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Collective excitations in a spin-polarized quasi-two-dimensional electron gas
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The dispersion relations of the collective modes of an optically created two-dimensional spin-

polarized electron plasma, treated as a confined spin-polarized electron gas, are calculated. These

exhibit many significant qualitative differences from their spin-unpolarized counterparts, such as

emergence of the intrasubband spin wave and splitting of the intersubband spin waves and the longi-

tudinal spin-density oscillations.

In recent years there has been much work on the exci-
tation spectra of the quasi-two-dimensional (quasi-2D)
electron gas. Although there have been some notable ex-
ceptions, ' most of the work includes electron-electron in-
teractions within the context of the random-phase ap-
proximations (RPA), thereby neglecting the exchange
and correlation contributions to the interaction.

The only collective excitations possible within the RPA
are various types of plasmons. However, when exchange
and correlation aspects of the interaction are included,
there can also be collective spin density oscillations. In
general there will be longitudinal spin-density modes,
which may couple to the plasmon modes, and transverse
modes, which involve a spin Aip. For conventional
quasi-2D systems [silicon metal-oxide semiconductor
field-effect transistor (MOSFET's), GaAs quantum wells,
etc.] there will be no spin polarization, and thus no pre-
ferred direction to distinguish longitudinal from trans-
verse. The longitudinal and transverse modes become de-
generate and uncoupled from the plasmon modes.

Spin polarization can be created by pumping an un-
doped quantum well with circularly polarized light.
This will selectively excite a single spin species resulting
in a spin-polarized plasma. Although such a system will
be more complicated than the degenerate spin-polarized
gas presented here, the effects of the hole plasma can be
incorporated when bound excitonic effects are
suppressed.

The ferromagnetic state of a 2D electron gas has been
examined by Rajagopal and co-workers. ' Although the
existence of such a state remains an open question in real
2D systems, it is suggested here that the optically in-
duced plasma be treated as a confined spin-polarized elec-
tron gas.

In this paper we examine the effect of spin-polarization
on the collective modes of the quasi-2D electron gas with
exchange and correlation included through the local-
spin-density approximation (LSDA). The LSDA is an
approximation to the spin-density functional theory in
which the energy functional is considered to depend only
upon the spinor density, and not on any of its derivatives.
The LSDA is only rigorously justified if the density does
not vary significantly over the radius of the exchange and
correlation hole; however, it has been shown to give
surprisingly good results for many nonhomogeneous sys-

tems, including the single quantum well. This approach
is essentially a mean-field approximation to the many-

body problem, with the exchange and correlation contri-
bution to the mean-field potential (known as the
Hohenberg-Kohn-Sham potential) being of the point-
contact type in the LSDA.

Collective excitations appear as poles in the various
linear response functions. In general these excitations
will be damped at all energies, however, within the ap-
proximations made here they wi11 only be damped when

they enter the continuum of quasi-particle-hole excita-
tions.

The linear-response functions, in the LSDA, for an ar-
bitrary electron system have been derived by Rajagopal.
We apply this theory to a quasi-2D electron system by ex-

panding the creation-annihilation operators in the LSDA
quasi-particle states appropriate to the particular system.
In the effective-mass approximation

ikr
g (x)=g, g, (z)c „i, ,

g 1/2

where the confinement in the z direction is due to Bragg
reAection, dielectric images, impurity potentials, applied
bias fields, etc. , and the state indices n can be either
discrete, as in a quantum well (QW) or MOSFET, or con-
tinuous as in a superlattice. The response functions in
subband space obey the equation

II„.„(q,co)

= II„(q,co)5„„.6

+II„(q,co) g 6X „„(q)II„„(q,co),
n "m"

where each element of the subband matrix is a 4 X 4 parti-
tioned spin matrix and II„(q,co) is the polarizability of
the noninteracting quasiparticles. The same result could
be obtained from a diagrammatic approach if the four-

point interaction in the irreducible vertex equation is re-

placed by an effective point-contact interaction.
To illustrate the effects of broken spin symmetry we

will concentrate on the simplest quasi-2D system, a single
quantum well. Thus we will not deal with the more com-
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plex matrix structure in the Hilbert space of states neces-
sary to handle other systems such as multiple quantum
wells or superlattices.

For a single quantum well the eigenvalues are nonde-
generate and denoted by the set of integers in the desired
energy range. The subband summation in Eq. (2) is
discrete, with the interaction matrix elements defined by

5X „„(q)
2

dz dz'g„(z)g (z) e el' ' lg„,(z')g .(z')
eq

+ Jdz g„(z)g (z) 5X"'(n (z))g„(z)g .(z) .

(3)

The matrix elements of the noninteracting polarizabilities
are

ij ~ ap app'n'~ a'p'
(xpp'a'

from which we obtain block diagonals of 1 X 1, 1 X 1, and
2X2, for the transverse and longitudinal modes, respec-
tively.

We further specialize this to a symmetric well in which
only the lowest subband is occupied and consider only ex-
citations within the lowest two subbands. In this case the
intrasubband excitations, in which all quasiparticle tran-
sitions are within the ground subband, and intersubband
excitations, which involve transitions to the next higher
subband, are uncoupled. The subband matrix is diago-
nalized by transforming to a function y; which is equal
to [ IIpppp] J for intrasubband and [II ]po] + II ]p]p
+ IIp~o ] + IIp] ~o ]~) for intersubband contributions. It fol-
lows that both inter- and intrasubband contributions to
the response functions are of the form

[II„(q,cp)] g

f ( cp(l+tq/2)) —fg(cp (k —q/2))
(2~)' cp„(k+q/2) —cp (&—q/2) —cp

(4)

2 XC

Xoo=D '
X+—,(X+'—X'—')

Bs

2 XC

3=D ' y+ —Vh+ 2 y+ —X
Bn

(6b)

where the greek indices denote spin.
The spin structure can be simplified by expressing the

response functions in terms of the Pauli matrices as in
Ref. 6 (suppressing subband indices)

B2 xc

X»=X,o=~-' Xo+, ', (X".—X")
Bs Bn

for the longitudinal response, where

(6c)

1 X+ Vh+B2 1'-
B, B

X- +X+ X- Vh+ +X+

and

0 0 2 BE
X—+ =4X&y

S BS
o 0 2BE

X+ —=4X) g $ Bs

for the transverse response. Here y & (with wave-vector and energy units the inverse Bohr radius and Rydberg in the
material, respectively) and (5X) are

y &=[II,p(q, cp)+Ilp, (q, cp)] ~

1
I2co&o+2q +[(cp+cp~p+q ) —(2k+ q) ]' —sgn(co —

co&o
—

q )[(cp—
cp&o

—
q ) —(2kF@) ]' }

~q

and (5X ) =5Xp, p, for the intersubband modes, and

X'.p= [11'o(q,cp)].q= »m [11»(q,cp)+11o,(q, cp)] ~ (10)
coIO~O

and (5X) =5Xpppo for intrasubband modes, where cp, p is
the intersubband energy, kF is the Fermi wave vector for
spin o.'electrons, E.

" is the energy density, and g+ is
defined as

In the paramagnetic limit for s ~0,
rr&& =rr&& =n&&=rr&&0 0 0

for all subband indices and

B~xc B2Exc~ s
s=0

(12)

(13)

which yields g + =g+ =2g33 and g03 0 thus we re-
cover the results of Ref. 5 in this limit.
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We now present a simple model of the single quantum
well (SQW) to illustrate the above results. We choose the
envelope functions to be cosine and sine functions,

25

20
L)

g']](z) =(2k lqr)' coskz, g](z) =(2k jqr)'/ sin2kz (14)

(15)

with the well width chosen so that the subband energy
spacing in GaAs will be 15.5 meV. We also use an area
density of 3.6X 10" cm . These numbers are appropri-
ate for the experimental set up in Ref. 5. The correlation
contribution to the energy is neglected and hence

1/3

E'= ———
I [n (z)+s(z)] + [n (z) —s(z)]4
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We also assume that the spin polarization is proportional
to the density

s (z) =gn (z)

FIG. 2. Frequencies of the collective modes vs q at /=0. 0.

so that

g2Exc g2Exc [( 1 +g) —2/3+ ( 1 g)
—2/3= —Eo(z)n' gs2 2

( )
4 2k kq

q q q'+4k'
32k 2

( 1 ~q/k)

qrq (q +4k )

(19b)

(17a) for the intrasubband modes, and

t)2s c [( 1 +g) —2/3
( 1 g)

—2/3]= —E]](z)
Bs Bn 2

(17b) 30(E (z))o]Q]=
7 2' n, [I ( —,')] (20a)

2 3
Eo(z) =—

3

1/3

[n (z)]

1 t)s ' 3[(1+/)]/3 —(1 —g)]/3]= —Eo(z)
s as 2$

(17c)

x
q +k

1

q +9k

(~ ) 4k
1 + 1 2kq

q2+k2q2+9k2
2

(20b)

(E,(.)) „=5
2qr2n2 [I (

] )]2
(19a)

where g takes on values between 0 and 1, and will be
determined by the laser intensity and relaxation rates.

Evaluating the matrix elements of the exchange and
Hartree terms we find

for the intersubband modes.
In Fig. 1 we plot the nondamped collective modes at

zero in-plane momentum as a function of spin polariza-
tion, with the intersubband energy denoted by the dotted
line. The mode labeled L, is known as the intersubband
plasmon at (=0. The mode position does not change
signif]cantly with g; however, at nonzero g the longitudi-
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FIG. l. Frequencies of the collective modes vs g at q =0. FIG. 3. Frequencies of the collective modes vs q at (=0.5.
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FICx. 4. Frequencies of the collective modes vs q at (=1.0.

nal modes can no longer be characterized as charge and
spin-density modes, but rather of mixed character with
the mixing determined by yo3, such that the spin and
charge-density coupling becomes equal at g = 1

(703 Xoo X33)'
The other longitudinal mode, L2, and the two trans-

verse modes, T, and T~, are degenerate at (=0. The
spin-down to spin-up mode, T& (pole of y +) and L2
both approach the intersubband energy with vanishing
strength at g= 1, while the T2 mode (pole of y+ )

remains finite. Both the T, and L2 modes disappear be-
cause there are no spin-down electrons.

The lower-energy mode, denoted To, is the intrasub-
band spin wave, which vanishes at /=0. Another un-

damped mode that does not appear in Fig. 1 is the longi-
tudinal intrasubband mode Lo, whose frequency varies as
q' for small q, and thus will not be seen at q =0. The
remaining intrasubband modes will lie in the particle-hole
continuum for all q.

In Figs. 2 —4 the respective dispersion relations for
values of /=0. 0, 0.5, and 1.0 are plotted, showing the ap-
pearance of the Lo mode for q&0. The dotted lines indi-
cate the boundaries of the particle-hole continuum. At
/=0. 0 the intersubband plasmon and the spin-density
modes can be seen merging with the intersubband contin-

uum; the intrasubband mode Lo, will merge with the in-
trasubband continuum at a higher value of q. At /=0. 5
the degenerate modes split and the intrasubband spin
wave emerges from the continuum. The extra dotted
lines represent the nondegenerate spin-up and spin-down
continua. And finally at /=1. 0 the T& and L2 modes,
and the spin-down continuum disappear.

The circle in Fig. 4 marks the intersection of the inter-
and intrasubband spin waves. If there were an asym-
metry in the well the inter- and intrasubband modes
would couple and this crossing would become an an-
ticrossing. There would also be damping of the intrasub-
band modes in the intersubband continuum, and vice ver-
sa. The other crossing points are between longitudinal
and transverse modes, which will not couple.

A direct observation of the collective modes is often
made through Raman scattering. The transverse or
spin-Hip modes will only be visible in the cross-polarized
spectra. However, due to the mixed spin-charge charac-
ter of the longitudinal modes at nonzero polarization,
both longitudinal modes will appear in the polarized and
cross-polarized Raman spectra.

Another consequence of the broken spin symmetry will

appear as a coupling of the collective modes to phonons.
Although the presence of phonons was not incorporated
in the present work, it is evident that a LO phonon mode
and the L, mode will couple only at nonzero spin polar-
ization, due to the loss of charge neutrality of the Lz
mode.

In this paper we have presented a theory of the collec-
tive modes of the spin-polarized quasi-2D electron gas,
showing significant qualitative diA'erences from the unpo-
larized gas. We believe these results to be applicable to
an optically pumped spin-polarized 2D electron gas. In a
future communication we hope to examine the questions
of the hole plasma, electron-hole coupling, nonzero tem-
perature distributions, and inhomogeneous broadening
due to the spatial profile of the pump.
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