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We have carried out a realistic ab initio calculation of the contribution of cubic anharmonicity
to the inverse lifetime I" and the frequency shift A of phonons in silicon. The cubic coupling con-
stants for phonons throughout the Brillouin zone are obtained from an anharmonic Keating-type
lattice-dynamical model, which has been fit to a database of results from local-density-approx-
imation frozen-phonon and elastic-modulus calculations. I" and A have been calculated as a func-
tion of temperature 7 and wave vector. Our results agree reasonably well with experiment, but
indicate the need for retention of quartic and higher-order terms, especially at high 7.

Until recently, our understanding of anharmonic effects
in solids has been rather incomplete. Though the formal-
ism for the perturbation expansion of the phonon propa-
gator was worked out long ago,' knowledge about pho-
non-phonon interactions in real solids has been lacking,
especially for optical phonons. The anharmonic sector has
typically been described by simple models with one or two
parameters?> that have been fit to empirical data such as
measured anharmonic elastic constants or coefficients of
thermal expansion. Thus, realistic calculations of anhar-
monic effects, such as phonon decay rates and frequency
shifts, have not been possible.

In this paper, we describe a completely-first-principles
calculation of the leading contribution from cubic anhar-
monicity to phonon lifetimes and frequency shifts in a
crystal. Using silicon as a prototype, we have implement-
ed a three-part strategy. First, frozen-phonon total-
energy and force calculations have been carried out within
the local-density approximation (LDA), providing values
for anharmonic multiphonon coupling constants. Since
such frozen-phonon calculations are computationally
feasible only for supercells of moderate size, anharmonic
coupling constants are easily obtained only for phonons at
a correspondingly small number of points in the Brillouin
zone (BZ). Therefore, the second part of our strategy is
to introduce an anharmonic lattice-dynamical model
which is used to obtain the anharmonic couplings at arbi-
trary k points by interpolation. Finally, this model is used
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where we have employed the shorthand notation w;
=wx,.a,» and n; is the corresponding Bose-Einstein occupa-
tion factor. The interaction between three phonons
(ki,A1), (k2,A2), and (k3,A3) is given by the matrix ele-
ment V' (kj,A1;kz,A2;ks,A3); it is basically the third deriva-
tive of the potential energy with respect to normal-mode
coordinates.

Experimental measurements of the phonon lifetimes
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to carry out the BZ integrations needed to evaluate the
phonon lifetimes and frequency shifts.

Specifically, LDA pseudopotential calculations have
been carried out for the homogeneously strained crystal®
and for frozen phonons at the I' point*> and X point.®
Theoretical values for twelve distinct cubic coupling con-
stants have thus been extracted (e.g., cubic elastic con-
stants, mode Griineisen parameters, and purely optical
three-phonon interactions). A six-parameter, cubic an-
harmonic model of the Keating type,’ which systematical-
ly includes all two- and three-body interactions of
nearest-neighbor triplets of atoms, provides a very suc-
cessful fit to this database of twelve cubic constants.®
(The model has another six parameters which describe the
harmonic sector, as in the work of Tubino, Piseri, and Zer-
bi.® These provide accurate phonon-dispersion relations
and eigenvectors.)

The frequency shift A and the inverse lifetime I" of a
phonon (k,A) are given by the real and imaginary parts,
respectively, of the phonon self-energy Z(k,A;w), evalu-
ated at the phonon frequency wy »; these quantities can be
measured by Raman-scattering experiments. 2I is essen-
tially the linewidth of the Raman line, while A gives the
shift in the position of the line center. Figure 1(a) repre-
sents the lowest-order contribution to the phonon self-
energy when we restrict ourselves to diagrams with three-
phonon vertices only. The contribution to the inverse life-
time, at temperature 7, from this diagram is given by'
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FIG. 1. Feynman diagrams for the lowest-order contributions
to the phonon self-energy from (a) cubic interactions and (b)
quartic interactions.
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have focused on the Raman-active mode at the zone
center;’ ' we therefore consider its anharmonic proper-
ties in detail. By merely using conservation of energy and
momentum, we find that the zone-center optical phonon
can decay only into pairs of phonons (of opposite wave
vector) which lie in the bands 2-3, 1-3, 3-3, and 2-2, where
the bands are numbered in order of increasing energy. All
four possibilities involve pairs of acoustic phonons only, in
contradiction to a previous assertion'' that the dominant
decay channel involves pairs of LA-LO phonons. We fur-
ther find that most of the final-state phonons lie near the
edges of the BZ.

The inverse lifetime given by Eq. (1) was evaluated by
summing over a grid corresponding to 23328 k points in
the BZ. We used the Gaussian form of the § function,
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with £=150 c¢cm ~2 for pairs of acoustic bands and =75
cm ~ 2 for the remaining combinations. Making use of the
fact that the matrix elements V(—k,A;k;, A ;ka,A2) vary
fairly smoothly along the BZ, we evaluated these only on
a coarser grid corresponding to 2916 k points, thus saving
on computational time.

In Figs. 2(a) and 2(b), we show the frequency depen-
dence of the two-phonon density of states D,(w) and the
inverse lifetime I'(0,A;w). The striking difference between
the shapes of the two curves illustrates the strong depen-
dence of the matrix elements on wave vector, and serves to
emphasize the importance of having a realistic model for
the cubic interactions.

Figure 3(a) shows our results for the variation of 2I" as
a function of temperature T, for the zone-center optical
phonon. Our value of 2I'(0) =0.48 cm ~! may be com-
pared with experimental values of 1.40 (Ref. 8) and 1.24
cm ! (Ref. 9). We regard this as reasonably good agree-
ment, considering that the theory is entirely free of empir-
ical parameters, and that we have neglected quartic and
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FIG. 2. Frequency dependence of (a) two-phonon density of
states D,(w) and (b) inverse lifetime I'(0,A;w), for decay of the
zone-center optical phonon, at zero temperature.
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higher-order anharmonic terms, which may be significant
even at low T. (Although the matrix elements for decays
involving four or more phonons may be small, the amount
of phase space occupied by allowed final states is much
larger than in the cubic case.) We find that 65% of the
decay rate at T =0 comes from decays to bands 2 and 3,
and 31% from bands 1 and 3. This shows that the Kle-
mens approximation'? (that the zone-center optical-
phonon decays only to two phonons in band three, each at
half the frequency) is completely unjustified. The agree-
ment with experiment worsens as T increases; this is al-
most certainly because the relative magnitude of the
neglected quartic and higher-order anharmonic terms in-
creases with 7. This conclusion is supported by an exam-
ination of the T dependence of the experimental points. '°
At high T, the contribution to the self-energy from the cu-
bic interactions at second order [Fig. 1(a)l is linear in T,
while the contribution from cubic interactions at fourth
order and quartic interactions at second order (which we
have neglected) varies quadratically with 7.

We have also calculated the cubic contribution to I" for
all the phonon branches at the X and L points in the BZ,
as a function of T. These results are shown in Figs. 3(b)
and 3(c). We are not aware of the existence of any exper-
imental data to which these results can be compared. (A
different grid in k space, corresponding to summing over
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FIG. 3. 2T as a function of absolute temperature 7, at the (a)
T, (b) X, and (c) L points. The large dots in (a) are the experi-
mental points from Ref. 11. The lines are results of the present
work: dashed lines, TA modes; solid lines, LO modes; dotted
lines, LA modes; dash-dotted lines, TO modes.
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11200 points in the BZ was used for the calculations at
the L point.) Figure 4 shows our results for 2I" as a func-
tion of k for optical phonons along the [100] direction, at
T=0. We find that most of the variation in I" along the
BZ is due to variations in matrix elements, and not merely
due to phase-space factors.

The contribution of the diagram of Fig. 1(a) to the fre-
quency shift was computed by utilizing the Kramers-
Kronig relation:
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There is an additional contribution to the frequency shift
from the thermal expansion of the crystal. At tempera-
ture 7, this is given by '3

AE(k,1) =wo [exp [—3yj;ra(T')dT'] —l] , (@)

where @y is the phonon frequency at 7' =0, y is the mode-
Griineisen parameter,'* and a(7’) is the coefficient of
thermal expansion at temperature 7".'°

Our results for A(T') —A(0) as a function of T, for opti-
cal phonons at the I', X, and L points, are depicted in Figs.
5(a)-5(c). Unlike the lifetimes, the frequency shifts have
been measured experimentally not just at the zone center,
but also at the X and L points.'® It can be seen that the
agreement with experiment is, on the whole, quite reason-
able. However, it should be noted that we have not in-
cluded a term that occurs at the same order in perturba-
tion theory as the diagram of Fig. 1(a); this is the first-
order quartic term corresponding to the diagram of Fig.
1(b). Since this term contributes to the frequency shift
(but not to the lifetime), our results for A may be altered
significantly upon the inclusion of quartic interactions.
Further, this first-order quartic contribution to A could be
either positive or negative in sign. We attempted to calcu-
late this term by utilizing the quartic sector of the lattice-
dynamical model described in Ref. 6. However, we found
that this part of the model was not sufficiently con-
strained, making our results for the quartic terms unreli-
able. Future LDA calculations could be used to improve
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FIG. 4. Theoretically calculated values of 2I" as a function of
k along the [100] direction, for the optical modes at T =0.
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FIG. 5. Temperature dependence of the frequency shift A, for
(a) LTO at T, (b) TO at X, and (c) TO at L. The dashed lines
are the theoretical contribution from cubic anharmonicity alone,
the solid lines include the effects of thermal expansion. The dots
and open circles are the experimental points from Refs. 11 and

16, respectively.

this sector of the model and thus obtain the entire fre-
quency shift to leading order.

We find that the frequency shift for the TA modes is
very small, e.g., A= —0.26 cm ~! at the X point. The TA
bands along I' to X are unusually flat near the zone edges;
this has usually been attributed to the presence of long-
range Coulomb interactions.'” Our work eliminates the
alternative possibility that this may be caused by an
anomalously large contribution to the frequency shift
from Fig. 1(a).

As has been discussed above, a large part of the
discrepancy with experiment is probably due to the
neglect of higher-order anharmonic terms, which may be
particularly important when computing the frequency
shift. (In principle, we have all the information needed to
include cubic terms at higher order, but such calculations
are extremely tedious, and would remain incomplete un-
less we could include quartic interactions on the same
footing.) It is also possible that some of the discrepancy
may be due to shortcomings in the lattice-dynamical mod-
el, even though the fit in the cubic sector is quite good. ®

Finally, we note that an alternative approach has been
used recently by Wang, Chan, and Ho, who extracted in-
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formation about anharmonic effects from molecular-
dynamics simulations.'® Since the dynamics of the parti-
cles was treated classically, their results are strictly valid
only at high temperatures. Thus, their work is in some
sense complementary to ours, since our results are better
at low temperatures where higher-order anharmonic
terms are less important.

In summary, we have used information from LDA cal-
culations to compute the contribution from cubic interac-
tions to phonon lifetimes and frequency shifts in silicon.
The agreement with experiment is fairly good, though it
appears that quartic and higher-order terms are impor-
tant, especially at high temperatures. Our results reveal
considerable complexity in the contributions from various

k points and band combinations, indicating that the kinds
of simple approximations used in previous calcula-
tions>*!? are inadequate. They also clear up previous
confusion about the allowed channels for decay of the
zone-center optical phonon, and show no evidence of
significant anharmonic contributions to the softening of
the TA modes at X. Finally, and most importantly, our
calculations demonstrate the feasibility of carrying out
completely-first-principles computations of anharmonic
effects.
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