation of the phase diagram of these alloys. The
determination of the dependence of the electronic struc-
ture of the Cu75Au25 alloy on the LRO parameter S is
another aim of the present work.

In the ordered Cu3Au phase we perform self-consistent
LMTO calculations and compare the results with those
obtained by using the parameters transferred from the
pure components. This allows us to discuss the transfera-
bility of the LMTO parameters from the pure crystal
phase to the alloy calculation. A similar study of the
transferability of the parameters for use in the calculation
for the completely disordered alloy (with lattice relaxa-
tions included) is also presented.

II. THEORY

Our aHoy Hamiltonian in the orthogonal LMTO repre-
sentation' has the form

~RL, R'L' ~RL ~RR'~LL'
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where R is the site index of the underlying fcc lattice.
The orbital quantum number L [=(l,m)] has l & 2, i.e.,
we use the sp d LMTO's on each site. The fcc lattice is
formed of four interpenetrating sc sublattices. For
0(S~1 these sublattices are distinct and our problem
has a 36X36 format. The probabilities p~ of finding the
atom Q=Cu or Au on the sublattices v=Cu, Cu, Cu, or
Au are2'

p
"= ( 3+S)/4, p c„"= ( 1 —S)/4,
"=3(1—S)/4, p~"„=(I+3S)/4 .

(2)

In the ordered phase S =1, and p&„"=pz"„=1,p~"„
=pz„"=0. On the contrary, in the completely disordered
phase S =0, and p c„"=p ~"„=0.75, p c„"=p ~„"=0.25, and
all sublattices are equivalent. Thus for the S =0 case the
problem has only a 9 X 9 format.

The structure of the underlying fcc lattice enters the
Hamiltonian (1) via the structure constant matrix S,
which is independent of the lattice constant (it depends'
on the dimensionless quantity d =

~
R —R'

~
/ W, where W

is the alloy WS radius). The properties of the atoms
which occupy th elattice sites are characterized by the
potential parameters' X=C, 5, and y, which are ma-
trices with elements XzL, diagonal with respect to the in-

dices R and L. In the alloy the potential parameters take
on randomly two different values of XP (Q=Cu, Au),
with probabilities p P given by Eq. (2) on each of the four
sublattices. The parameters XL are obtained from the
solutions to radial Schrodinger equation for the Cu and
Au local-density approximation (LDA) potentials evalu-
ated in the WS spheres with radii s " and s ", respective-
ly. The hopping integrals H&L ~.L. are thus directly and
unambiguously related to the WS radii of the constituent
atoms or, equivalently, to the interatomic distances.

In the ordered phase (S = 1) we use either the potential
parameters obtained from the self-consistent calculations
performed at the experimental alloy volume or the tabu-
lated potential parameters for the pure Cu and Au met-
als appropriately modified for their slightly different radii
in the alloy (as required by volume preservation in the al-

loy) using the tabulated values of the volume derivatives
(for details we refer to Ref. 19; see also Refs. 15 and 17).
To correct for the fact that the Cu3Au alloy WS radius 8'
differs from the radii s~ (Q=Cu or Au) we must multiply
the parameters b, $ and yP by the factor A (=(s~/W)~ +'.
The use of these same potential parameters in the disor-
dered phase (S =0) amounts to completely neglecting the
lattice relaxation effects. ' ' To incorporate the lattice
relaxation we approximate the structure constant for the
deformed (relaxed) lattice between the sites R and R' oc-
cupied by atoms Q and Q' by pPS~L ~.L.pg. , where
pP=(W/s~)'+ ~ and S is the undeformed (ideal lattice)
structure constant. This expression is derived on the as-
sumption that the distances d " "and d " "are close to
those in the pure crystals and the distances
d " "=d " " are approximately equal to the arithmetic
average of the distances d " " and d " ". For values of
the radii s typical for transition metals the arithmetic

average is close to the geometric average, from which the
above result follows. We also assume that the distances
d~~ between sites R and R' depend only on these sites
and their occupants, and that they are not influenced by
other sites (for further details see Refs. 15 and 17). This
is certainly an approximation, but it can give us a feeling
as to the importance of the lattice relaxation effects in the
alloy under study.

The next point concerns the choice of the sphere radii
necessary to make the Cu and the Au spheres charge neu-
tral. We proceed in the following manner. As stated
above the choice of the pure crystal radii is already a
good staring point for alloys obeying Vegard's law, of
which Cu3Au is an example. Starting with this choice we
perform CPA calculations with the Hamiltonian (1) and
determine local densities of states (LDOS) on Cu and Au
atoms as well as the total alloy DOS. Once the alloy Fer-
mi level EF is found from the total DOS, we calculate the
local charges q~ (Q=Cu, Au) by integrating the Cu and
Au LDOS up to EF. The corresponding deviations from
the sphere neutrality are 5 Q =11—q~. Charge conser-
vation requires 6q "=—3 6q ". To make, for example,
the Au sphere charge neutral, we can set
5q "= 4'(s ")—n "5s ", where n " is the tabulated
electron density evaluated at the WS radius s ". The re-
lated quantity 6s " is obtained from alloy volume conser-
vation 3(s "+5s ") +(s "+5s ") = W, where Wis the
alloy WS radius. We then calculate the new potential pa-
rameters for the new radii s~+5s~ using the tabulated
values of the volume derivatives, and repeat all steps.
Usually after one or two iterations the charge deviations
5q~ are negligible (less than 0.01 electrons per site).

We note that approaches similar in spirit, although
different in technical details, were proposed recently.
In Ref. 22 the relative positions of the d resonances in
amorphous Zr-Cu alloys were determined by self con-
sistently adjusting the diagonal elements of an empirical
TB Hamiltonian demanding zero charge transfer between
Zr and Cu atoms. In Ref. 23 the TB parameters for Si
were extracted by rescaling the energy functional in a
physically transparent manner, and self-consistency was
approximated within the TB model by enforcing atomic
charge neutrality using a simple algorithm. In our
method we vary the sizes of the atomic spheres until they
contain the proper number of valence electrons in order
to be charge neutral. Differences in the sizes of the atom-
ic spheres induce lattice relaxation, which is incorporated
in the calculation by appropriate modifications of the
hopping integrals as discussed earlier.

The final remark concerns the choice of the potential
parameters X~ (X =C, b, , y and Q =Cu, Au) for the par-
tially ordered alloys (0 & S & 1). For the potential param-
eters we use linear interpolation between the limits S=1
and 0 discussed above, so that XP=(1—S)XP(S =0)
+ST(S=1). These S-dependent potential parameters
form the input of the CPA equations.

The derivation of the CPA equations and their solu-
tions were discussed in Refs. 16 and 17 for the case of
simple lattices (one atom per unit cell). The formalism
can be generalized straightforwardly to the case of many
atoms per unit cell (as in the case of the partially ordered
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s "=2.670 a.u. and s "=3.012 a.u. which are essentially
the pure-crystal values, s "=2.667 a.u. and s "=3.002
a.u. ,

' as Vegard's law is well fulfilled for the Cu3Au al-
loy. ) The energy bands are the same in both cases within
the numerical accuracy, but the charge transfer among
spheres of equal radii is significantly greater than in the
other case. This indicates the importance of the proper
choice of the component sphere radii in the disordered
phase, especially if the calculations are not charge self-
consistent. As we have discussed in the Introduction, the
proper choice of sphere radii is important even in the
self-consistent version of the CPA.

The band structure along the R —I —X line in the sc
Brillouin zone is plotted in Fig. 1. It agrees with that in
Ref. 8 and, with the exception of the lifting of some de-
generacies due to the spin-orbit effect, also with those in
Refs. 7 and 11. The d-band width is not influenced by the
spin-orbit effects. We note that the d bands at
E H ( —0.65, —0.45) Ry are predominantly due to the Au
states, while those at EH( —0.4, —0.25) Ry are due to
the Cu states. This is clearly seen from the plots of the
total DOS, Fig. 2, and its decomposition into the Cu con-
tribution (Fig. 3) and the Au contribution (Fig. 4). Our
results agree well with those obtained previously by the
LMTO (Refs. 1 and 9) as well as by the linear combina-
tion of Slater orbitals methods. We only note the small-
er energy resolution of our curves due both to the larger
energy step (0.01 Ry) used in our calculation and to the
method of Brillouin zone integration (the calculations
were performed with the energy axis shifted into the

complex plane followed by analytical deconvolution back
to the real axis at the end' ). The effect of the spin-orbit
coupling' '" is to split d and d states, which leads
to some shape changes, especially in the lower part of the
spectra dominated by the Au states, while leaving the
bandwidth essentially unchanged.

B. The disordered Cu»Au2& alloy

The results for the total and component DOS plotted
together with the ordered Cu3Au counterparts for the
sake of comparison are displayed in Figs. 2 —4. We have
performed calculations neglecting the lattice relaxations
[case (a)] as well as including the lattice relaxation effects
[case (b)], both based on the parameters derived from the
self-consistent ordered Cu3Au calculation. We find a
small charge transfer, of the order of 0.1 electron per Cu
site. We also present the results for the neutral spheres
with radii s "=2.705 a.u. and s "=2.926 a.u. [case (c)].
While the qualitative features of the DOS are the same in
all cases, we clearly see the band narrowing due to lattice
relaxations. This band narrowing is consistent with the
pronounced differences observed in the local Au DOS
with and without the lattice relaxations (while the local
Cu DOS remains essentially unchanged). The reason for
this narrowing in the model including lattice relaxation
can be easily understood. The Au-Au nearest-neighbor
distance in this model is close to its value in the pure
crystal, and thus greater than in case (a), where it is as-
sumed that all nearest-neighbor distances are equal and
correspond to the average nearest-neighbor distance in
the alloy. Consequently, the Au-Au as well as the Au-Cu
nearest-neighbor hopping integrals are overestimated in
case (a), resulting in broader local Au DOS. A similar
effect was found in our recent calculation for Cu-rich
Cu-Pd alloys, ' and is supported by recent angle-
integrated photoemission (PES) data, ' which allows one
to extract the component LDOS (through the use of
difference photon-energy dependence and the Cooper
minima of the atomic matrix elements of the consituent
atoms in the alloy). Recent angle-integrated PES experi-
ments in ordered and disordered Cu3Au alloys point to
the superiority of models (b and c) over model (a). These
experiments clearly show that the bandwidths for the or-
dered and the disordered phases are the same, just as
found in our models (b) and (c). On the contrary, the
KKR-CPA calculations, ' " based on models that
neglect lattice relaxation, overestimate the bandwidth in
the disordered phase, while giving excellent agreement
for the ordered case.

It is worth pointing out that the angle-integrated PES
data are not, strictly speaking, proportional to the total
DOS but rather to the concentration and matrix-
element-weighted local DOS. The matrix elements of Cu
and Au as well as the corresponding photoionization
cross sections depend on the photon energy. For exam-
ple, in the ultraviolet photoemission spectroscopy (UPS)
or x-ray photoemission spectroscopy" (XPS) ranges
the Au elements are a few times greater than the corre-
sponding Cu elements. On the other hand, the matrix-
element effects do not inhuence the width of the PES
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Energy (Ry)
FIG. 5. Spectral densities of states for the disordered

Cu75AU25 alloy evaluated for k points in the Brillouin zone of
the face-centered-cubic lattice: k = (2~/a)( —,', —,', —,

' )—:L, k
=(2w/a)( 4, 4, 4 ), k=(2m/a)(0, 0,0) =—I, k=(2w/a)( 2, 0,0),
and k=(2~/a)(1, 0,0)=X. The long vertical lines denote the
position of the alloy Fermi level. Cases (a) —(c) are the same as
in Fig. 2.

effect must, however, be similar for ordered and disor-
derd samples. One can also speculate on the possible
effect of the short-range order in these alloys. Our model
provides just the first simple scheme to tackle the prob-
lem and more experimental data concerning both the
electron states and structure (e.g. , EXAFS data) will be
needed to refine it. Also, it is desirable to perform truly
charge self-consistent CPA calculations within the mod-
els with difterent (neutral or almost neutral) sphere radii
for the component atoms.

Regarding the spin-orbit coupling effects, the following
conclusions can be drawn on comparison of semirelativis-
tic and relativistic KKR-CPA calculations " (i) The
spin-orbit effects influence the lower part of the spectra
dominated by Au d states and give rise to a dip there due
to the splitting of Au d ~ and d states (this is not
present in our semirelativistic calculations); (ii) the width
of the alloy spectra with and without the spin-orbit
effects is essentially the same.

The spectral (Bloch) densities of states, which substi-
tute the notion of the energy bands in disordered al-
loys, ' ' are presented in Fig. 5 for all the studied mod-
els. It is instructive to compare this with the Cu and Au
band structures for the potential parameters used in the
alloy calculation (Fig. 6).

We see the upper parts of the Cu and Au bands inter-
sect each other and thus in this energy region one should
expect a virtual-crystal-like behavior. In other words, the
corresponding peaks in the spectral density are only
slightly broadened and describe an admixture of Cu and
Au states. On the other hand, the lower parts of the Cu
and Au bands are significantly shifted with respect to
each other, giving rise to two sets of levels in the alloy.
Thus, in this energy region we observe strongly
broadened well-separated peaks in the spectral density re-
lated to Cu and Au atoms Note the different positions of
Au-related d peaks for I=X or k=1. around the energy

Band Structure of Cu Band Structure of Au
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FIG. 6. Band structures of Cu and Au crystals along the line L —I —X in the Brillouin zone of the face-centered-cubic lattice evalu-
ated for the potential parameters used in the disordered alloy, case (c).
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E = —0.7 Ry for models (a) —(c). This reAects the
different Au d-band widths found in these models. The
sharp peaks at Ey —0.85 Ry for k=I or at E= —0. 12
Ry for k=X correspond to the common virtual-crystal-
like s band.

C. The Cu7&Au&5 alloy with LRQ

Before discussing the results, it is worthwhile mention-
ing previous theoretical attempts to address the problem
of LRO effects on the electronic structure of alloys. The
electronic DOS in pseudobinary intermetallic compounds
of the ( 3 i 8 ) C„ type was determined in Ref. 25 by
combining the CPA and the recursion method based on a
simplified TB model, in which only the site-diagonal dis-
order was taken into account. The KKR-CPA technique
was recently applied to the problem of ordering on the
simpler CsCl lattice for Cu5OZn5o (Ref. 26) and Ag50Zn5o
(Ref. 27) alloys. In these calculations ' the ordered
phase was studied using the LMTO method and the re-
sulting self-consistent ASA potentials were used as the
muffin-tin potentials in the KKR-CPA calculation for the
disordered phase. The transfer of potentials from space
filling (hence overlapping) WS spheres in the LMTO-
ASA calculation to the touching (nonoverlapping)
muffin-tin spheres in the KKR-CPA calculation is inap-
propriate and can lead to a significant loss of accuracy
when the component atoms differ appreciably in size.
This drawback is remedied in our calculations, where
both the ordered and the disordered phases are treated on
equal footing via the LMTO-ASA method.

Figures 7 and 8 display the first ab initio study of the
electronic structure of the partially ordered Cu75Au25 al-
loy. The potential parameters are LRO dependent, as
discussed at the end of Sec. II. The S=O limit corre-
sponds to the model (c) in Figs. 2 —4. The total DOS, Fig.
7, continuously interpolates between the ordered Cu3Au
alloy and its completely disordered phase. Nearly all
features of the ordered-phase electronic structure are al-
ready washed out by disorder for S=0.5. The sublattice
local Cu and Au DOS are plotted in Fig. 8. Note that Cu
and Au sublattices become equivalent for S=O because
the concentrations of Cu and Au atoms on them are
equal, unlike the case with S=O. The local Cu DOS on
Cu and Au sublattices stay essentially the same except for
a broadening as S decreases from 1 to 0. This is partly
due to disorder and partly due to lattice relaxation, since
for S=O the Cu-Cu distances are close to that in the pure
crystal and therefore smaller than the corresponding dis-
tances in the ordered Cu3Au alloy. The local Au DOS on
the Au sublattice broadens, as S changes from 1 to 0, due
to disorder and the increasing possibility of the oc-
currence of nearest-neighbor Au-Au pairs with decreas-
ing S (there are no nearest neighbor Au-Au pairs in or-
dered Cu3Au). The local Au DOS on the Cu sublattice
changes significantly, exhibiting a two-peak structure for
S&0.5. Consider, for simplicity, just one "antisite" Au
atom on the Cu sublattice in an otherwise perfect
(-ordered) Cu3Au alloy. While the Au atoms on the Au
sublattice have twelve Cu atoms as their nearest neigh-

TABLE I. Potential parameters of Cu and Au atoms for the
ordered Cu3Au alloy obtained by the self-consistent LMTO
method and constructed from tabulated (Ref. 20) pure-crystal
values according to Ref. 19 (in parentheses).

C (Ry)

—0.440
( —0.443)

0.555
(0.558)

—0.346
( —0.330)

6 (Ry)

Cu
0.1602
(0.1606)
0.1422
(0.1436)
0.0073

(0.0075)

0.4080
(0.4085)
0.1008
(0.1015)

—0.0024
(
—0.0028)

—0.613
( —0.615)

0.398
(0.401)

—0.477
(
—0.483)

Au
0.1363
(0.1381)
0.1775

(0.1771)
0.0240

(0.0242)

0.4585
(0.4580)
0.1510

(0.1497)
0.0135
(0.0140)

Cu„AU„: L RO

- 0.9 -0 7 -O. 5 -0.& -O. ) O. I

Energy (Ry)

FIG. 7. Total density of states for the partially ordered
CU7$Au25 alloy. The values of the long-range-order parameter 5
are ascribed to the corresponding curves. The long vertical
lines denote the positions of the Fermi level.
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Cu „Au„: LRO

Cu — LDOS on Cu sublattice
Cu — LDOS on Au subla ttice
Au- LDOS
Au- LDOS

on Cu sublattice
on Au sublattice

S= O.
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splitting in the local Au DOS. W' h

'
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case, when the local Au DOS on the Cu and Au su 1

tices become identical.

D. Transferability of pure crystal parameters

The fact thatat the atomic spheres in the allo b h
dered and disorisor"er", can be made neutral for radii close
to the pure-crystal values, and that the s here
are related to a comme o a common energy zero within the ASA
the basic reasonons for the transferability of the LMTO o-
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tential parameters from pure Cu and Au
po-

lo Ofoy. course the
ure u an u to the Cu3Au al-

pure-crystal parameters must be
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o e . II9, to ta e into account the slightl d ffy i erent

loy. Cu Au re re
p adii as well as the different WS r d' fra ius or the al-

U3 u represents a difficult case from the stand-
point of such a tr
schemes because of the significantly different sizes of the
constituent atoms. It isis generally believed that charge
self-consistency is essential in such (e.g., Cu-Au, Cu-Pd)

p, e use of the pure-crystal Cu andalloys. For exam le the
Au phase shifts based on the Ma
the KKR m

e att" eiss construction in
e method required a rigid shift of the Au

tial with res ect top o the Cu potential by 0.18 and 0.09 R
i o e u poten-

in Refs. 2 and 11, respectively.
The results for the ordered C Au3 u are summarized in

Table I, where we corn are thepare e potential parameters [see
q. j~ obtained from the self-consistent LMTOs en 0 method

y rans erring parameters from pure Cu and Au ac-
cording to the prescription of Ref. 19 (for sphere radii

S=0.

O
C5

Cu, , AU„

|D
O

C3

S=O

To

~ ~
~ ~
~ ~
~ ~
~ ~

~ ~

~ P

S = I.O
Au

-O. 9 -0.7 -0 5 -0 3 -0 I 0 I

Energy (Ry)
Cu

FIG. 8. Same as in Fi . 7'g. , but for the sublattice local densi-
ties of states (LDOS): (i) the Cu LDOS on the Cu
( ld 1 ) ( ) h C
lines), (iii) the Au LDOS on

ii e u LDOS on the Au sublat tice (dash dce as e
on the Cu sublattice (dash-dotted

lines), (iv) the Au LDOS on the Au subl tt' (dsu a ice otted lines). In

y = all sublattices aree completely disordered allo (S=0)
equivalent. The Cu and Au LDOS are then
and dotted lines

are t en denoted by the solid

OI d
o e ines, respectively. The values f th 1o e ong-ran e-g—

The long vertical lin
i e o t e corresponding curves.

level.
e ong vertical lines denote the positions of th 11o e a oy Fermi

-0, 9 -0.7 -0,5 -0.3 -0.I 0. ]

Energy (Ry)

FIG. 9.. 9. Total and local Cu and A DOS f
Cu75Au» alloy [model (b) based on t

u or the disordered

the ure c
] ase on the potential parameters of

e pure crystal constituents (Ref. 20) (solid 1'so i ines) and on the
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p en ia parameters of the ordered C A ll

e self-consistent LMTO method (dotted lines)
u3 u a oy obtained b
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s "=2.670 a.u. and s "=3.012 a.u. ). The average energy
deviations for one band at k=R, I,L points are less than
0.007 Ry, the maximum absolute value being 0.015 Ry.
In Fig. 9 we compare the total and the LDOS for the
completely disordered phase [case (c), S=O] based on the
potential parameters obtained from self-consistent
LMTO calculation for ordered Cu3Au and from pure Cu
and Au parameters appropriately modified for the alloy.
The difference, which is small, is mainly due to the ap-
proximately 5% difference in the potential parameters
Cd" (see Table I), which determines the center of the Cu
d band. Apart from that the agreement is excellent and
justifies the transferability of the pure component param-

eters to the alloy calculation, especially in situations
where the small loss in accuracy can be overlooked in
view of the vastly reduced computing time and cost. It
should be mentioned that even better agreement is ob-
tained for Cu-Pd alloys. ' '
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