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Diffusion of desorbing adsorbate: Study of a mesoscopic model
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Recent experimental data on surface diffusion for adsorbates that can desorb and diffuse at appre-
ciable rates call for a better understanding of the phenomenon of combined diffusion and desorp-
tion. For denser adsorbate, models of hydrodynamic behavior for desorbing adsorbates have been
d'scussed previously. In this paper we discuss a simple mesoscopic model for combined diffusion
and desorption, which is based on the master equation approach. We study that model for realistic
solid surface structures, i.e., graphite surface and fcc(111) or hcp{0001) metal surfaces. The
differences in the coupling between diffusion and desorption caused by the presence of inequivalent
adsorption sites and the related appearance of a new time scale is discussed. The analysis of avail-
able experimental data suggests that far-from-equilibrium measurements, for example scattering
measurements of the dynamic adsorbate structure factor S(q, co), combined with laser-induced
thermal desorption, can access those time scales.

I. INTRODUCTION

The science of diffusion is one of the best developed
areas of physics, ' yet there are several experimentally in-
vestigated new diffusionlike processes that so far had not
been analyzed in great detail from a microscopic point of
view. The specific problem we have in mind is the
diffusion of an adsorbate on a surface of the solid when
the adsorbate can also desorb at an appreciable rate.
Those two phenomena, diffusion and desorption, contrib-
ute to the decay of the inhomogeneity in the local adsor-
bate density and, therefore, can jointly inhuence local-
density fluctuations measurements. One of the experi-
ments in which such a coupling should show up is the
laser-induced thermal desorption (LITD) and following it
a refilling of the illuminated "hot spot. "

In this paper we intend to discuss a mesocopic model
which permits us to analyze the process of surface
diffusion in the presence of desorption taking into ac-
count several peculiarities related to the complex struc-
ture of the solid surface on which both of those processes
do happen. The necessity of developing microscopic or
mesoscopic theories of surface diffusion for such a situa-
tion has been noted for some time. Earlier attempts were
made to include substrate-adsorbate interaction and
desorption into phenomenological, hydrodynamical-type
theories. ' Those works were mostly interested in point-
ing out and discussing repercussions of such an effect on
hydrodynamics itself, for example, the existence of a
d =2 hydrodynamics. Indeed, coupling to a substrate in
a one-particle form, as discussed in Refs. 3 and 4, re-
moves infrared divergences responsible for the nonex-
istence of the transport coefficients in exactly two-
dimensional hydrodynamics. Recently, it was pointed
out that some of the features of the adsorbate diffusion
and desorption can be imitated by studying a properly
tailored kinetic Ising model and, in the case of an adsor-
bate undergoing phase transformation, ' a similarly

modified kinetic multistate Potts model. The general
strategy of formulating the problem in terms of the mas-
ter equation was outlined without, however, presenting
specific applications. In this work we shall follow the
master equation approach restricting, however, our
analysis to the simplest possible situation of low-coverage
density. That shall permit us to use the linear master
equation.

The physical situation we envisage is as follows. Con-
sider the surface of a real solid obtained by cutting a bulk
crystal along a given crystallographic plane, for example
a basal plane of graphite or (111)and (0001) planes of fcc
and hcp crystals, respectively. Each of those surfaces is
characterized by the presence of specifically located sites
at which, when the surface will be exposed to the interac-
tion with the ambient gas, the adsorbate atoms become
physisorbed. The binding potential usually has several
energy levels (from a few to several hundreds) and the dy-
namic interaction between the adatom and the solid sur-
face can be viewed as a phonon-mediated reshum. ing of
the adatom over the ladder of those localized states. Oc-
casionally phonons might induce the transition from one
of the bound states to the continuum; the act of such a
transition is called desorption. ' However, the dynamic
interaction with the substrate might also induce the tran-
sitions between adatom levels at one adsorption site and
the other, the process which we shall call jump. On a
macroscopic scale this process is the surface diffusion of
adsorbed species.

There are extensive studies of surface diffusion thought
of as the motion of a single adatom over the corrugated
surface described usually as the potential field developing
several maxima and minima. Those theories range from
detailed analyses based on modern liquid theories" to
purely mathematical works analyzing the possibility of
localization understood as the lack of diffusion in specific
kinds of corrugated potentials, for example in the period-
ic Lorentz model' or in particular periodic potentials. '
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Neither of those analyses offer the possibility of taking
into account desorption and its coupling to the lateral
motion of an adatom.

The meaningfulness of the master equation approach
depends on the choice of the transition probabilities (or
rates) which should satisfy certain general requirements,
the detailed balance condition is of a predominant impor-
tance among them. In very few cases those rates can be
calculated exactly from first principles, thus we usually
have to postulate their form on the basis of a physical un-
derstanding of the problem. ' In an important paper' the
phonon-induced quantum tunneling of an atom from one
interstitial position within the crystal to another was dis-
cussed in some detail. A particular form of the rates,
which takes into account the possibility of a multilevel
structure of each site, was derived there. We found it
possible to carry out our analysis using a fairly general
form of the transition probabilities. When we find it
necessary to use an explicit form of the rates we will

adopt those proposed in Ref. 15.
The model proposed in this paper should be applicable

to several other problems, e.g. , in solid-state optics where
the intersite transitions are driven and/or coupled to in-

trasite ones and transitions to continuum. An example
would be a fluorescence in the presence of traps in semi-
conducting materials. '

II. THE MODEL

g n, ( R;, t) +gn„(t)=1. (2.1)

Consider a crystal surface obtained by cutting a bulk
crystal along a given crystallographic plane. In general,
there will be more than one adsorption site per each d =2
(surface) unit cell. We shall label the cells by the position
vector R;, i =1, . . . , X. The position of the adsorption
site will be denoted then as X; =R;+d, where d„labels
the sites within the ith unit cell. An adatom at the site
X; may find itself in one of several possible localized
states labeled by the index a. Note that the states a are
not necessarily quantum states corresponding to the ada-
tom motion in the direction perpendicular to the solid
surface. The detailed nature of these states is of secon-
dary importance for our analysis. The fundamental
dynamical variable is now the probability density,
n (R;, t), for an adatom to occupy one of the states a at
the site ~ in the ith cell. The total number of atoms in
both the gas and adsorbed phases is X and the total
number of adatoms on the surface is given by
X„(t ) =Ns g, , n, ( R;, t ). Similarly we may introduce
the probability density nz(t) for an atom in the gas phase
to occupy a state, conventionally labeled by its momen-
tum k. The conservation of particles is now expressed by

placed by the free-atom kinetic energies Ek. For low
pressures of the gas and at not too low temperatures both
distributions can be approximated by the Boltzmann dis-
tribution function with energies E&, where in the gas
phase g denotes momentum and in the adphase it stands
for the set of labels (i, a, lr) T. he chemical potential p is
related to the ambient gas pressure P via the standard re-
lation

W„(R;,R; )=M, F, (R; —R; )

=W, . (R; —R;), (2.3)

where M ~ satisfy the detailed balance condition

M exp( /3E, )=—M, ,„exp( /3E, ) . — (2.4)

The function F, (R,- —R,') describing the spatial depen-
dence of the intersite jumps,

F (R; R; )=f(IX;.—X;.I)

=f( IR, —R, +d —d„I ) (2.5)

satisfies an obvious symmetry condition F, , (R, —R,')
=-F,,„(R,—R, ) which guarantees that W„(R;—R,')
satisfies the detailed balance. In the above, as every-
where, P is the inverse temperature in energy units.

Before writing down our master equation we shall
comment on the intrasite transition probabilities
W,„(0),which are not necessarily given by F„,(0)M,„,.
Indeed, the only condition for this rate is the detailed bal-
ance. On physical grounds' we will assume that intrasite
transitions are fast enough to effectively equilibrate popu-
lation probabilities in each of the sites before any macro-
scopic time evolution of desorption and/or diffusive char-
acter occurs. In the final stage of our analysis, when we
will need to use an explicit form of the M ~ matrices, we
shall use the rates from Ref. 15,

M„=Woexp — (E, E„—b,)—(2.6)

A similar form of the transition probabilities were used
for intrasite transitions to study desorption and sticking
on surfaces. ' The spatial part of the transition probabili-
ties might be assumed in the form

exp()33') =(2~fi) PP/(2~m //3)

Now, assume that the adatom, due to the interaction
with the host solid, undergoes the transition to another
state which might belong to the same or a different site.
The transition probabilities for such a process should
satisfy the detailed balance condition. We shall write
them in a factorized form

In equilibrium, the occupation probabilities n are
given by the proper quantum distribution function

R'f(~R~)=, exp
277 0 20

(2.7)

n, (R;), == 1 1

&g exp [P(E, —p ) ]+1
(2.2)

where the sign depends on the particle statistics. A simi-
lar formula holds in the gas phase with energies E re-

where 3, is the area of the unit cell. The length o.

denotes the characteristic root-mean-square jump dis-
tance for the adatom and is taken to be of the order of
the nearest-neighbor distance in the adsorption sites lat-
tice.
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We are now prepared to write down the master equa-
tion which will be the starting point of our analysis

r)n (R;, t)
Bt

W„(R;—R; )n, (R, , t)

W, , (R, , —R, )n, (R, , t)

—Q,n, (R, , t) . (2.8)

The last term on the right-hand side (rhs) of Eq. (2.8) de-
scribes transitions from the adsorbed state into the gas
continuum which are responsible for the desorption pro-
cess. Desorption rates might be dijjevent at different non-
equivalent adsorption sites in a unit cell and we will ana-
lyze how the overall result depends on that difference.
For surfaces with one adsorption site per unit cell, like a
graphite surface, it is relatively easy to parametrize the
desorption rate Q by heat of desorption. For inequivalent
sites such a parametrization is not as clear.

It is convenient to denote the matrix operator at the
rhs of Eq. (2.8) as

W (R; —R, ) = W„,(R, —R, , )

rejects the loss of the particles from the surface due to
desorption.

So far our analysis was very general. We shall make
one of the most important simplifying approximations.
We already have mentioned that the intrasite transitions
are much faster than the remaining ones. It follows
therefore that there exists a characteristic thermalization
time, the short time scale in our problem, during which
the quasistationary character of occupation probabilities
is established. ' ' With a good approximation we can
write

n (R, , t)= exp( PE, )P,(R—, , t),1

~Z. (2.14)

where Z is the ~th site partition function defined, as usu-
al, Z, =g exp( f3E ).—Following this ansatz, the occu-
pation of the Irth site, n (R;, t)=g n„(R,, t), can be
conveniently parametrized as

n (R, , t) a-exp( PE—)P,( R;, t),
where P (R, , t ) is a slowly varying function of time. For
mathematical convenience we write

—6 5, 5RR g W „(R.„—R, )

I A, K
n. (R, , t)=QZ. Q„(R,, t) . (2.15)

—&"&..&R, R, ,Q: (2.9)

an (R;, t) =—ge 'n„(q,t),
q

(2.10)

where X is the total number of surface unit cells. After
straightforward algebra the master equation reads

and perform a customary lattice Fourier transform by
writing

Upon inserting the above into Eq. (2.11) we obtain the
matrix equation of motion for P, which, after taking the
lattice Fourier transform, reads

&,$„(q,t ) =g&„(q)P,(q),
K

(2.16)

where the matrix H, which is Hermitian by virtue of the
detailed balance condition for the rate matrix Eq. (2.3),
has the form

B,n (q, t)=g W ~ (q)n (q, t),
A K

where

W, (q)=W, (q) —5 5, g W, , ( =0)
CX K

gaa'g Q
a

(2.11) II„(q)= g W, (q)exp( /3E, , )—
gZ„Z., ..

g W„(q)exp( PE, )
—5, A—, ,gZ„Z.. ...

(2.17)

where

=W, (q) —6 5, ,Q, . (2.12)

limX' '(q)=0,
q~O

lim k, ' '( q )%0 .
q~O

(2.13a)

(2.13b)

Equation (2.13a) expresses the conservation of particles in
the adsorbate in the absence of desorption, while (2.13b)

Both matrices W(q) and W(q) can be unitarily
transformed into Hermitian ones. ' ' Therefore, their
spectra are real and can be shown to be negative. Recall
that the spectrum of the master operator W(q) consists
of inverses of all time scales present in the system. The
lowest eigenvalues of W( q) and W(q), denoted by corre-
sponding diacriticals and taken with negative sign, differ
in their long-wavelength limit

A, = QQ, exp( PE,)—1

K

(2.18)

n, (R, , t)=+6, ( ;
—RRt)n, , ( , R, )0.

I,K

(2.19)

G is the lattice Green function for the combined diffusion
and desorption problem which is expressed in terms of ei-
genvalues A,

' '(q), and the corresponding set of orthogo-

is the thermally averaged desorption rate from a ~th ad-
sorption site.

The eigenvalues of ft determine relevant slow time
scales of processes in our system and we can easily write
down the solution of the initial value problem for Eq.
(2.16), which transformed back to the occupation proba-
bilities of the ~th site in the configuration space and has
the form
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nal and complete eigenvectors 3' '(q) of the matrix
ft(q) as follows:

1/2

(2.20)

For the sake of further analysis we rewrite Eq. (2.19) in q
space using the set of projection operators P"'(q)

1/2Z
P( )(q)— (2.21)

ZK'

We have then

1
G (R,t)=-

K

Xg g 2 ' '(q) 2 ',. '* (q)exp[iq R —tk '"'(q) ] .
q (~)

A
X X

V'

A
X X

XX

A
XX

V'

A
X X

V'

XX

XX

XX

3@X

A
X X

V'

A
X X

V'

A
X X

A
X X

V'

XX

A
X X

V'

XX

A
X X

V'

A
X X

V'

X X
V'

A.
X X

A
X X

V'

X X
V'

A
X X

V'

G, (q, t)=QP' '(q)exp[ —tA( '(q)] .
(~)

(2.22) X X
V' XX

A
X X

V'

A
X X

V'

It follows immediately from Eq. (2.19) that, in general,
there is no simple macroscopic equation for decay of the
adsorbate density N„(t)=Ngg;,n (R;,t). The decay of
Nz (t) is related to the whole vector [n, (t =0)]. In order
to access time scales with which the adsorbate density
evolves we use a standard statistical-mechanics relation
between the Green's function G(q, t ) and the autocorrela-
tion function of the density Auctuations. The latter is in
principle measurable in the scattering experiments. The
dynamical structure factor S(q, co) is related to the trace
of the Laplace transform of the Green function' G(q, z)

S(q, (p) =2%+6,„(q,z =co+i0+ ), (2.23)

and we are primarily interested in its long-wavelength
limit. Using Eqs. (2.22) and (2.23) we obtain for ~q~ ~0

g(~)( )S(q, co) =2+QP'", '(0)
co +[A, ' '(q)]

(2.24)

Equation (2.24) is the starting point for the analysis of
the combined diffusion-desorption processes. We will
now evaluate the eigenvalues and eigenvectors for the
symmetrized master operator ft(q) for several cases of
experimental interest. We shall first analyze the basal
graphite surface and then surfaces of fcc(111) and
hcp(0001) solids. These examples differ not only in their
crystalline symmetries but, what is even more important,
in the number of adsorption sites per unit cell and offer a
possibility of assessing differences stemming from none-
quivalency of different adsorption sites.

III. GRAPHITE SURFACE

In Fig. 1 we have shown the atomic arrangement of the
surface of graphite cut along its basal plane. The surface
unit cell is spanned by standard bulk lattice vectors
a(=a(1,0,0) and a2=(a/2)(1, &3,0), where a is the in-
plane graphite lattice spacing. In each unit cell there is
only one adsorption site per cell, denoted by a six-pointed
star. Heavy points denote the host surface atoms. The
adsorption sites form a hexagonal d =2 lattice. For this

FIG. 1. Atomic arrangements on the surface of graphite cut
along its basal plane. Adsorption sites forming a hexagonal lat-
tice are denoted by a star. Heavy points denote the host surface
atoms. The surface unit cell and basic vectors are also shown.

arrangement ~=0 and do=0. The matrix H now be-
comes just a function of q

ftpp(q)= —f(a)[3—Sd(q)]Bpp Ap . (3.1)

In deriving Eq. (3.1) we assumed that the jumps are to the
nearest neighbors only. That restricts the sums over the
lattice vectors in Eq. (2.8) accordingly. Thus, Sd(q), the
hexagonal planar lattice structure factor, is given by

Sd(q)=cos(q a)+2cos(q a /2)cos((/3q a /2) . (3.2)

Bpp= QMpp exp( PEp )
O a, a'

(3.3)

The eigenvalue of A is now just the negative value of its
only matrix element, A, (q) = —ftpp(q). Thus, there is only
one time scale in the problem determined by combined
desorption and diffusion rates. In the long-wavelength
limit A, (q) becomes

A, (q) = A,d +Dq (3.4)

&f(a)Bppa is the diffusion con-
stant. The explicit temperature dependence of D is con-
tained in Boo and will be discused later on. Note that, as
expected, the dynamic structure factor (2.24) now has the
form of a simple Lorentzian with the zero wave-vector
width determined by the desorption rate A,d. Therefore,
the presence of desorption removes the infrared diver-
gence in the adsorbate density autocorrelation function.
That observation was made earlier on purely phenome-
nological, hydrodynamical grounds.

f (a) is given by Eq. (2.5), Ap is the thermally averaged
desorption rate, viz. , Eq. (2.18), and
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IV. CLOSE-PACKED CRYSTAL HEXAGONAL
SURFACES

In Fig. 2 we have shown the surfaces of fcc(111) or
hcp(0001) solids. The absorption sites are now arranged
in the hexagonal planar lattice with two inequivalent sites
per unit cell, denoted as six-pointed stars and octagons,
respectively. The host surface atoms are denoted as
heavy points. The lattice vectors are the same as in the
graphite case with the lattice constant a now equal to the
nearest-neighbor distance in these two close-packed crys-
tals. There are now two d, vectors: d0 =0 and
d& =(a&+a2)/3, and the distance between the nearest ine-
quivalent adsorption sites is

l d, l

=a /&3.
The matrix II is a two-by-two matrix (~=0, 1) which,

after restricting the jumps to those between the nearest
(inequivalent) adsorption sites, can be written as

A A A,
XX XX

Q Q Q
A.

X X
V'

Q Q Q
A

X X XX

Q Q" Q

Q Q Q Q Q Q

ll(q) =y

1/2
1—3

ZQ

S„*(q)

0 S, (q)

ZQ—3
Z 1

1/2

where g=f(a /V3)g (o, I =Q /y,

1 I I

-810 =—&01 = QM, O exp( PE() ), —
gz, zo

(4.1)

(4.2)

Q Q8 Q Q Q
X X XX X X

A
X X

V' X X
V'

A
X X

V'

for its eigenvalues:

FIG. 2. Atomic arrangements on the fcc(111) or hcp(0001)
solid surfaces. The adsorption sites are now arranged in the
hexagonal planar lattice with two inequivalent sites per unit
cell, denoted as stars and octagons, respectively. The host sur-
face atoms are denoted as heavy points. The surface unit cell
and basic vectors are also shown.

and the relevant structure factor is

S„(q)=1+exp( iq a —)+exp[ i(q +—+3q )a/2] .

(4.3)

The matrix II in Eq. (4.1) is obviously Hermitian and
after some algebra we obtain the following expressions

~"""(q)= —,[y++ [y'+4ls. (q) l']'"I,
where

1/2
1

ZQ

Z
' 1/2

0

Z1
+(lo+I, ) .

The matrix for the projection operators I" ' reads

(4.4)

(4.&)

P(o)(q)—

P(q)

1/2

S„*(q)[1—2P(q)]
ZQ

1/2

S„(q)[1—2P(q)]

1 —P(q)
(4.6)

where
4ls„(q)l'

P(q)=
+[y +4ls„(q)l ]' ] +4ls„(q)I

(4.7)

different. We are now able to analyze the dynamic struc-
ture factor for this case. We shall first take the long-
wavelength limit of the eigenvalues. We have

Projection operators form a complete set, therefore
p(1)—I p(0)

The complicated structure of the eigenvalues, Eq. (4.4),
reAects the difference in the thermal properties of ine-
quivalent adsorption sites. Indeed, the site desorption
rates ~ I, and site free energies 7„=—/31n(Z ) are then

'(q)= —y+ —(y +36)'~ + (qa)
(y2 + 36)1/2

=A. +Dq

R("(q)=—[y++(y' +36)' ']:—A, .

(4.8)
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Note, that A.—the q-independent term in A,
' '—vanishes

when desorption is neglected resulting in the usual in-
frared divergent term in the density fluctuation auto-
correlation function.

The diffusion coefficient in Eq. (4.8) equals

3+a
2(~2 + 36)1/2

(4.9)

The above expression indicates the coupling between the
intersite jumps and desorption. Indeed, D depends on the
difference of the desorption rates between inequivalent
desorption sites AQ

—
A& appearing in y . The other con-

tribution to the diffusion coefficient comes from the
difference in thermal properties of the individual ine-
quivalent sites contained in y via the individual sites
partition functions. The eigenvalue k'" sets up the time
scale for atomic jumps between the inequivalent adsorp-
tion sites within a single unit cell. This is a process
occurring on short distances, thus it is not included in
diffusion which, by definition, is a long-range effect of
precisely the same intersite jumps. As seen from above,
our model provides deeper microscopic insight into the
process of single-particle surface migration than the usual
theory of diffusion.

The dynamic structure factor in the long-wavelength
limit reads

A, +Dq X

co + ( A, +Dq ) ai + A,

(4.10)

explicitly exhibiting two time scale structures of the ad-
sorbate density fiuctuations. Note that A, in Eq. (4.8) be-
comes the thermally averaged desorption rate A in case
of identical adsorption sites. Simultaneously, the
diffusion coefficient becomes D =f(a /&3)8&0a /4 (com-
pare with the diffusion coefficient from Sec. III), but A,

does not vanish, again showing the difference between the
case of one and several equivalent adsorption sites per
unit cell.

V. DISCUSSION AND CONCLUSIONS

In the preceding sections we have presented a fairly
general analysis of the combined desorption diffusion pro-
cess happening on the crystalline surface with one and/or
several inequivalent adsorption sites per unit cell. In this
analysis we have made assumptions, which can now be
recapitulated as follows.

(i) The process is described by a linear master equation
(2.8), which in the absence of desorption conserves the to-
tal number of particles. This equation is valid in case of
low adsorbate coverage. In case of higher coverages the
master equation should be modified to include blocking
factors preventing double occupation of a given adsorp-
tion site. Such an analysis was outlined in Ref. 9. Anoth-
er possibility would be to use the generalization of the
Kawasaki transition probabilities known from the kinetic
theory of conserved order-parameter phase transforma-
tions. ' Either of those generalizations will result in a
nonlinear theory.

(ii) The transition probabilities used so far were very

general. The only important property was the detailed
balance and the fact that intersite jump rates depend on
the distance between the sites ~X, —X, ~, and only the
nearest-neighbor jumps were taken into account. The
latter restriction is of a technical nature, and can be re-
moved resulting in more complicated expressions without
bringing any new physical insight.

(iii) We have assumed that the intrasite transition rates
are the fastest rates in the problem. Therefore, on-site
fast thermalization ansatz, Eq. (2.14), is justified.

Any further development of theory requires a fully mi-
croscopic description, which would allow for an evalua-
tion of the transition rates from first principles. Clearly
this is a necessary step forward presenting considerable
theoretical and technical challenges. Alternatively, one
can postulate a specific form of those rates and try to get
some deeper insight into the predictions of our model by
correlating them with few existing experimental results.
One such possible choice for the transition probabilities is
from Ref. 15, given in Eqs. (2.3) through (2.7). Using
these rates for the one adsorption site model as discussed
in Sec. III, the diffusion coefficient from Eq. (3.4) can now
be evaluated exactly giving

D =
—,
' f(a)exp( —Ph/4) 1

ZQ

p (E0 E0)—
X +exp —— +(E0 +E0 )

2 2A
(5.1)

One expects that for low temperatures the dominant tem-
perature dependence of D is contained in the factor
exp( —p4/4). Indeed, for low T the dominant contribu-
tion to the double sum in (5.1) and to Z0 stems from the
bottom level in the adsorption potential well. In this lim-
it D =3f(a)exp( —/3h/4)/4, and b. /4 serves as the ac-
tivation energy barrier for the diffusion process. Evalua-
tion of BQQ using energy levels for the Morse surface po-
tential for He adsorbed on graphite confirms this ar-
gumentation. For He on graphite the desorption time
can be parametrized as A0=5. 6X10"exp( —149.3/T)
(sec ). Conventionally, the difFusion coefficient is writ-
ten as D =Daexp( Ed;s/T). Cho—osing a typical value
for the prefactor DQ =10 cm /sec or less, and following
the experimentally established rule that for this class of
systems Ed;~ is of the order of 10% to 30% of the heat of
desorption, we find that diffusion and desorption contri-
butions to the decay of the adsorbate density fluctuations
are of comparable order for temperatures of the order of
20 to 30 K. One should keep it in mind that there is a
considerable uncertainty as to the value of the prefactor
DQ which can vary from 10 to 10+ cm /sec for hydro-
gen on some metal surfaces. ' This uncertainty affects
our estimates considerably.

In order to check predictions of our model for several
inequivalent adsorption sites we use experimentally avail-
able data for CO diffusion on the Rh(111) surface. Ac-
cording to Ref. 21 the Rh(111) surface contains two ine-
quivalent sites on which CO (and also Hz or Dz) can ad-
sorb. The binding energies of CO on these two sites differ
by few kcal/mole, and equal 31 and 26 kcal/mole, respec-
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tively. Those values seem to be fairly typical: for CO on
Pt(111) the corresponding numbers are 30 and 22
kcal/mole. Diffusion activation energy for both systems
equals about 7. 1 kcal/mole and is of the order of 25% to
30%%uo of the desorption energy. As before, the values of
Do are fairly uncertain. The upper bound seems to be
10 cm /sec, although for an otherwise very similar sur-
face of Pt(111) values a hundred times smaller are report-
ed. ' Using typical values for the wave vectors and as-
suming that the prefactor in the Arrhenius parametriza-
tion of the desorption rate varies between 10' —10' /sec
we find that the desorption and diffusion contribution to
the decay rate of the adsorbate density fluctuation be-
comes comparable for temperatures in the range of 600 to
2000 K. That range of temperature should be accessible
to all experiments using a LITD to study surface
diffusion.

The above discussion suggests that the combined effect
of desorption and diffusion can be observed away from
equilibrium, for example in LITD experiment. Our mod-
el assumes conventional Auctuation dissipation relations
resulting in the expression for the dynamic structure fac-
tor S(q, co) exhibiting two time scales. This should not
raise any concerns since recent experiments on light
scattering from nonequilibrium Quid systems indicate
that the conventional form of the fIuctuation dissipation
holds far away from equilibrium. Therefore experimental
measurement of S(q, co) during LITD should access both
time scales and provide an independent measurement of
the relatively high-temperature diffusion coe%cient and
desorption rate.

In conclusion, we have provided a linear master-
equation model for combined diffusion and desorption

phenomena occurring on surfaces with complex geome-
trical arrangements of adsorption sites. We have shown
that under conditions similar to those realizable in the
LITD experiment those two phenomena combine in a
nontrivial way leading to the occurrence of several com-
parable time scales in the evolution of the density Auctua-

tions. We have chosen for our analysis relatively simple
but experimentally relevant crystal surfaces for which
diffusion is isotropic. Choosing other experimentally in-

vestigated surfaces, like W(211), would result not only in

several time scales we have discussed, but also in aniso-
tropic diffusion.

The analysis presented in this work assumed that the
transition probabilities, Eq. (2.8), have fairly general
properties. Actual quantitative predictions require de-

tailed knowledge of these rates. Therefore, the micro-
scopic theory of intersite atomic jumps on realistic crys-
tal surfaces is of great importance and should be vi-

gorously pursued. Work along this line is now in pro-
gress.
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