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The electronic properties of hexagonal graphite have been studied in the framework of the
density-functional technique, using nonlocal ionic pseudopotentials and a large number of plane
waves. The valence charge density and the density of states are presented, as well as the band struc-
ture and the charge-density contributions of some typical wave functions. The electronic energies,
at the Fermi level, are parametrized by the Slonczewski-Weiss-McClure model, and compared with
the parametrization of experimental data. The numerical accuracy of the calculation has been con-
trolled, in order to provide a reliable comparison between theory and experiment. In particular, the
agreement obtained in the framework of the density-functional theory for electronic energies at the
Fermi level is surprisingly good.

I. INTRODUCTION

Graphite is a material made of hexagonal-symmetry
carbon layers that are weakly coupled to neighboring lay-
ers. Various interesting properties are related to this
peculiar geometry, and, in particular, the weak overlap
between valence and conduction bands that leads to its
semimetallic behavior. Since the early 1950s, a variety of
independent theoretical studies have established the main
features of the band structure and the shape of the Fermi
surface. The great interest in graphite material is mani-
fested by the vast literature dedicated to this subject. The
reasons for this interest are threefold: first, this material
is of great industrial interest; second, graphite has often
been chosen to test theoretical methods aimed to study
two-dimensional materials; and third, quantum-
chemistry theorists have also been interested in graphitic
planes with polyaromatic molecules.

The investigation of this material by precise self-
consistent ab initio techniques has only been undertaken
since the 1980s. Each of these studies focused on some
aspect of graphite —mainly structural properties, but
also electronic properties. Let us also point out that
some of these properties were well reproduced using sem-
iempirical or non-self-consistent studies.

In this paper we aim at presenting state-of-the-art ab
initio calculations over a wide range of electronic proper-
ties: valence charge density, band structure, charge den-
sity for each band, density of states (DOS), and Fermi
surface. The precision requirement is particularly
stringent for this latter property. Nevertheless, we have
been able to satisfactorily reproduce, within our small er-
ror bars, the experimental Fermi-surface shape and free-
carrier number, which are very sensitive quantities.

In the framework of density-functional theory, accord-
ing to the current understanding of the so-called "band-
gap problem, " such a good dealing with the other sem-
imetallic elements (arsenic, antimony, bismuth), a quite
good agreement for the Fermi surfaces was also obtained.
In the present study, we carry on the investigation.

The paper starts with a presentation of the atomic
properties and the graphitic structure. The hexagonal
graphitic crystalline state is compared with diamond
(Sec. II). Then, we critically discuss the ab initio theoreti-
cal method that we used to study the above-mentioned
properties (Sec. III): a self-consistent density-functional
approach, using ab initio nonlocal pseudopotentials and a
local-density approximation for exchange and correla-
tion. Numerical results for the electronic properties and
Fermi-surface description are presented and compared
with experimental results in Secs. IV and V. Finally, we
summarize this study.

II. ATOMIC PROPERTIES AND GRAPHITIC
STRUCTURE

The ground-state carbon-atom configuration is
1s 2s 2p . The 1s electrons are core electrons, and the
remaining four are valence electrons. Indeed, the ener-
gies of 2s and 2p levels are found, respectively, at —13
and —5 eV below the vacuum level, while the 1s level is
well below: —270 eV (see, for example, Ref. 8, and refer-
ences contained therein).

No p electrons exist inside the core shell. As the p
valence electrons do not come under the inhuence of
repulsion due to the orthogonalization with core states,
the 2p wave function is quite localized. The distance of
the carbon 2p wave-function maximum to the nucleus is
nearly the same as the carbon 2s wave-function max-
irnum.

Natural carbon can be found in two allotropic forms:
diamond and graphite. The bonding between atoms is
different in each form, while mainly covalent. In dia-
mond, the bonds come from the sp hybridization of
atomic orbitals (four bonds and angles of 109.5'). In
graphite, the sp (s-p -p ) hybridization of atomic orbit-
als (denoted cr) forms a covalently bound lattice of gra-
phitic planes (angles of 120' between the segments con-
necting nearest-neighbor atoms) which are piled up one
on each other and weakly bound by the residual forces
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III. THEORETICAL METHOD

We performed a quite standard Hohenberg-Kohn-
Sham density-functional calculation" with the Ceperley-
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that arise from the nonhybridized p, orbitals (denoted m)

perpendicular to the planes. The graphitic lattice (a) and
the three-dimensional Brillouin zone (b) are presented in

Fig. 1.
In a graphitic monolayer, the first four bands (o and rr)

are occupied while the last four are empty. Because of
symmetry properties, rr (bonding) and ~+ (antibonding)
bands are degenerate at the K point of the two-
dimensional (2D) Brillouin zone. So the 2D graphite is a
zero-gap semiconductor. ' The interactions between gra-
phitic planes modify this situation and create a semimet-
al. Nevertheless, these weak interactions can perfectly be
treated as perturbation of the 2D situation.

The 3D structure of graphite is not a simple stacking
of planes. Every other plane is shifted in the horizontal
plane and gives the stacking noted ABABAB Icf. Fig.
1(a)I. This crystallographic structure belongs to the
P63/mme space group.

Four atoms are present in the three-dimensional unit
cell: two atoms for each graphitic plane and two planes
per cell (AB). Figure 1(a) also presents this cell, which is
high and narrow. At 0 K, its dimensions are co=6.674
A, ao=2. 4589 A. ' From this, we can deduce the dis-

0
tance between planes (3.337 A) and between nearest
neighbors (1.420 A).

Alder exchange-correlation energy as parametrized by
Perdew and Zunger. ' The ionic-core potential was re-
placed by an ab initio norm-conserving pseudopotential,
taken from the complete table of Bachelet, Hamann, and
Schliiter. ' We used a plane-wave basis set (up to 1700
plane waves, depending on the required accuracy) within
the framework of the momentum-space formalism, ' and
solved the self-consistent Schrodinger equation for the
band structure, using the algorithm of Wood and
Zunger, ', and a modified "simple-mixing" scheme' for
the density self-consistency.

In connection with this treatment of semimetal elec-
tronic structure, two technical points are worth mention-
ing: treatment of the band occupation and Brillouin-
zone-sampling procedure. Besides a complete description
of the method used, an extensive study of the uncertain-
ties associated with each numerical parameter or approx-
imation is required. In view of the small overlap (of the
order of 40 meV) between valence and conduction bands,
the maximum truncation error on energies at the Fermi
level has been reduced to 5 meV. At other points in the
Brillouin zone, the accuracy requirement is somewhat
less stringent.

The measured number of conduction electrons or
valence holes is Very small ((1X10 per atom). The
theoretically calculated number is of the same order of
magnitude. We have thus constructed the density of
charge with complete filling of the first eight bands, treat-
ing the crystal as a semiconductor. For arsenic, an-
timony, and bismuth, this approximation was adequate.
We have also made some trials to measure the eAect of
this approximation in graphite: The maximal variation
of the eigenvalues is less than 0.05 meV.

The number of special points'" needed to sample the
Brillouin zone is also of interest. Using symmetry, we
can limit the investigated zone to a 24th of the entire
Brillouin zone. To generate an estimation of the number
of special points needed, we have performed a study using
14, 28, 42, 56, and 70 special points in the irreducible
part of the Brillouin zone, the last number being
representative of perfect accuracy. The discrepancies for
14, 28, 42, and 56 points are 20, 4.4, 1.2, and 0.4 meV, re-
spectively. In this investigation, we use 28 special points
(14 k points in each plane, with two planes) to obtain the
self-consistent density, where the accuracy on eigenvalues
(near the Fermi energy) is of great importance. For the
density-of-states (DOS) calculation, we have used the
Lehmann-Taut analytical tetrahedron method' with 198
points in an irreducible part of the Brillouin zone.

The problems inherent in the use of the density-
functional formalism will be discussed more specifically
in the final part of this paper.

FIG. 1. (a) Crystalline structure of hexagonal graphite (Ref.
1). The dimensions of the unit cell, which is represented by
dotted-dashed lines, are ao and co. aNN is the distance between
nearest neighbors. (b) Graphite Brillouin zone showing several
high-symmetry points and a schematic version of the graphite
electron and hole Fermi surfaces located along the H-K axes
(Ref. 24). Each symmetric point is labeled with the usual
Bouckaert-Smoluchowski-signer notation (I, A, II,K,L,M).

IV. THE ELECTRONIC PROPERTIES

A. The valence charge density

The valence charge density of graphite has been calcu-
lated by the ab initio technique described in the preceding
sections, with experimental crystalline parameters. ' To
construct the density, 797 plane waves have been used;
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Figure 2 represents the result of this calculation. The
isodensity lines display the main features of binding. The
absence of covalent bonds is clearly seen in the density
which is perpendicular to the graphitic planes [2(a)].
However, the covalent bonds between carbon atoms are
present in the in-plane density [2(b)]. The latter shows up
the hexagonal symmetry whereas the former exhibits the
shift between neighboring planes in the stacking. The
agreement with experiment' (measurement of the densi-

ty of charge by x-ray diffraction [2(c) and 2(d)]) is re-
markable.

B. The band structure

FIG. 2. Ualence-electron pseudocharge density of graphite
obtained ab initio. (a) Perpendicular to graphitic planes. (b) In
the graphitic plane. The same densities of charge obtained ex-

perimentally are presented in (c) and (d) (x-ray diffraction, Ref.
0

19). The contour interval is in units of 0.1 electrons/A with a
difference of 0.2 electrons/A ' between curves. Crosses indicate
atoms positions.

this set of plane waves corresponds to a kinetic energy of
16.5 hartrees. The determination of the density was such
that inaccuracies in eigenenergies associated with an
eventual lack of self-consistency were less than 10 har-
tree.

The self-consistent calculation of the density of charge
allows us to construct the band structure. Figure 3 shows
the band structure in diA'erent special directions of the
Brillouin zone (for the first nine or ten bands).

The comparison with the band structure of the mono-
layer of graphite is especially interesting. Because of the
doubling of the unit cell (graphitic monolayer ~ ABAB
stacking), each band of the bidimensional structure is

split in two bands. In the 3-H-L plane of the Bri11ouin
zone of 3D graphite, the degeneracy is not lifted to any
order over the entire plane because the crysta11ographic
structure possesses a particular reversal element which is
a twofold screw axis normal to the zone boundary
plane. So, in this 2-H-L plane, the 3D structure is
very similar to the monolayer band structure.

However, when we move away from this plane and go
towards the middle plane of the Bri11ouin zone, I -M-K,
some degeneracies are very weakly lifted (the lift of the
degeneracy is nearly invisible in Fig. 3), others are more
strongly lifted (see lines K H, I —K, an—d M L). In the-
case of the 7r band bonding (third and fourth valence
bands at the I point), the dispersion is very strong.

This dispersion is stronger for a conduction band: the
ninth band at the I point (detailed in Fig. 4). The wave
function associated with this conduction band possesses
an interesting characteristic: its density is maximum be-
tween graphitic planes and not in the plane as for all the
valence bands. The position of this special band has been
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FIG. 3. Ab initio band structure of graphite along different lines in the Brillouin zone,
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FIG. 4. The band structure is detailed around the I point for

the first 14 bands (8 valence bands + 6 conduction bands). The
dispersive character of the 3, 4, 9, and 14 bands along I -3 is

clearly distinguishable. The position of the ninth band has been
discussed in many articles (see text).

also because the effective mass of the electrons is smaller
in the c direction than in conduction bands of noninter-
calated graphite (see curvature of the end of the band,
line 1 —A).

Table I compares our numerical results for energy
differences with other theoretical and experimental ones.
The energies around the Fermi level will be studied in the
next section.

In general, the present results are consistent with the
previous literature. The splitting of the bands at the K
point near the Fermi level is in good agreement with ex-
periment. The total valence-band width (20. 1 eV), the o-
band width (16.7 eV) and the o -m band separations [10.9
eV (bottom) and 3.3 eV (top)] are very close to the previ-
ous calculations. We find that the bottom of the ~ band
is split by 2. 1 eV due to interlayer interactions whereas
the 0 bands (which are highly concentrated near the car-
bon layers) are being split considerably less [0.3 eV (bot-
tom) and 0.1 eV (top)]. These present values are con-
sistent with the other theoretical calculations.

We can also see a large difference between the eigenval-
ues at the top of the o. band. These eigenvalues are very
sensitive to the number of the k points used in the itera-
tions (see Jansen and Freeman in Ref. 4). This could ex-
plain the error of about 1 eV for the number of k points
used.

discussed in many articles. ' This band is unoccupied in
pristine graphite but, in graphite intercalated with met-
als, the same band, eventually hybridized with the supple-
mentary orbitals, could become occupied. This would de-
crease the anisotropy of the density of graphite and, in
the same way, many electrical properties, because this
band reduces the isolation of the graphitic planes and

C. The density of states

The electron density of states (DOS), as a function of
the energy, has been calculated with the tetrahedron
method. ' For this calculation, 198 k points in the Bril-
louin zone have been used (three planes of 66 k points
each) and a kinetic energy of 21 hartrees associated with
this set of planes waves.

TABLE I. Characteristic electronic energies (in eV) of graphite evaluated from the Fermi level. The
first four columns are theoretical results. The last column is a collection of experimental data.

Present work Other theoretical Experimental

Bottom o

Bottom w

Top c7

Unoccupied o.*

w bands at point K
Cl Cq

0 0

0 0
C3-Cp

—20.1'
—19.8"
—8.9"
—6.8'
—3.5"
—3.4'

3.7'
7.9"
7.9"

0.80'
0.86"'

—19.6
—19.3
—8.7
—6.7
—4.6
—4.6

3.8'
8,3
8.4b

—20.8'
—20.5"'

—9.1'
—7.1'
—3.4"'

—3.3'
3 ' 7'
9.0"
9.3'

0.7o

0.8'

19.5
—19.2
—8.2
—6.5
—4.3
—4.3

71
73
73d

0.44"
0.61

—20.6'

—8.1',—8.5'
—7.2', —5.7g, —6.6
—4.6", —5.5'

6.9'

0.72"
0.84"

"Present work.
H. J. F. Jansen and A. J. Freeman, Phys. Rev. B 35, 8207 (1987).

'N. A. W. Holzwarth, S. G. Louie, and S. Rabii, Phys. Rev. B 26, 5382 (1982).
R. C. Tatar and S. Rabii, Phys. Rev. B 25, 4126 (1982).

'W. Eberhardt, J. T. McGovern, E. W. Plummer, and J. E. Fischer, Phys. Rev. Lett. 44, 200 (1980).
'A. R. Law, J. J. Barry, and H. P. Hughes, Phys. Rev. B 28, 5332 (1983).
A. Bianconi, S. B. M. Hagstrom, and R. Z. Bachrach, Phys. Rev. B 16, 5543 (1977).

"G. Bellodi, A. Borghesi, G. Guizzeti, L. Nosenzo, E. Reguzzoni, and G. Sarnmoggia, Phys. Rev. B I2,
5951 (1975).
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The calculated DOS for the valence states is presented
in Fig. 5(a). Figures 5(b) and 5(c) compare the 0.5-eV
Gaussian convolution of this DOS with the experimental
XPS result obtained by Bianconi, Hagstrom, and
Bachkrach, (x-ray photoemission spectroscopy, with en-
ergetic photons of 122 eV). The experimental broadening
is estimated at 0.4 eV.

We clearly see a set of states of —20 to —13 eV which
comes from the first two o. bands. The 2D characteristic
of these two first bands which had already been seen in
the lack of dispersion in accordance with the I —A,
M —L, and K —H lines, is confirmed by the DOS form
which suddenly increases from zero to a nearly constant
value. Instead of increasing as the square root of the en-
ergy (which is the behavior of the density of states for
free electrons in three dimensions), the density of states is
a step function which is clearly a characteristic of a two-
dimensional behavior. The small oscillations around the
constant value should be ascribed to the tetrahedron
method.

The other four o. bands and the two ~ bands, which
overlap near the I point, give features in the energy in-
terval [

—13,0j eV. The theory reproduces the experi-
mental peak locations quite well. The values of the com-
puted amplitudes are less satisfactory.

D. The partial charge densities

Many densities of charge of different wave functions
for different special points of the Brillouin zone have been
represented in Figs. 6 and 7. These densities of charge
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FIG. 5. Comparison of (a) theoretical density of states (DOS),
(b) theoretical smoothed DOS (0.5 eV Gaussian smoothing), and
(c) experimental x-ray photoemission spectra (XPS) (Ref. 22).

FIG. 6. Charge-density contributions of some typical wave
functions at the I point of the Brillouin zone: (a) second band,
(b) fourth band, (c) eighth band, (d) ninth band, (e) tenth band,
(f) fourteenth band, (g) fifteenth band, (h) seventeenth band, {i)
eighteenth band. All these densities are presented in
electron/unit cell.
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is related to cr" orbitals (mixing of s and p orbitals). Fig-
ure 6(h) presents the seventeenth band at the 1 point,
which is related to 7r orbitals (p, orbital). Finally, figure
6(i) presents the eighteenth band at the 1 point, which is
a o. bonding conduction band. We can see a maximum of
the density localized outside the plane, but the maximum
is more important around the bond itself.

The densities of charge at the K and H points are also
particularly interesting, especially those relative to the
bands around the Fermi level. Some of these partial den-
sities are illustrated in Fig. 7.

V. THE FERMI SURFACE

A. The Slonczewski-Weiss-McClure model (SWMcC)

19

The interactions between graphitic planes are clearly
weaker than the interactions inside the plane. The s or-
bitals do not contribute to the level occupation near the
Fermi energy. The 20 interactions only lead to a zero-
gap semiconductor with linear dispersion relations at the
Fermi level near the K point.

Using a k p perturbation method. Slonczewski and
Weiss' and McClure' have calculated the band structure
of graphite at the Fermi level. The electronic energy
spectrum near this energy can be described by a seven-
parameter model: yo, y, , y~ y, , y4, y„y6=6. These pa-
rameters, which define the interaction energies between ~
orbitals from different carbon atoms inside the plane or
from plane to plane, are described in the Appendix where
a summary of the SWMcC model can also be found.

FIG. 7. Charge-density contributions of some typical wave
functions at the K and H points of the Brillouin zone and at a
point near H. These densities are representative of the situation
around the Fermi level. (a) Seventh band at K, (b) Seventh band
at H, (c) ninth band at K, (d) ninth band at H, (e) tenth band at
K (electrons), (f) eighth band at 0.8 of the A-H line (holes). All
these densities are presented in electron/unit cell.

(for example at the 1 point) allow a more intuitive repre-
sentation of the different orbitals which are present in
graphite. Figure 6(a) presents the second band at the I
point, which is related to o bonding (s orbital). This Fig-
ure shows the interaction between neighboring carbon
atoms inside the same graphitic plane. Figure 6(b)
presents the fourth band at the I point, which is related
to ~ bonding (p, orbital). This figure shows the interac-
tion between neighboring carbon atoms outside the gra-
phitic plane. Figure 6(c) presents the eighth band at the
1 point, which is related to o bonding (p„and p orbit-
als). Figure 6(d) presents the ninth band at the 1 point.
As already mentioned, we can see that the maximum of
the density is localized outside the graphitic plane. Fig-
ure 6(e) presents the tenth band at the 1 point, which is
related to cr* orbitals (p and p orbitals). This figure
shows the repulsion between p orbitals inside the graphi-
tic plane. Figure 6(f) presents the fourteenth band at the
1 point, which is related to rr orbitals (p, orbital). Fig-
ure 6(g) presents the fifteenth band at the I point, which

B. The ab initio Fermi surface

Table II presents the set of parameters of the SWMcC
model calculated by the ab initio technique explained be-
fore and is compared with other theoretical and experi-
mental results. The eigenenergi. es have been calculated
starting from the self-consistent density of charge (see
Sec. IV). The number of plane waves used varies between
1060 and 1100 (with a corresponding kinetic energy of 42
Ry). The accuracies obtained for each different value are
also presented in Table II.

The global agreement with the previous calculations
and the experimental results is favorable. The yo param-
eter leads to the greatest absolute error by comparison
with experimental estimations. However, this error is
only 20%%uo in relative value which is in the same order of
magnitude as the other errors in the other parameters.
The very small y2 parameter is less accurate in relative
value. The error in yz is troublesome because this pa-
rameter establishes the number of free carriers. The y, ,

y3, and y5 parameters are the best estimated parameters
of the present work in comparison with experiment and
with the other theoretical results. The negative sign of 6
is in agreement with magnetorefiection experiments (see
Toy, Dresselhaus, and Dresselhaus as cited in Table II).

The value obtained for the y3 parameter compares well
with experimental data. The linear dependance of the ei-
genvalue c3, going away from the K point in the horizon-
tal plane, can be associated with this parameter. The
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the Brillouin zone and so we do not have any "minority"
holes. Nevertheless a slight modification of our SWMcC
parameters in their accuracy range would lead to minori-
ty carriers. In this respect, our calculations, while al-
ready very accurate, are not yet completely satisfactory.

The Fermi surface obtained from ab initio parameters
is presented in Fig. 10. This figure shows many cuts ac-
cording to diff'erent planes. This Fermi surface is com-
posed of two pockets of majority holes, one main pocket
of majority electrons, and three small pockets of minority
electrons.

The inAuence of diff'erent parameters on the Fermi sur-
face has also been studied. In the absence of interaction
between an 2 atom and its neighboring 8 atom outside
the graphitic plane, the Fermi surface would have been
cylindrical. But, when the y3 parameter increases, the
cylindrical symmetry breaks down and is reduced to a tri-
gonal symmetry. This simulation has been numerically
realized by increasing the value of y3 from 0 to 0.319 eV
(which is the value obtained in this present work) and
presented in Fig. 11.

The inhuence of the y2 parameter on the Fermi surface
is shown in Fig. 12. An equienergy line has been calcu-
lated with our value, @2=—0.014 eV, and another one
with the experimental result ( —0.02 eV) of Dresselhaus
et al. In this latter result, compared to ours, the in-

(a) q, = 0.0 (b)

/
y3 ——0.1

y, = 0.32~

FIG. 11. Cuts in the Fermi surface of graphite showing the
inhuence of y3 on the symmetry of this surface. These cuts are
parallel to the graphitic planes and the vertical of the graph is
the K-1 direction. (a) @3=0.0 eV, (b) @3=0.1 eV, (c) y3=0. 2
eV, and (d) y, =0.319 eV.

(a)

8
H

e-

crease of ~y2~ enhances the density of free carriers as
shown in the figure. This phenomenon entails that the
main pocket of electrons is going to incorporate the little
pockets of minority electrons which are obtained with
our set of parameters. A small modification of about 6
meV of the value of yz creates minority holes and pro-
duces the disappearance of the pockets of minority elec-
trons. This modification is within the interval of accura-
cy for the parameter's value.

The value of the 6 is also too small. Figure 13 shows
that for the experimental result of Dresselhaus et al.
for 6, minority holes are obtained.

From these discussions, we see that the proper topolo-
gy of the Fermi surface could be obtained with parame-
ters that lie within the accuracy range of our ab initio
determinations.

VI. DISCUSSION AND CONCLUSION

FIG. 10. Cuts in the Fermi surface of graphite which have
been obtained with the set of SWMcC parameters calculated by
ab initio techniques. (a) Cuts parallel to the graphitic planes.
(b) Cuts perpendicular to the graphitic planes and to the K-I
direction and moved sequentially towards I . (c) Cuts perpen-
dicular to the graphitic planes and to the K-I direction and
moved sequentially away from I . (d) Cuts perpendicular to the
graphitic planes and performed in the direction perpendicular
to the H-K-I plane. The between interval is (a) 0.06 a.u. and
(b) —(d) 0.004 a.u.

The present study is ab initio, except for the crystallo-
graphic parameters. Our method has been submitted to a
particularly stringent test, in particular for the Fermi-
surface calculation. The numerical uncertainties have
been identified and, when possible, systematically re-
duced. In this respect, our numerical treatment of the
semimetallic behavior has been shown to be adequate:
graphite can be treated as a semiconductor to generate
the charge density.

The electronic properties of graphite have been related
to the electronic properties of the atoms, leading to a
qualitative comprehension of the bonding of the crystal-
line solid. This bonding can be decomposed into contri-
butions of each particular band, using the partial density
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-0.014

inority
Carriers

~ = -o.oos

(b)

FIG. 13. InAuence of the 6 parameter on the Fermi surface.
Minority carriers are obtained when the value of the 6 parame-
ter is increased to the experimental value of Dresselhaus {Refs.
1 and 24) ~ This cut is the intersection between the Fermi sur-
face and the plane containing the e axis and perpendicular to
the K —I" direction.

FIG. 12. Inhuence of the y2 parameter on the Fermi surface.
{a) Equienergy calculated with @2=—0.014 eV. {b) Equienergy
calculated with @2=—0.02 eV. These two cuts are the intersec-
tion of the H-K-I plane with the Fermi surface.

of charge; this provides an obvious characterization of
bands as bonding and antibonding o. and ~ bands. The
band structure of graphite has been analyzed and com-
pared with 2D case. The DOS have also been investigat-
ed, and a comparison of DOS and XPS spectra have re-
vealed similar features: in particular, an interesting 2D
character for the first two bands at the I point which en-
tails a step function in a part of the DOS.

We have generated the Fermi surface of graphite, with
a good qualitative result, within the achieved numerical
accuracy. This fact raises some interesting questions.
Within the framework of the density-functional theory,
the total energy and charge density are calculated
rigorously, whereas the direct identification of Kohn-
Sham eigenenergies with the real band structure has little
theoretical foundation. While the Fermi surface calcula-
tion from the local-density approximation (LDA) com-
pares generally well with experiments (but can also fail
even qualitatively ), it is well known that this approach

fails to give correct values of the band gaps for semicon-
ductors and insulators. The discrepancy between
theoretical and experimental gaps is frequently of the or-
der 0.5 —1.0 eV (Ref. 6) and sometimes larger.

In the present work, we have addressed other interest-
ing features: the shape of the Fermi surface, and the
number of free carriers. From the above-mentioned
failures of gap calculation, within density-functional
theory, we should have expected a rather poor descrip-
tion of a semimetallic behavior. Moreover, some theoret-
ical investigations have already proved the general none-
quivalence between experimental and Kohn-Sham Fermi
surfaces. Nevertheless, we have found that a Kohn-
Sham LDA calculation of graphite semimetal Fermi sur-
face gives correct location and shape of this very small
Fermi surface, and provides a good estimation of the
number of free carriers. The comparison between theory
and experiment is better than could have been expected
from band-gap studies with the same formalism.

This study confirms the results obtained before for ar-
senic, antimony, and bismuth and shows that the under-
standing of the quantitative agreement between theory
and experiment is still not clear enough. Further publica-
tions will show how to understand, at least partially, the
good agreement between theory and experiment for ele-
mental semimetals (see Gonze, Ref. 1, and unpublished).
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APPENDIX

Brief summary of the SWMcC model

The comparison between the SWMcC parameters and
the atomic interactions is presented in Fig. 14. The 3
atoms have a corresponding atom in the plane directly
above or below. By contrast, B atoms have no corre-
sponding atoms in the neighboring plane.

The y0 parameter represents the interaction between
neighboring atoms in a graphitic monolayer. The y, pa-
rameter is related to the interaction between 2 atoms
from two neighboring graphitic planes. This parameter
establishes the width of the m bands at the K point of the
Brillouin zone, which is equal to 4y, . The y2 parameter
represents the interaction between B atoms from two
next-neighbor graphitic planes. It establishes the over-

lapping magnitude of the w bands which is equal to 2 ~@2~.

The y3 parameter is related to the interaction between B
atoms from two neighboring graphitic planes. The pres-
ence of such a coupling decreases the Harniltonian's sym-
metry. The c axis becomes a threefold axis and the cylin-
drical syrnrnetry of constant energy surfaces breaks into a
trigonal symmetry. The y4 parameter is the interaction

FIG. 14. Correspondence (dashed line) between the SWMcC
model parameters y; and the interaction between the individual
atoms in the graphite lattice.

between 3 atom and B atom from two neighboring gra-
phitic planes. The y~ parameter represents the interac-
tion between 3 atoms from two next-neighboring graphi-
tic planes. The y6=6 parameter is the chemical-shift be-
tween 3 atoms and B atoms.

The SWMcC model extends the linear dispersion law
of the graphitic rnonolayer to the 3D case. This model is
valid in some regions of the Brillouin zone, such as the
neighboring of the six vertical edges H —K —H, and is in
excellent agreement with experimental data.

Main results of the SWMcC model
obtained with a k-p method

The eigenvalues of the Hamiltonian are given by the
roots of the following equation:

/2k 2 2

(E, e)—(Ez —E)(E3—e) — (E, —e)(E3—E)(1+v) +(Ez —E)(E3—e)(1 —v)
m0

2

+4 cos (k, co/2)(c. ", —e)(E, —c, )

Xo

3 3 3

—2 cos(k, co/2)cos(3o. )[(E,—e)(1+v) —(Ez —E)(1—v) ]+Ak P0 y3 0 2 0 2

m0 P0

4
AkP0 (1+v) (1 —v) =0,
m0

where v=2(y4/yo)cos(k, co/2), po =
—,'&3(mo/A)yoao

and o. is the angle between the direction of the vector k
and the one of the edge H —K —H of the Brillouin zone.

Along a vertical axis of the Brillouin zone (H —K Hor-
H ' K' H'), — —

E, =A+@,I + —,'y I

c =5—y, l"+ —,'y I

a —.a'+
3 2

277
2k'yov'3

2 '1/2

The wave vector k, is measured from the K point; k„
and k at the edge H -K -H of the Brillouin zone. In the
plane A-H,

2 1/2

E0= —'y I2

where 1 is defined by 2 cos(k, co /2).
6+ ~ 5 +

2

2' 2k'y0v'3
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2w
v'3

2 2

(1 —v)

0
~2 ~2 dC.

b, (k')' d(k')
2 2

2rt 7'o

dc
h(k') d(k') E=",, t =o

=+2=+ =@3' .
3

From these results, the calculation of the energy in three
k points (four bands for each point) should be enough to
calculate the seven parameters of the S%"McC model.
Numerical inaccuracies are nevertheless present, and
some more calculations are needed. On the other hand,
the adequacy of the SWMcC model can be tested by these
other calculations.
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