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The interstice statistics of the oxygen sublattice of the canonical inorganic glass-former silica
have been investigated theoretically for a number of structural models of v-SiO,. It is found that
spheres with radii smaller than 2.41 A minus the oxygen radius can travel freely through a model of
v-SiO, made by Feuston and Garofalini. The nonoverlapping interstice size distribution can be de-
scribed by a log-normal function. The concentrations of interstitial sites in these models with radii
greater than the size of rare-gas atoms agree with the experimental values from gas-solubility stud-

1€8.

I. INTRODUCTION

Models for the structure of amorphous materials are
usually characterized in terms of atom-atom pair-
correlation functions since these quantities can be ob-
tained directly from diffraction experiments. However,
instead of concentrating on the atomic network, an alter-
native approach is to analyze such structural models in
terms of the network of voids or interstices between the
atoms. Such an approach is particularly appropriate for
the case of those structures which can be regarded as be-
ing comprised of a densely packed arrangement of
spheres, as in the dense-random-packed (DRP) models
constructed to simulate the structures of simple liquids
and amorphous metals.! 73 Indeed, a considerable effort
has been made*~® to analyze DRP structures in terms of
their interstice statistics. Furthermore, the interconnec-
tion of interstices via “saddle-point doorways”®!® and
their percolation behavior®!? have also been investigated
with mass-transport (interstitial diffusion) processes in
mind.

However, models of structures with directional (i.e.,
covalent) bonding have very rarely been investigated in
terms of the interstice network. Popescu!'! has investigat-
ed the size distribution of interstices in nonperiodic (and
hence small effective volume) continuous-random-
network (CRN) models of amorphous Ge, As, CdGeAs,,
As,Se;, GdFe;, GdCo;Mo, 5, and GeAs,Te,, and Mitra
and Hockney!? have also obtained the interstice size dis-
tribution for a model of v-SiO, produced by molecular-
dynamics simulation.

The aim of this paper is to discuss the interstice statis-
tics of models for the structure of the archetypal covalent
glass-forming system, namely SiO,, using the theoretical
approach which we have developed recently for the case
of DRP structures.

I1. SILICA AS A QUASI-DENSE-PACKED STRUCTURE

The structures of crystalline and vitreous forms of sili-
ca are usually considered in covalent bonding terms, i.e.,
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as a network of Si—O bonds in which Si is tetrahedrally
coordinated by O atoms and O atoms are bonded to two
Si atoms. They are usually regarded as comprising a net-
work of interconnected SiO,,, coordination polyhedra
which are joined through their apices. Such a picture is
the basis for the Zachariasen!® philosophy for the struc-
ture of covalent network glasses (see Galeener!* for a re-
view), and a number of CRN models for the structure of
v-Si0, have been constructed on this basis (e.g., see Refs.
15 and 16).

Nevertheless, under certain circumstances it is also
profitable to consider the structure of silica and silicates
in terms of a quasi-dense-packed arrangement (of the ox-
ygen sublattice). Gaskell'” and Eckersley and Gaskell'®
have emphasized the usefulness of this picture for the
case of alkali silicates, where considerations of the densi-
ty indicate the existence of a close-packed arrangement of
oxygen atoms around the network-modifying cations.
However, a number of features indicate that the structure
of vitreous silica itself can also be regarded in terms of a
quasi-dense-packed arrangement of oxygen atoms.

Both Thathachari and Tiller!*?® and Galeener?! have
demonstrated that the skewed Si—O—Si bond-angle dis-
tribution, P(0,), in v-SiO,, centered on the most prob-
able angle 6% ~145°, as obtained from x-ray-diffraction
data’?> and magic-angle spinning nuclear-magnetic-
resonance spectra,’> appears to arise principally from
steric constraints, in particular from the existence of a
minimum oxygen-oxygen separation DJ'3 between oxy-
gen atoms in different SiO, ,, tetrahedra. Using an ana-
lytic treatment, Galeener?! found that the best fit to the
experimental distribution P(8,) was achieved for a ratio

min /rei.o=1.95 or, taking the nearest-neighbor Si—O
bond length to be rgo=1.60 A, for D% =3.12 A.
This might be taken to imply that the oxygen radius is
about 1.56 A.

It is interesting to evaluate the packing density 1o of
the oxygen sublattice, defined as
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TABLE 1. Oxygen sublattice packing density 7o, as a func-
tion of oxygen radius Rq in Feuston and Garofalini’s model of
vitreous SiO,. In order to make comparlsons with previous re-
sults on a DRP (Ref. 10), a value of 1.51 A, within Bondi’s lim-
its of van der Waals radius, is chosen for R, for most results re-
ported here. The packing density of our DRP is 0.634.

Mo Ro (A) Structural origin

0.424 1.32 Half intratetrahedral O-O
separation®

0.574 1.46 Lower limit of the van der Waals
radius obtained by Bondi®

0.635 1.51 Value chosen in this study

0.648 1.52 Upper limit of the van der Waals
radius obtained by Bondi®

0.701 1.56 Half minimum nonbonded O-O

separation®

“Reference 17.
"Reference 24.
‘Reference 21.

where R, is the effective radius of the oxygen atom and
Vo is the average volume per oxygen atom in the struc-
ture. Table I gives the packing density 7 as a function
of various chosen values of R,. Note that a choice of
1.51 A for R leads to a packing density very near to
that of a DRP structure.!® Since comparisons will fre-
quently be made with the results of a DRP structure,'®
and because the value of 1.51 A lies within the limits of
the van der Waals radius obtained by Bondi,?* and not far
(only 3% dlfference) from the oxygen radius deduced by
Galeener,?! it is convenient to pick 1.51 A as the oxygen
radius. Note that the O-O distance within a SiO,,,
tetrahedron is only about 2.64 A. With an Joxygen radius
of 1.51 A (or in fact any value above 1.32 A), the oxygen
atoms within a SiO, /, tetrahedron will overlap. Thus the
oxygen sublattice should be considered as a soft-sphere
rather than a hard-sphere packing.

In conclusion, it is reasonable to regard the oxygen
sublattice of v-SiO, as being represented by a soft-sphere
packing. However, it should be recognized that this pic-
ture is only approximate, since it is clear that in fact
there are two types of nearest-neighbor oxygen atoms
(those bridged by Si atoms and those which are not), and
this would mean that two different force laws should
determine their separations. Nevertheless, there is much
compelling evidence (see above) that in fact purely
geometric packing considerations control for the most
part the topology of the oxygen sublattice.

III. EXPERIMENTAL EVIDENCE
FOR INTERSTICES IN »-SiO,

By definition, interstices are those voids in a structure
which are comparable in size to, or smaller than, the larg-
est atoms present. In concentrating entirely on the inter-
stice statistics, therefore, it is assumed that the structure
of the material is sufficiently nondefective that larger
voids (of the size of several atoms) are not present.
Small-angle (neutron or x-ray) scattering is sensitive to
larger-sized voids (say greater than 10 A) because then
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the scattering intensity is confined to values of scattering
vector Q considerably smaller than that of the first peak
in the atomic interference functic)on [structure factor,
S(Q)], typically lying at @ ~1-2 A~!. However, small-
angle scattering from the atomic-sized or smaller voids
(interstices) of interest here would extend to much larger
values of Q and hence such scattering intensity would lie
beneath that of S(Q) and correspondingly be unobserv-
able.

Although diffraction cannot be used as a probe for the
structure of interstices, the diffusion and solubility of
gases in the material can be used as a probe for (a subset
of) the interstitial volume. A number of such studies
have been performed for v-SiO, using the rare-gas atoms
He and Ne (Refs. 25-33) as well as using H, and D,.**
Some crystalline polymorphs of silica (tridymite and cris-
tobalite) have also been studied in this way.’> The per-
meability K of a gas can be obtained from a measurement
of the steady-state flow rate through a membrane of the
material under a pressure gradient, and the diffusivity D
is obtained either by monitoring the approach to steady
state at the beginning of a permeation experiment or by
monitoring gas evolution from the membrane at the end
of such an experiment. These quantities can be combined
to give an estimate for the solubility S of the gas in ques-
tion via the relation

K=DS . (2)

The concentration of solubility sites in the material oc-
cupied by the probe gas atoms can only be obtained from
the experimentally obtained values of S by using a model
for the gas solubility. Both the Langmuir adsorption iso-
therm model’”3® and a statistical-mechanical model
treating the dissolved gas atoms or molecules as three-
dimensional isotropic harmonic oscillators®>3® have been
used, and they give similar results.’® Estimates for the
concentrations of solubility sites Ng for the gases He, Ne,
and D, in v-SiO, are given in Table II (after Shelby>?).

There is a distinct trend for Ng to decrease as the size
of the probe atom increases (e.g., from He to Ne), which
is evidence for a rather wide distribution of interstice
sizes; the number of sites accessible to the larger gas
atoms is obviously smaller than that accessible to
smaller-sized probe atoms. The spread in results for a
particular probe gas (and a given method of analysis)
probably arises from subtle differences in the interstice
distribution of the glasses resulting from differing thermal
treatments; it appears that a systematic study of gas solu-
bility in variously heat-treated glasses has not yet been
carried out to investigate the correlation between inter-
stice statistics and annealing-induced structural relaxa-

TABLE II. Solubility site concentrations Ng for various
gases in v-SiO, [after Shelby (Ref. 30)]. The dagger denotes
values obtained assuming a vibrational statistical-mechanical
model and the asterisk the Langmuir adsorption isotherm mod-
el.

He Ne D,
Ng (10*' cm™?) 1.8-3.3" 1.06" 1.27"
1.9*% 1.3* 1.07*
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tion. In an extended analysis of these data, Shackel-
ford ™33 has taken representative values to be
Ng=2.3X10?! cm 3 (He) and 1.3 X 10?! cm ™3 (Ne).

In addition to being another method of characterizing
noncrystalline structures, a knowledge of the interstice
statistics of (silica) glass is important for certain techno-
logical reasons. The relatively high permeability of these
materials to gases such as He, Ne, and H,, etc., intimate-
ly connected with the size distribution and connectivity
of interstices in the structure, places certain restrictions
on the use of such materials in high-vacuum applica-
tions.*® In addition, the technologically very important
process of the thermal oxidation of crystalline Si to form
an insulating oxide layer is believed to be controlled, for
the most part, by the diffusion of oxygen molecules (or
perhaps atoms, depending on the conditions) through the
growing amorphous silica film.>”>3® Finally, the diffusion
behavior of inert gases in glasses may shed light on the
transport properties of ions in the same materials.’

IV. METHOD OF ANALYSIS
OF INTERSTICE STATISTICS

The methods used to investigate the interstice statis-
tics, connectivity, and percolation behavior of structural
models of v-SiO, reported in this paper were essentially
the same as those developed previously to study these
quantities in DRP models. In brief, this approach links
interstices, diffusion saddle-point doorways, and free
volume. The analysis method was applied only to the ox-
ygen sublattice, the Si atoms being regarded as occupying
regular tetrahedral interstices in this quasi-dense-packed
arrangement (and this has been checked to be the case).
In this sense, the analysis is very similar to that of the
single-component DRP model reported previously.'°

Interstices were identified by finding the equidistance
point Q for all sets of four nearby atoms 4, B, C, and D
subject to the condition that no atoms closer to Q than
A, B, C, or D exist and the a’s in the equation

a,QA+a,QB+a;QC+a,QD=0 (3)

all have the same sign.

Doorways between interstices were identified with
those triangular arrangements of atoms ABC for which
the circumcenter P (on the plane ABC) has no atoms
nearer to it than A4, B, or C. (Doorways that do not
satisfy this simple criterion are discussed in Ref. 10.)
Then, all compartments enclosed by these doorways are
found and, ideally, each compartment should correspond
to an interstice. In practice, because of ambiguities con-
nected with the identification of whether or not particu-
lar triangular arrangements behave as doorways, not
every compartment was found to contain an interstice, al-
though none contained more than one interstice. Since
these compartments correspond to the coordination po-
lyhedra of the interstices, the atomic coordination num-
ber of an interstice is simply the number of vertices of its
corresponding compartment, and hence no arbitrary
cutoff distance criterion for neighboring atoms need be
invoked as in most previous studies on interstices.*%’

The analysis outlined above finds al/ interstices, includ-
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ing those which overlap each other. The subset of non-
overlapping interstices was identified in the following
way. All interstices were sorted according to their sizes,
and interstitial spheres were inserted sequentially, start-
ing from the largest interstice. If a sphere of the size of
the interstice could not be inserted (because it would oth-
erwise overlap with a previously inserted sphere in a
neighboring interstice), the interstices were deemed to
overlap and the smaller interstice of the two was discard-
ed.

The free volume and percolation behavior of the inter-
stice network can then be readily obtained using these
definitions of interstices and doorways. For a given
probe-atom radius, all compartments containing inter-
stices whose radii are larger than that of the probe are
connected to other such compartments via those door-
ways whose sizes are also larger than that of the probe.
Each cluster of such connected compartments then corre-
sponds to a patch of free volume. Percolation behavior
through the interstice network of a model can be investi-
gated approximately by evaluating the compartment clus-
ter size as a function of the size of the probe atom. Alter-
natively, for models with periodic boundary conditions,
the percolation condition (infinite cluster) can be evalu-
ated exactly by finding the probe size for which at least
one of the interstice sites is linked to its image outside the
box.

It should be noted that, using this method of interstice
analysis, some quantities (e.g., total number of interstitial
sites and doorways, and interstice coordination) are in-
dependent of the choice of the radius R, of the oxygen
atoms, whereas other quantities (notably the number of
nonoverlapping interstices and the critical probe radius
for percolation) are dependent on R .

V. MODELS INVESTIGATED

The model for v-SiO, that has been investigated in de-
tail in this study was built by Feuston and Garofalini*®
using molecular dynamics (MD) and employing an intera-
tomic potential containing both two-body (Coulombic)
terms and a three-body (bond-bending) term to simulate
covalent effects. The model consists of 216 Si and 432 O
atoms in a cubic box of side 21.40 A with periodic bound-
ary conditions. The mean Si—O bond length is 1.62 A
and the average Si—O—Si bond angle is 63=154.2°.
Unless stated otherwise, results in Sec. VI are obtained
Sfrom this model, which will be denoted as the FG model.

The other v-SiO, models investigated include a
computer-generated CRN cluster built by serial addition
of atoms by Gladden,!¢ a periodic boundary model con-
structed by decorating an a-Si model by Ching,*! a model
built by a Monte Carlo method by Guttman and Rah-
man,z and a molecular-dynamics model built by Alvarez
et al.

Whenever comparisons are made with a DRP model, the
DRP model used is the one we built by a condensed-gas
method'® unless stated otherwise. In order to make com-
parisons between the oxygen sublattice and the DRP
model, the oxygen atom radius R, was chosen to be 1.51
A (see Sec. II) so that the two packings will have similar
densities.
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VI. RESULTS

In the FG model, we have identified a total of 1157 in-
terstitial sites in the oxygen sublattice. This is equivalent
to 2.68 sites per O atom, which is considerably lower
than the value of 5.13 sites per atom found previously for
a DRP structure. Included in these 1157 sites are 216
tetrahedral sites otherwise occupied by the Si atoms; re-
moval of these leaves 941 true interstitial sites (including
overlapping sites—see later), or equivalently 2.18 true
interstices per O atom or 4.36 sites per SiO, unit. The to-
tal number of true interstices per oxygen atom is surpris-
ingly similar for all the models which we have examined
(see Table III).

The set of nonoverlapping interstices in the oxygen
sublattice was identified using the procedure outlined in
Sec. IV. Figure 1(a) shows the size distributions for all
interstices and the nonoverlapping subset (excluding in
both cases the Si-containing sites). As mentioned previ-
ously, nonoverlapping interstices can only be identified
following the choice of a particular value for the oxygen
atom radius Rg. A value of Rg=1.51 A (see Sec. II) has
been taken, leading to a nonoverlapping subset of 447
interstices (1.03 per O atom, or 2.06 per unit of SiO,). In
fact, the shape of the size distribution of nonoverlapping
interstices is not particularly sensitive to small variations
in R, although obviously the origin of the length scale
of the distribution does depend on the value of R taken.
A discussion of how the choice of R, affects the number
of nonoverlapping interstices will be continued in Sec.
VII. From Fig. 1(a), it can be seen that, as expected, the
size distribution of nonoverlapping interstices is appreci-
ably smaller than that for all interstices, since many of
the interstices in the latter case are comprised, in fact, of
overlapping sites.

The value of 2.06 nonoverlapping interstices per SiO,
unit in the FG model is considerably higher than the cor-
responding value of 1.00 in high cristobalite.!> However,
the cristobalite interstices are quite large—half of them
can accommodate atoms of radii up to 1.21 A while the
other half can accommodate atoms of radii up to 1.15 A
(taking Ro=1.51 A). This is not difficult to understand.
High cristobalite is crystalline: its atoms are arranged in
an orderly way, and so must the free volume. The free-
volume regions combine to form larger but fewer inter-
stices.

TABLE III. Number of true interstices per oxygen atom for
models of v-SiO, with periodic boundary conditions. N.B. Si-
containing tetrahedral interstices are excluded, but overlapping
interstices are not discarded.

Model 1? 2° 3¢ 44
Number per 2.18 1.91 1.83 1.99
O atom

2Feuston and Garofalini (Ref. 40).
®Ching (Ref. 41).

°‘Guttman and Rahman (Ref. 42).
dAlvarez et al. (Ref. 43).
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Shown in Fig. 1(b) is a comparison of the nonoverlap-
ping interstice size distribution for the oxygen sublattice
of v-8i0, and for the DRP model. For a fair comparison
of the packings, Si-containing sites are also included for
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population (no. per Si0, unit per 0.13.)
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0.0 0.5 1.0 1.5

population (no. per host sphere per 0.05 r.u.)

interstice radius (reduced unit)

FIG. 1. Interstice size distributions. (a) Interstice size distri-
bution of the oxygen sublattice of the FG model (Feuston and
Garofalini, Ref. 40) is plotted, excluding the Si-containing sites.
The solid line represents all interstices while the dashed line
represents nonoverlappmg sites only. The oxygen radius is tak-
en to be 1.51 A. (b) Comparison with the results for a DRP.
The solid line represents the distribution of all interstices, in-
cluding those containing Si atoms and also overlapping ones, of
the oxygen sublattice of the FG model. The dashed line
represents all interstices, including overlapping ones, of a DRP
model (Chan and Elliott, Ref. 10). Interstice size is expressed in
reduced units (r.u.) of host sphere radii. For the FG model, the
oxygen radius is taken to be 1.51 A.
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the oxygen sublattice. It can be seen quite clearly that
the distribution is considerably broader for the SiO, mod-
el compared with the DRP model.

Associated with the interstices in the oxygen sublattice
are a total of 2827 saddle-point doorways, i.e., doorways
that are acute triangles. This works out to be 6.54 per O
atom. This figure, too, is considerably lower than that
for the DRP structure, viz., 10.79 per atom. However,
out of this number of doorways, a total of 4X216=2864
lead to a tetrahedral site containing Si atoms and are
therefore not true diffusion doorways for the SiO, struc-
ture; thus the number of true diffusion doorways per O
atoms is 4.54 (or 9.09 per unit of SiO,). Conversely, the
number of obtuse triangular “doorways” is much larger
in the silica model (3.42 per O atom) than in the DRP
model (0.60 per atom). The size distribution of the
diffusion saddle-point doorways, i.e., saddle-point door-
ways excluding those leading to a Si site, is shown in Fig.
2(a). The distribution is skewed and rather broad. Fig-
ure 2(b) gives a comparison of the distribution with the
result for a DRP structure. Again, in order to make the
comparison meaningful, all saddle-point doorways, in-
cluding those leading to a Si site, are considered in Fig.
2(b). Again, the distribution in the case of the oxygen
sublattice of v-SiO, is considerably broader than that for
the DRP structure.

The coordination polyhedra statistics of the interstices
in the oxygen sublattice of the v-SiO, are given in Table
IV. The distribution for the interstices in the oxygen sub-
lattice is considerably broader than that for the DRP
structure. Also, the dominance of fourfold sites is not as
strong as in the DRP case.

During the process of diffusion, a probe atom has to
pass through a saddle-point doorway when it jumps from
one interstitial site to the next one. The size of the probe
atom is unlikely to be larger than that of the interstitial
site, since this would be too energetically costly. If the
doorway is smaller than the probe, the difference in size
between them will be an important consideration in the
diffusion process. It is therefore interesting to investigate
the ratio R of the radius of the saddle-point door to that
of the interstice associated with it. In general, a saddle-
point doorway has one interstice on each side of it: the
three atoms defining the doorway are a subset of the four
atoms equidistant from the interstice. In the case where
the equidistant point does not count as an interstice be-
cause of its failure to satisfy Eq. (3), the equidistant point
is promoted to be an interstice for the calculation of R.
Of the two interstices on the two sides, the smaller one is
chosen to calculate R because the probe is unlikely to be
larger than this interstice anyway.

Results for both the silica and DRP models are
presented in Fig. 3. In both distributions, there are high
populations for doors with an R value close to 1.00 (a
value close to 1.00 means that the door size is almost the
same as that of one of its neighboring interstices). The
population drops off continuously as R becomes increas-
ingly smaller. This indicates that there is a continuous
distribution from slightly degenerate interstice pairs (at
R ~1) to well-separated neighboring interstice pairs. In
addition to this, the curve for the DRP model [Fig. 3(b)]
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shows a well-defined peak at a value R ~0.70. Geometri-
cal considerations indicate that for the case of a regular
tetrahedral interstice in a hard-sphere packing, R ~0.69.
Another difference between the two distributions is
that for the oxygen sublattice, the population of doors
does not vanish even for values of R very near to zero.
This is because when the oxygen atom radius is taken to

o
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T T T T
1.5 2.0 2.5 3.0

population (no. per Si0, unit per 0.05&)

the door radius and the oxygen radius ({)

:
: =4

3 (b) -

0
0.0 0.5 1.0 1.5

population (no. per host sphere per 0.05 r.u.
T

saddle-point door radius (reduced unit)

FIG. 2. Saddle-point door size distributions. (a) Saddle-point
door size of the oxygen sublattice of the FG model. All door-
ways leading to a Si site are discarded. The door size available
to a diffusing atom is the plotted size minus the radius of an ox-
ygen atom (which could be chosen to be about 1.51 A, refer to
Table I). (b) Comparison with the results for a DRP. The solid
line corresponds to the oxygen sublattice of the FG model while
the dashed line corresponds to a DRP model. Unlike (a), door-
ways leading to a Si site are also included. The length unit for
door size now used is in reduced units of host sphere radii: for
the FG model, the oxygen radius is taken to be 1.51 A. The
plotted door size is the actual radius available to a diffusing
atom.
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TABLE IV. Interstitial coordination polyhedra statistics. Numbers marked with an asterisk include the tetrahedral interstices
which contain a Si. Excluding the 216 Si-containing sites would give a total of 478 sites, which is 1.106 per atom. They occupy
15.5% of the volume of the model.

Corresponding value Percentage volume Corresponding value

Polyhedral type

of No. per atom occupied by this of percentage

(No. of vertices) No. of polyhedra No. per atom in DRP type of polyhedra volume in DRP
4 694* 1.606* 4.614 20.1* 73.5
5 204 0.472 0.344 14.3 12.2
6 108 0.250 0.121 12.1 7.3
7 50 0.116 0.030 8.9 2.6
8 42 0.097 0.014 9.5 1.6
9 19 0.044 0.003 5.5 04
10 13 0.030 0.003 4.8 0.5
11 15 0.035 6.4
12 7 0.016 3.7
13-16 5 0.012 3.8
Total 1157 84.3 98.1

be 1.51 :\, some nearby oxygen atoms would overlap, re-
sulting in a doorway of nearly zero radius. In fact, this
also accounts for the fact that there is no peak around
R ~0.70 in Fig. 3(a) corresponding to those doorways
leading to a Si site: the door radius (of doors leading to a
Si site) is so close to zero that although the shapes of the
tetrahedral sites for the Si’s are almost regular, slight al-
terations in the shape can result in significant changes in
the value of R.

Knowing the positions of the interstices in the v-SiO,
model, one can calculate the interstice-interstice radial
distribution functions (RDFs): these are shown (exclud-
ing the Si-containing sites) in Fig. 4(a), compared with
the corresponding results for the DRP model in Fig. 4(b).
Two features are immediately apparent: (i) the curves for
the case of the v-SiO, are considerably more featureless
than for those of the DRP model; and (ii) the contribu-
tion to the RDF at very small distances for the case of all
interstices is removed for the case of nonoverlapping
interstices. It should be noted that for a comparison be-
tween the two cases, one unit length in the DRP graph
should correspond to a length of 1.51 A in the v-SiO,
graph. In addition to the interstice-interstice RDF, we
have also calculated the partial RDF’s between Si-
containing sites and real interstices in the v-SiO, (Fig. 5).
This turns out to be far more structured than the self-
RDF of real interstices in Fig. 4(a).

Finally in this section describing the characterization
of the interstice network in the oxygen sublattice of
v-Si0O, we mention the results of calculations of the per-
colation behavior. The critical percolation radius, such
that a test particle with this radius is able to percolate
freely through the interstice network, was calculated ex-
actly according to the method outlined in Sec. IV. The
critical percolation radius for a probe atom is found to be
rp=(2.41—*R0) A, where R is the oxygen radius (see
Table I). For an oxygen radius of 1.51 A, this gives a
critical percolation radius of 0.90 A.

Again, for purposes of comparison with the corre-

sponding results for the DRP structure, the critical per-
colation radius needs to be expressed in suitably reduced
units (r.u.), scaled to the oxygen radius R, in the case of
the oxygen sublattice and the hard-sphere radius for the
DRP. For the oxygen sublattice, 7,~0.60 r.u. (taking
Ro=1.51 A, r,=0.60R) and for the case of the DRP,
r,~0.25r.u,, a considerably smaller value. Note that 7
is the same whether the Si-containing sites are considered
or not, because the Si atoms occupy sites among the
smallest ones and hence these sites would not control the
critical percolation situation.

Figure 6 gives the site percolation graph for the oxygen
sublattice. It can be noted that the solid curve (which
corresponds to sites larger than the probe) and the
dashed curve (which corresponds to the infinite free-
volume patch) are very close together. This could be un-
derstood if one considers the free-volume situation as a
function of the probe radius. The proximity of the two
curves indicates that for probe radii smaller than the crit-
ical percolation radius, most sites that are large enough
to accommodate the probe actually lie inside the infinite
patch of free volume. This means that the effective num-
ber of solubility sites is actually very near to the number
of all solubility sites calculated. Very few sites would be
larger than a probe but actually not available to the probe
because of blocked percolation channels. It should be
noted that the site percolation graph for the DRP struc-
ture is not like this.!® The two curves are relatively far
apart. Also the fraction of sites large enough to accom-
modate a probe at the critical percolation radius is
markedly different. For the oxygen sublattice, this is only
about one-third, while for the DRP structure this is more
than 90%. This means that for the DRP structure, at a
probe size just above r,, most sites are large enough to
accommodate the probe, although there is still no infinite
patch of free volume. In other words, there are present
nonpercolating isolated patches of free volume. This sit-
uation does not occur in the oxygen sublattice.

As well as the interstitial analysis of the FG model, we
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also calculated the Voronoi polyhedra statistics for the
oxygen sublattice so that we can compare the packing
with a DRP more thoroughly. The results are shown in
Figs. 7(a) and 7(b). Similar to the interstice and doorway
distributions, the distributions of the different types of
Voronoi polyhedra (as classified by the number of faces)
and of the different types of Voronoi faces (as classified by
the number of edges) are more widely distributed than
the results for the DRP.

VII. DISCUSSION

A general feature arising from the analysis given in the
preceding section is that the interstice statistics of the ox-
ygen sublattice of the structure of v-SiO, are considerably

population (arb. units)

-
o

0.0 0.5

— (b) -

population (arb. units)

T T T T T T T
0.0 0.5 1.0

R

FIG. 3. Population distribution of the ratio R (the ratio of
the radius of a saddle-point door to that of its adjacent inter-
stice) (a) for the oxygen sublattice of the FG model (all doors,
including those leading to a Si site, are included); (b) for a DRP
model.
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less regular than those for a DRP structure, even with
the same equivalent packing density. This is also
reflected in the fact that the critical percolation radius of
a probe particle is more than twice as large (compared to
the host sphere of the packing) for the case of v-SiO, as
for a DRP structure, and is because the oxygen sublattice
in v-8i0, is a less homogeneous packing. For the same
packing density as given by Eq. (1), there is considerable
overlap between neighboring oxygen atoms but not for
the atoms in a DRP structure.

-
o

J(r)/r (interstices per &2)
[9)]

I(r)/r (interstices per r.u.)

0 — T T T T
0 2 4 6

r (reduced units)

FIG. 4. Interstice RDF. The RDF divided by the distance
J(r)/r is plotted against the distance r. The solid line
represents interstices including overlapping ones, while the
dashed line represents nonoverlapping interstices only. (a)
Interstices, excluding Si-containing ones, of the oxygen sublat-
tice of the FG model. (b) Interstices of a DRP model (repro-
duced from Chan and Elliott, Ref. 10). r is in reduced units
(r.u.) of host sphere radius. For comparison, the oxygen (host
sphere) radius in (a) may be taken as 1.51 A.
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FIG. 5. Si-containing interstice-real interstice partial RDF.
The oxygen sublattice of the FG model is considered. The solid
line represents all real interstices while the dashed line
represents nonoverlapping interstices only.

The distribution of interstice sizes is rather broad and
asymmetric in shape (see Fig. 1). Shackelford and
Masaryk?® have speculated that this probability distribu-
tion could be described in terms of a log-normal function,
and they have constructed such a curve on the basis of
two data points in the high-r tail of the distribution (viz.
the concentration of sites available to He and Ne atoms,
i.e., those with sizes greater than those of the rare-gas

100 L 1
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Q
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-
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sum of the probe radius and the oxygen radius (&)

FIG. 6. Percolation graph of the oxygen sublattice of the FG
model. The percentage of interstitial sites (including overlap-
ping ones) is plotted against the sum of the radii of the probe
and the oxygen atom. The solid line represents sites that are
larger than the probe, while the dashed line represents the sites
lying in the infinite patch of free volume.
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atoms—see Table II), together with an estimate for the
total number of interstitial sites (scaled up from that for
cristobalite). The distribution so obtained was character-
ized by having its mode at 1.81 A and mean at 1.96 A. In
obtaining the fit, they took the interstice size to be the
sum of the oxygen radius and the probe radius. Hence
the interstices with a size smaller than the oxygen radius
will not be able to accommodate any probe atom. On the
other hand, in the present analys@)s, it is found that if the
oxygen radius (taken to be 1.51 A) is excluded from the
interstice size, the nonoverlapping interstice size distribu-
tion of the FG model can be well fitted by a log-normal
distribution (see Fig. 8), having its mode at r =0.41 A.

40 1 | |

30 - (a) -

percentage of VP

10 15 20

no. of faces per VP
|
T

no. of edges

FIG. 7. Voronoi polyhedra (VP) statistics. The solid line
refers to the FG model while the dashed line refers to a DRP
model. (a) Distribution of different types (by the number of
faces) of VP. (b) Distribution of different types (by the number
of edges) of VP faces.



43 THEORETICAL STUDY OF THE INTERSTICE STATISTICS . ..

D w
|
T

population (no. per Si0; unit per K)
! L
[ I

o

T T T
0 1 2

interstice radius (K)

FIG. 8. Interstice (nonoverlapping ones) size distribution of
the FG model fitted boy a log-normal curve. The oxygen radius
is assumed to be 1.51 A. The fitting curve is

2
In(x /0.405)
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The results of this theoretical investigation into the
interstice statistics of v-SiO, can only be compared with
experimental data in rather a limited fashion; such a
comparison is effectively restricted to that with experi-
mental estimates obtained from solubilities of various
rare gases (see Table II). Theoretical estimates for the
concentrations Ng of those (nonoverlapping) interstitial
sites with sizes larger than a given value in the structures
of the various models of v-SiO, examined in this study
can only be made by assuming a value for the oxygen ra-
dius R. Estimates so obtained for two of the structural
models examined, viz., the FG model and the model by
Gladden'® are given in Table V, together with the
representative experimental values adopted by Shackel-
ford® 733 and also the theoretical estimates obtained by
Mitra and Hockney!? from an analysis of their
molecular-dynamics model. It can be seen that there is
very reasonable agreement between the theoretical values
for N obtained for the structural models and the experi-
mental estimates obtained from gas-solubility measure-
ments, particularly bearing in mind the model-dependent
assumptions made in extracting values of Ng from the ex-
perimental data (see Sec. III). Agreement between theory
and experiment is particularly good for the larger value
of Ry, viz.,, 1.60 A. However, this agreement cannot
safely be used to infer that the appropriate value for the
oxygen radius in v-SiO, is Rg=1.60 A because of the
uncertainties in the experimental estimates alluded to
above. It should also be noted that the estimates for Ng
obtained by Mitra and Hockney!? for the MD model of
Mitra et al.** are appreciably higher than those obtained
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TABLE V. Comparison of the theoretical rare-gas solubility
concentrations for v-SiO, for various values of the oxygen ra-
dius compared with the experimental values adopted by Shack-
elford (Refs. 31-33).

He Ne
Roin (A) 1.28 1.38
. Ns (10" em™)
Ry (A)

1.6 2.8 1.6*
2.8° 1.7°
3.4° 2.6°

1.5 3.8 2.7°
3.8° 2.8

Expt. 2.3 1.3

2Feuston-Garofalini model (Ref. 40).

®Gladden model (Ref. 16).

°Value obtained by Mitra and Hockney on a molecular-
dynamics model (Ref. 12).

in this study for the same value of Ry. This discrepancy
may be due to differences in the algorithm used to identi-
fy interstices in the oxygen framework and also may be a
consequence of subtle differences between the structures
of the models.

VIII. CONCLUSIONS

An algorithm recently developed to investigate the
interstice statistics in dense random packings of spheres
in terms of the free volume has been used to study the
interstice statistics in the oxygen sublattice of the arche-
typal glass former, viz., silica. Several structural models
of v-Si0, have been investigated. The distributions of the
interstices and the saddle-point doorways are much
broader than the corresponding distributions for DRP
models. The nonoverlapping interstice size distribution
of such models has been found to be rather accurately
fitted by a log-normal probability function. The critical
percolation radius of the model of Feuston and
Garofalini* was found to be 2.41 A minus the oxygen ra-
dius. The concentrations of interstitial sites in these
models with radii greater than a given size have been
computed and these have been compared with the results
of noble-gas solubility measurements; agreement is very
reasonable.
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