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Theoretical investigation of noise characteristics of double-barrier resonant-tunneling systems
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A theory of noise characteristics of a double-barrier resonant-tunneling system is established.
The noise-current power density has a Lorentzian form with a characteristic frequency given by
the resonance-level broadening. The low-frequency characteristics which are dependent on struc-
ture parameters and bias voltage can be directly compared with experimental measurements.

Modern fabrication technology enables experimental-
ists to produce various microstructures which evidently
exhibit quantum interference and nonequilibrium statis-
tics. The double-barrier resonant-tunneling structure
(DBRTS) is typical of the microstructures that have been
the focus of many experimental and theoretical investiga-
tions. Since its conception by Tsu and Esaki' and the first
realization of significant negative difIerential resistance by
Sollner et a/. , many aspects of this system have been
intensively studied, e.g. , dc characteristics, phonon-
and laser-assisted tunneling, ' time-dependent process-
es, ' ' ' and frequency response. ' ' The noise char-
acteristics in DBRTS's have also been systematically in-
vestigated in a recent experiment, ' which shows strong
dependence of noise power density upon the structure pa-
rameters and the bias voltage. In the present paper, we
shall develop a theory of the noise characteristics for
DBRTS's and compare the results with the experimental
measurements. '

In the linear-response region when the applied voltage
is very small, the thermal noise dominates. The noise-
current power density S;(0) is given by the well-known
Einstein relation S;(0)=4kTrr(Q ) for frequency 0
«kT with tr(Q) being the dynamic conductance. The
noise-current power density is completely determined by
the equilibrium-state properties. Once the DBRTS is
biased in the resonant-tunneling region, i.e., when the ap-
plied voltage eV» y (resonance-level width), the system
moves far from equilibrium. Each electron in the states
within the resonance energy range has a certain probabili-
ty to tunnel through the double-barrier region from one
electrode to the other. Then the shot noise becomes dom-
inant and S;(0) will be directly related to the bias
current. However, the tunneling event of one electron is
correlated to those of other electrons because, even in the
coherent tunneling limit, every electron needs to stay in
the central quantum well for a finite time (lifetime of the
resonant state) when getting across the double-barrier re-
gion. When one electron proceeds to tunnel through, the
other electrons (fermions) of the same quantum number
cannot follow up within a correlation time given by the
lifetime of the resonance state. This correlation yields a
nonwhite spectrum (Lorentzian) and suppresses the shot
noise. In this paper we shall study both the equilibrium
and nonequilibrium behaviors of the noise characteristics
by employing the nonequilibrium Green's-function ap-
proach. '

We consider the coherent tunneling processes and
neglect any possible scattering of tunneling electrons. The
Hamiltonian to describe a one-dimensional DBRTS is
chosen as '

H =g et, ak at, +e,c c +g e~~b~~b~

+X(TLt c at +TLtat, c)
k

+g (Tttt, bt, c+ TRpc bp), (1)

with at, (at, ), c(c ), and b~(bt, ) being, respectively, the
annihilation (creation) operators of electrons in the left
electrode, in the central quantum well and in the right
electrode. e, =so —aeV (a is structure dependent) is the
resonance level as aff'ected by the bias voltage. ck
=k /2m and e~ =p /2m —eV are the single-particle en-
ergies of the left and the right electrodes. The energy
starting point is chosen to be the conduction-band bottom
of the left electrode and aeV and eV are, respectively, the
potential drops of the resonance level and of the con-
duction-band bottom of the right electrode caused by the
bias voltage V. The fourth and fifth terms describe the
coupling between quantum-well electrons and the reser-
voirs. The tunneling matrices T~k and TRp depend on the
barrier profile including the eff'ect of the bias V. The left-
and the right-electrode subsystems are assumed to be sep-
arately in their own equilibrium states with chemical po-
tentials pL and pR, respectively (pL —pp =eV) This.
assumption is practically correct because the two elec-
trode subsystems respond to an applied field much faster
than the quantum-well electrons (in other words, the
whole system). The central-quantum-well electrons are in
a nonequilibrium state, to be determined by their coupling
to the two reservoirs and to the applied field.

Since the number of electrons in the central quantum
well fluctuates, the current flowing into the well

It (t) = ie Hga '(tt) a(t—t)

is generally difIerent than that flowing out of the well

IR(t) =ie H, gb,'(t)b, (t)
p

The terminal current is given by I=(IL+IR)/2, accord-
ing to Ramo and Shockley. ' ' ' The power density of
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S, (r —c') =&{[1(r)—&I&],[1(r') —&I&]] &. (2)

In Fq. (2), the quantum statistical (nonequilibrium) aver-

the tunneling current Auctuation then can be written as
the Fourier transform S;(n) of the following correlation
function:

age has been expressed in terms of the path integrals'
along the closed time path. ' ' ' The path integrals can
be carried out exactly to yield the results in combinations
of steady-state Green's functions. ' ' After this pro-
cedure and the Fourier transform, the power spectrum of
noise current

s, (n) = —,
' g.gps.p(n),

S,p(n) = J [[2+8].p(co+ n)Gp. (co)+G,p(co+ n) [A+B]p.(co)
4 2n

+G.p(co+ n) [2 —Blp„(co)g„G„,(co) rl, [A 8]„.(co—)

+ [W —8].„(co+n )g„Gp,(co+ n ) ri, [A —8],p(co+ n )Gp. (co)

—[A —8].„(co+n) rl„G„p(co+ n) [A —8]p, (co)q,G,.(co)

—G.„(co+n) ri„[A —8]„p(co+n) Gp, (co)ri, [A —8],.(co)] .

In Eqs. (3) and (4), (,=1 for a=+, —,ri+ = —&1- =1. The subscripts a, p in Eq. (3) and p, v in Eq. (4) are summed
over the+ and —branches. A, p, B,p, and G,p are, respectively, the Green's functions of the left-electrode subsystem, the
right-electrode subsystem, and the tunneling electrons. ' Equation (3) with Eq. (4) is our central expression for the noise
spectrum from which various concrete results can be extracted without any difficulty by evaluating the frequency (co) in-
tegrations of those combinations of the known Green's functions. ' '

When the system is biased in the linear-response regime and in the resonant tunneling region, we have, from Eq. (4),

S;(n) ~ dco (—2 [F(+ ) +F—2FF (+ ) ] y(co) Im [6„(+) +6,]
e 2/2 " 2z

—
16[fL (+ ) F(+ )](fL —F—) yL(co)Im[G„(+ )]Im(G„)

4[fL(+)+fL ——2fLfL(+)] yL(co)Re[6. (+ )6.1

—16[f~(+) —F(+ )1(f~—F)y~(~) 1m[6„(+) I lm(6„)
—4[f~(+)+f~ —2f~f~(+)]y~(co)Re[6„(+)6,]+4yl (co)yg(co)Re[6„(+)6,]
—2[[1 —2fL (+ )1 (1 —2' ) + (1 —2fi. ) [I —

2f&c (+ )1]yL (co) yg (co)Re[6,(+ )G, ]

+4 [(1—2F) [2fL (+ ) + 2fR (+ ) —1 —2F(+ )1+[1 —2F(+ )](2fL+ 2fp
—

1 —2F)]

x yL(co) y~(co)lm[G, (+)]Im(6„)),

where G,~,&, fLiz&, and F represent, respectively, the
retarded (advanced) Green*s functions 6„~,&(co), the
Fermi-Dirac distributions of the left (right) electrode
fL~R&(co), and the nonequilibrium distribution of tunnel-
ing electrons F(co). '

G„~,&(+), fL~~&(+), and F(+)
stand for G„i,&(co+ n), fL&R&(co+ n), and F(co+ n), re-
spectively. y(co) =yL(co)+y&c(co) is the resonance-level
width broadened by tunneling with yL (co) =Xi

I TLI I

x zS(co e&L) and —ye (co) =Zk(TR, I'~~( coe~~).

In the linear-response region when the applied voltage
eV((y, the noise-current power density S;(n) is related
to the linear conductance a(n) (Ref. 15) by

(6)

which produces the well-known Einstein relation if the
frequency is much smaller than that given by tempera-
ture, i.e., n «1/p.

When the temperature I/P is zero and the system is
biased in the resonant tunneling region (eV» y), the sys-
tem of tunneling electrons is driven far from equilibrium.

(5)

I

Then the shot noise becomes dominant. After working
out the integrations in Eq. (5), the noise-current power
density can be expressed as

S, (n ) =e&I& 1 + 1—4yL y'R

y'
4y2

n'+4y' (7)

where &I& is the steady-state tunneling current induced by
the bias. ' In contrast to the full shot noise in a single-
barrier tunneling structure which has a white spectrum,
the power spectrum of noise current in a DBRTS S;(n )
has a Lorentzian distribution form with characteristic fre-
quency Q0=2y. Moreover, the shot noise in a DBRTS is
not full; instead, it is suppressed to a certain degree that
depends on the symmetry parameter of the structure.

Usually, one may expect that the coherent tunneling in
a DBRTS yields full shot noise because each tunneling
electron sees the double-barrier structure as a whole. '

Actually this expectation is not physically true. To under-
stand the unexpected behavior of nonwhite, suppressed
shot noise in DBRTS as predicted in Eq. (7), let us exam-
ine how the full shot noise is produced in a single-barrier
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tunneling system. In a single-barrier tunneling structure
under a finite bias voltage V, the states in the left elec-
trode are filled up to Fermi energy pL while the right are
filled up to p g with p L

—p R =e V I.n the (p ~,p l. ) region,
an electron in any of the states has a certain probability to
tunnel through the barrier from the left to the right. The
time an electron takes to get through the barrier is negligi-
bly small and there is no correlation between diff'erent
events of electron tunneling. These two key points, (i) no
transit time, and (ii) complete randomness of tunneling
events, lead to the full shot noise in a single-barrier sys-
tem.

In a DBRTS, however, the main contribution to the
charge transport is from the electrons in the states within
the (e, —

y, e, + y) energy range. The two key points lead-
ing to full shot noise in a single-barrier structure are all
broken to a certain degree: It takes an electron a finite
time I/y to tunnel through a double barrier; when one
electron proceeds to tunnel through the structure, the oth-
er electrons of the same quantum number cannot follow
simultaneously, i.e., one event of tunneling an electron
through a DBRTS is correlated to other tunneling events.
The finite correlation time gives a nonwhite spectrum
(Lorentzian) and the correlation between different events,
of course, suppresses the shot noise. In extremely asym-
metric structures, the current is mainly controlled by one
barrier and thus the shot noise should be full [see Eq. (7)].
For less and less asymmetric structures, the correlation
becomes stronger and stronger and the shot noise is more
and more suppressed. In a symmetric structure, it be-
comes only half of the full shot noise.

The dependence of the low-frequency characteristics
upon the structure parameters and the applied bias volt-
age is mainly through the symmetry factor 4yL yR/y:

S;(0) 4@1.yR

e(I) r
(8)

yL and yR depend, respectively, on the left and the right
barrier width and height including the effect of the bias
voltage. Thus a symmetrical structure (yl =yR at zero
bias) could become very asymmetrical, e.g. , yL &(yR un-
der a certain reverse bias (by convention, ' reverse bias
means the left barrier is used as an emitter and the right
barrier as a collector). Accordingly, the noise characteris-
tics [Eq. (8)] will change with an increasing bias voltage.
Actually, our theoretical result for the dependence of
low-frequency noise characteristics upon the structure pa-

rameters and the bias voltage, given by Eq. (8), can be
used directly to interpret the experimental measure-
ments.

Take sample 1 of Ref. 16 as the first example. The left
barrier is a 105-A. layer of Alo 5Gao &As, the right barrier
85-A of Alo 4Gao 6As. The left barrier is higher and thick-
er than the right one and thus yL &(yR. Under a reverse
bias, the right barrier will be lowered further which means
yR is becoming even larger than yL. Therefore S;(0)/e(I)
[Eq. (8)] is always near the constant 2. This behavior
agrees well with the experimental result in Fig. 3 of Ref.
16.

For sample 2 of Ref. 16, the left barrier is an 85-A lay-
er of Alo5Gao5As, the right barrier is an 85-A. layer of
A104Ga06As. The left barrier is higher and has the same
width as the right one and thus yL &( yR. Under a forward
bias, the left barrier will be relatively lowered and thus yL
will be growing closer to yR. Therefore, Eq. (8) shows
that S;(0)/e(1) is at first close to 2 for small bias and be-
comes suppressed with the increasing forward bias, which
is also in agreement with experiment in Ref. 16.

Sample 3 of Ref. 16 has 70 A of Alo sGao sAs as the left
barrier and 85 A of Alo4Gao6As as the right one. While
the left barrier is higher, the right barrier is thicker and,
as a result, yL and yR are close to each other. Thus
S;(0)/e(I) from Eq. (8) has a value close to 1 for small
bias. When the bias voltage (either reverse or forward) is
increased, the system may become more and more
asymmetrical and the value of S;(0)/e(I) will increase
and eventually get close to 2. This is exactly what has
been observed experimentally. '

In summary, we have established an analytical theory
of noise characteristics of DBRTS's. The theoretical re-
sult of low-frequency characteristics which is dependent
on structure parameters and bias voltage can be directly
compared with experimental measurements. Finally, the
sequential tunneling component ' may be important in
more realistic systems and needs to be incorporated by
taking into account the scattering eff'ects of tunneling
electrons.
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