
PHYSICAL REVIEW B VOLUME 43, NUMBER 5 15 FEBRUARY 1991-I

Dynamics of a quadrupolar glass
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Substitutional disorder in an orientationally disordered crystal generates static random strain
fields. Strains cause scattering of orientational and displacive waves. The resulting friction process-
es may lead to structural arrest (nonergodic instability) at a threshold temperature T&. The slow dy-
namics associated with structural arrest is studied. The scattering law exhibits a dynamic central
peak. The infiuence of microscopic relaxation processes on the dynamics of structural arrest is in-

vestigated. Phonon resonances and ultrasonic attenuation are calculated. A comparison with ex-

periments in K(CN) Brl ranging from high- to low-frequency methods is made.

I. INTRODUCTION

Conventional glasses can be regarded as frozen liquids
where positional long-range order (LRO) of atomic nuclei
is absent. Generalizing this concept, one considers crys-
tals, where other than positional degrees of freedom are
frozen without LRO, as glasses. Examples are (magnetic)
spin glasses, orientational glasses, etc. Notice that in the
latter categories, in contradistinction to conventional
glasses, substitutional atomic disorder is necessary for ob-
taining the glass state. We will consider in particular
K(CN), Br, , as a model system, where the CN ion is
the orientational component. '

Substitutional disorder generates static random strain
fields. The effect of the random fields is twofold.
Firstly, a linear coupling to the orientational order pa-
rameter leads to a continuous orientational freezing pro-
cess, while the structural phase transition with LRO is
suppressed. ' Secondly, the lattice strains provide a
scattering mechanism for orientational and displacive
waves. ' The scattering can lead to structural arrest, also
called nonergodic instability or dynamic glass transition.

The method for treating this type of problem was origi-
nally developed by Gotze for the description of the An-
derson localization due to electron-impurity scattering. '

An extension to the more complicated case of binary col-
lisions has led to the mode-coupling theory of the con-
ventional glass transition. ' ' In the presence of static
strain fields, the scattering processes are more simple, and
the structure of the theory has analogies with the elec-
tronic problem.

Previously, ' ' we have studied the problem of
structural arrest in the zero-frequency limit, in particular
the temperature and wave-vector dependence of the glass
order parameter. In the present paper, we will study dy-
namic correlations at low frequencies, thereby obtaining
information about the relaxation phenomena which ac-
company orientational and displacive arrest. This prob-
lem is of great experimental and theoretical importance.
It has been realized for some time' ' that the tempera-

ture behavior of the transverse-acoustic (TA) phonons de-
pends on the measuring frequency of the experimental
method. It is obvious that microscopic relaxation pro-
cesses are relevant to account for dispersion effects.
However, these relaxation processes are in no way able to
describe the anomalous damping phenomena, which rise
strongly near the temperature where the TA phonons
have a minimum. ' ' Recent low-frequency shear torque
experiments suggest that the anomalous damping (pri-
mary loss) is intimately related to structural arrest. 22 A
unified theoretical formulation has to take into account
the low-frequency phenomena near structural arrest as
well as the relatively fast microscopic relaxation process-
es.

The content of the paper is as follows. In Sec. II we
give a short overview of the model which, in addition to
translation-rotation (TR) coupling terms, includes ran-
dom strain fields and anharmonic scattering terms. Next
(Sec. III) we discuss the glass transition as the zero-
frequency limit of a dynamic theory. In particular, the
transition temperature Tf is studied as a function of CN
concentration x and random-field strength h. In Sec. IV
we study the slow dynamics associated with structural
arrest. The scattering law exhibits a dynamic central
peak. The inhuence of microscopic relaxation processes
is studied in Sec. V. The transverse-acoustic phonons de-
pend on frequency of the experimental method. At low
frequency, the shear modes remain soft for T & T&. The
ultrasonic attenuation a is calculated. Finally (Sec. VI)
we discuss our results in comparison with experiments.

II. MODEL

A detailed description of the model Hamiltonian has
been given in Refs. 11 and 13. We therefore restrict our-
selves here in recalling essential concepts. We consider a
crystal M(CN) X& „,where M is an alkali metal and X+
a halogen ion in the high-temperature cubic phase. The
CN ions have dynamic orientational disorder, described
by quadrupolar orientational coordinates I" (n), a = I —3,
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of symmetry T2 and at lattice site n. Substitutional dis-
order is taken into account by the occupation variable
cr(n) with value +1 for a CN ion and value 0 for a
halogen X+. We therefore write in Fourier space

Y (q)= —go(n)Y (n)exp[ —iq.X(n)],1

X
(2.1)

where X is the number of unit cells, X(n) is the rigid lat-
tice position, and q is the wave vector. As displacive
coordinates we consider acoustic lattice displacement
s, (q), i = 1 —3. Of primary importance for the description
of ferroelastic phenomena is the rotation-translation cou-
pling

phase transition leads to a divergence of X(q) at a transi-
tion temperature T, given by

X (T, )5=1, (2. 1 1)

e i j
k Y (p)s,.(q)s,'(k) .

p, q, k
(2.12)

where 6 is the largest eigenvalue of L(q) at q=qo.
The static strain fields s' not only lead to the coupling

V but also generate scattering processes of orientation-
al and acoustic waves

V = g v;(q) Y (q)s, (q) . (2.2) III. GLASS TRANSITION

The TR coupling leads to an effective lattice mediated in-
teraction between orientational quadrupoles. The in-
teraction matrix reads

C(q)=u(q)M '(q)u (q) . (2.3)

h (q, [o.] )=v, (q)s (q, [o J) . (2.5)

h is a random field with a Gaussian distribution. Denot-
ing the configurational average by an overbar, we have
h =0 and

h t (q, [cr ] )h&(k, [o ] ) =x( 1 —x )h 5 gkq . (2.6)

Here M(q) is the bare acoustic dynamical matrix.
Substitutional impurities produce random strain (RS)

fields s,'(q, [o J ) which couple linearly to the remaining
quadrupoles:

V =gY (q)h (q, [cr]), (2.4)
q

where

= [3.z+ II(z) —o (z)]D (3.1)

The matrices D, II, o., and N depend on the wave vector
q. Here D represents the restoring forces (2.10). The
memory kernel II(z) is calculated by using mode-
coupling technique, first introduced for the study of
low-frequency phenomena at second-order phase transi-
tion. In the present problem, the scattering mechanismV, Eq. (2.12), is particularly simple and we obtain

ap ij
II, (q, z)= ——g U &0 &(p,z),

p

(3.2)

Dynamic phenomena are described in terms of Kubo's
relaxation functions 4&"(z) and N (z) for displace-
ments and rotations, respectively. Using the Zwanzig-
Mori projection-operator technique, we have derived
dynamic equations for the relaxation functions. For the
displacements we obtain (z =cv+i0, cv is the frequency)

[ Iz D+z II(—z) —zo (z) ]4"(z)

The quantity h is calculated numerically, ' 6 stands for
the Kronecker symbol, and x is the CN concentration.

The coupling V affects all thermodynamic quantities.
In particular, the collective static orientational suscepti-
bility is given by

with

ap ij
U

p

A l l
=x(1—x) g w

p q k LO

p q k

X(q) =[I—X'L(q)] 'X' (2.7)
X A,'(k) 2,',(k), (3.3)

Here all quantities are 3X3 matrices. The total interac-
tion is given by

L(q) =C(q) —IC' —J(q), (2.&)

where C'=(1/N)+ Cq(q) is the self-interaction and J(q)
the direct electric-quadrupole interaction. The single-
particle susceptibility g at temperature T reads

where A, (k) is the amplitude of the strain field s,'(k).
The memory kernel o. is due to RT coupling and reads

o.(q, z)=P (q)X

X [Iz —[iz+A(q, z)+i@] '(cv )OJ 'P(q),

(3.4)

X =x(y/T)[1 —x(1—x)g(h /T )] . (2.9) with

Here y and g are single-particle thermal averages. The
orientational susceptibility X(q) is related to the inverse
of the displacement-displacement susceptibility by

D(q) =M(q)[1 —M '(q)v (q)X(q)u(q)] ' . (2.10)

This quantity corresponds to the restoring forces and is
proportional to the elastic constants. A second-order

P=u X (3.5)

where X is a noncritical single-particle orientational
susceptibility and (co )0=(XY,XY)X is the correspond-
ing second moment. X is the Liouville operator. The
quantity y is a frequency-independent transport
coefficient which accounts for fast relaxation processes.
The memory kernel A is obtained as'
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yp ij
A &(q,z)= —(XY,XY )—g U 4;,'(p, z) .

N q p

(3.6)

Using Eqs. (3.7b) —(3.11) we collect the most singular
(in 1/z) terms in Eq. (3.1) and arrive at a closed integral
equation for the nonergodic part f"(q). In terms of the
normalized glass order parameter

We notice that equations similar to (3.1)—(3.6) can be de-
rived for the rotational relaxation function 4& (z).' '
In the zero-frequency limit, the equations of N" and N
lead to glass order parameters that are proportional to
each other. ' In order to keep the formulation transpar-
ent, we will restrict ourselves essentially to a discussion of
Eq. (3.1).

An arrested structure leads to a time-persistent (noner-
godic) part in the correlation function

P(q)—:D(q)f"(q),
we obtain

where

K(q, p) =D '(q)[I3 (q) U(q, p)f3(q)

(3.12)

(3.13)

lim (Xt(q, r)X(q, 0)) —=%' (q),
t —+ oo

(3.7a)
+P (p)U(p, q)P(p)]D '(p) . (3.14)

or equivalently to a (1/z) singularity in the relaxation
function'

i XX( )(/XX( q z )
f ' q + (y XX(q z )

Z

where

fXX( q)
—+XX(q )/T

(3.7b)

(3.8)

II(q, z ) = ——p(q)+ II(q, z ),1

Z

A(q, z) = ——v(q)+A(q, z),1

Z

where

(3.9a)

(3.9b)

In particular we consider L=s or X= Y, which corre-
spond to the time-persistent displacive and orientational
correlations f" and f, respectively. The memory ker-
nels (3.2) and (3.6) then also are written in the form (3.7b)

A solution P(q) & 0 is obtained if the kernel K is of order
unity. The threshold condition, also called nonergodic
instability, is attained if the restoring forces D are
sufficiently small. Equivalently, see Eq. (2.10), the sus-
ceptibility X(q) has to be large. The last condition is real-
ized close to a second-order phase transition. The noner-
godic instability then occurs at a temperature T&) T, .
Starting from value zero at T&, the glass order parameter
P(q) increases continuously with decreasing T. This type
of glass transition is called type 3, while the conventional
liquid-glass transition, characterized by a discontinuity of
the order parameter at T&, is called type B. The freez-
ing process leads to a depletion of thermal Auctuations.
The collective orientational susceptibility now reads

(3.15a)

where

(3.10a)

yp ij
v &(q)=(XY,XY~)—g U f,"(p) . (3.10b)

One can show that'

f (q)=P(q)f"(q)P (q), (3.11)

where P is given by Eq. (3.5). Relation (3.11) indicates
that freezing or orientational and displacive correlations
occur concomitantly. This fact was already assumed in
Ref. 4 in order to interprete neutron-scattering experi-
ments.

(3.15b)

with X given by Eq. (2.9).
In Ref. 17 we have solved numerically the coupled sys-

tem of equations (3.13) and (3.15a), with potential param-
eters corresponding to K(CN)„Br, . More recent and
extended calculations have essentially confirmed our pre-
vious results. We have gained additional insight in the
phase diagram. Whether a nonergodic instability occurs
or not depends on the strength of the random field, in
comparison with the strength of the interaction. This ra-
tio increases with decreasing x and therefore the thresh-
old condition is not reached for low values of x. Our nu-
merical results for T&(x, h ) are summarized in Table I.
For details of the numerical method, see Ref. 17.

TABLE I. Temperature T& as function of CN concentration x and random-field strength h. Dashes
correspond to absence of nonergodic instability.

x/h

0.3
0.4
0.5

100

T~ =54.4
73.7
93.1

150

50.5
70.9
90.9

200

87.3

250

81.3

300
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IV. SLOW DYNAMICS

We want to study the displacement relaxation function
4&"(z) in the low-frequency regime for T close to Tf.
Equations (3.1) and (3.4) reduce to

[ —D +zII(z) —zcr(z) ]@"(z)= [ II(z) —o (z) ]D ' (4.1a)

and

For TW Tf, the kernel K in Eq. (4.6) becomes different
from Ef. We therefore write

(1+e)F(q, z ) =—g K(q, p)F(p, z ),1

p

(4.8)

where e has to be determined. For T& Tf, the factor
D '(q) in expression (3.14) leads to the dominant T
dependence, and writing

( )
t [A(z)+i@]p

(~')0
(4. lb)

D '=Df —'[1—(D Df)—Df '],
we identify

e= [Df D(T)]D—f

(4.9)

(4.10a)

respectively. Here 11 and A are given by Eqs. (3.2) and
(3.6), respectively. We assume that z is sufficiently small
such that ~=/(q), (4.10b)

where D(T)) Df and hence a&0. For T & Tf, we infer
by comparison with Eq. (3.13) that

z/3 y/3

(X Y,X Y)

Defining the normalized relaxation function

F(q, z ) =D(q)C&"(q, z ),

(4.2)

(4.3)

where e) 0.
Using Eq. (4.8) instead of (4.6), we rewrite Eq. (4.4) as

zF —eF+igDf '=0 . (4.11)

We recall that e, D, g, and F depend on q. Depending on
whether T)Tf or T & Tf, we take expressions (4.10a) or
(4.10b) for e, respectively, while @=0 at T=Tf. The
solution of Eq. (4.11) is given by

and using relation (4.2), we get from Eqs. (4.1a) and (4.1b)
(~4+ 16 2 2D —2)1/4

F(z)= + exp[ —i 0(z)], (4.12a)
2z 2z

with
[F(q, z )+i'(q)D '(q) j[1 zF(q, z )j—

=1=—g IC(q, p)F(p, z ), (4.4)

8(z) =
—,
' arctan

4zqDf '

g2
(4.12b)

where K is given by Eq. (3.14) and where

( )
/3 q 7'Pq
(X Y,X Y)

(4.5)

At T= Tf and for small z we assume that F =z ', with
0 ( n ( 1. We will show that this assumption is self-
consistent with Eq. (4.4). In leading order of small fre-
quencies, we neglect the terms r/D ' and zF in Eq. (4.4),
thereby obtaining

Using z =co+i 0 and defining

e Df
4r]

F'(co) =P
1

2'

F"(cu) =— e+ hei

2

we obtain for the real and imaginary parts of F (z)

e+ (co,+co )' cos

(4.13)

(4.14a)

F(q, z ) =—g Ef (q, p)F(p, z ) .1

p

(4.6)

Ff (q, z ) = ——2/(q)Df '(q) (4.7)

Here Df stands for D at T= Tf . The z ' dependence
of the relaxation function F(z) is characteristic for the
simple glass transition described in Sec. III. It is also fa-
miliar from spin-glass theory. For a comparative
discussion, see Ref. 32.

The subscript f indicates that K is taken at T=Tf. Re-
placing the right-hand side of Eq. (4.4) by F(q, z ), we ob-
tain

1/2

—P e(~2+~2)"4sin-
2co i/co& 2

J

(4.14b)

where P denotes the principal part and where
0=(—,

' )arctan(co/co, ). At Tf, we get

1
1/2

gDf '
F"(~)=—

2/co[
(4.15)

S(q, co) = —T@"(q,co) . (4.16)

Using definition (4.3), we have 4&"(co) =D 'F"(cg). Con-

in agreement with expression (4.7). At low frequencies,
such that co (k~ T, the dynamic scattering law reads
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sidering expression (4.14b) for F"(co) for T close to TI
such that co, & co, we finally obtain

S(q, co) = TD '(q)

given by expressions (4.10a) and (4.10b) for T) T& and
T (T~, respectively. Recent neutron ' and Brillouin
scattering data suggest the existence of a dynamic central
peak in addition to the static component.

CO~1— F"(~) (4.17)
V. MICROSCOPIC RELAXATION

The first term within square brackets is different from
zero for T & T& where e=P(q). It represents a static
central-peak contribution of intensity

+„(q)= TD '(q)P(q) . (4.18)

4h =x(y/T) x(1—x)h

The sum

(4.19)

Starting from 0 at T&, 4„,due to nonergodicity, increases
continuously with decreasing T. V„accounts for collec-
tive freezing processes and exhibits a characteristic q
dependence. ' In addition, there is a further contribution
4&, due to local freezing, to the central peak intensity.
4& is a direct consequence of the coupling V of random
strain fields to the orientational order parameter. Its in-
tensity is given by" II(z) —o (z) = —D(q) —g K(q, p)F(p, z )

1

N

iP (q)XP(q)y
&~')o

(5.1)

Here we want to study the T and co dependence of the
displacement-displacement response function, with par-
ticular emphasis on the phonon damping. Low-
frequency shear response experiments have shown
anomalous elastic loss peaks to occur in K(CN) Br,
In a recent extension of these experiments, it has been
found that additional relaxation processes inAuence the T
dependence of the elastic constants c44.

We start again from Eq. (3.1), where we consider the
memory kernels II(z) and cr(z) in the slow dynamics re-
gime according to Sec. IV. Using Eqs. (3.2), (3.6), and
(3.14), we find

rY( q ) +YY( q ) ++YY (4.20) The first term on the right-hand side is rewritten by
means of Eqs. (4.9) and (4.8) with the result

is shown in Fig. 1. In presence of strong random fields,
O'I, is zero (see remark at the end of Sec. III), and the
central peak intensity is solely due to local freezing pro-
cesses. We believe that this situation occurs in
(NaCN), „(KCN)„with x =0.5.

The second term within square brackets in Eq. (4.17) is
proportional to FI'(co) and therefore leads to a quasielas-
tic central peak, the intensity of which has a co

' singu-
larity. Away from TI, the quasielastic intensity decreases
with increasing co, and disappears for co,=2'. The de-
crease is asymmetric in T with respect to TI, since e is

1—D(q) —QK(q, p)F(p, z ) = —D/(q)F(q, z )

p

(5.2)

for T) T&. Since D o-X ' and since X(q) for q=0 is al-

most constant for T & TI, we adopt Eq. (5.2) also for
T & T&. The second term on the right-hand side of Eq.
(5.1) accounts for single-particle orientational relaxation.
In principle, y is frequency dependent and identification
with single-particle dynamics yields

~(z+iA).
&~')o

(5.3)

1.2
+

h n
1.0

0.8
h =100 K

II(z) —cr(z) = —DI(q)F(q, z )+i ri(q, z ),
where

(5.4a)

where X is a relaxation frequency. Taking into account
Eqs. (5.2) and (5.3), we get for Eq. (5.1)

0.6
g(q, z)= b, (q)

2+le (5.4b)

with b, (q)=p (q)X/3(q). In the following, we assume
that the relaxation frequency A. is given by an Arrhenius-
type expression

0.2
A, =A,oexp( —A /T ) . (5.5)

0.0
75

I

80 85
I

90 95
T(K)

I

100 105

FICx. 1. Glass order parameter + (q), Eq. (4.20), as function
of temperature and wave vector, random field h = 100 K.

Here ko is an attempt frequency and 3 is an activation
energy. We notice that for A. )z, g reduces to expression
(4.5). This situation, which corresponds to the fast relax-
ation case, breaks down at low T close to T&.

Taking into account Eq. (5.4a) we rewrite (3.1) as
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[Iz' —D f ( )+Ezq(z)]@ss(

(5.6)
0.6

0.4

=[Iz—D Ff (z )+ & g(z) ]D
—

&

e consider the co
ima in

e component N"
aginary part of N reads

» with q=(0, . e, q, O). The

43

where
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2

cd)

[co —D —coal' (co)] + IcoX"(co)]
(5.7)

0.2
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320

240

160

80

88 92 94 98

FIG. 5. Same as Fig. 4, A =900 K.

VI. DISCUSSION

We have presented a theory where the transition to the
orientational glass state in mixed crystals is essentially a
dynamic phenomenon. As a particular example, we have
in mind the quadrupole glass K(CN)„Br i . We there-
fore confront our results with the experimental situation
in that substance.

A direct signature of the glass state is the appearance
of a static central peak in neutron scattering. The cen-
tral peak has a characteristic temperature and wave-

0
85 90 100 105

FIG. 6. Attenuation for high and low frequencies, A =300

attenuation at Tf. It is a consequence of the co ' singu-
larity in F"(co), Eq. (4.15), and therefore of the slow dy-
namics associated with structural arrest. Furthermore,
we notice that the asymmetric T dependence with respect
to the maximum of o. near Tf rejects the corresponding
asymmetric T behavior of F"(co). (See remarks at the
end of Sec. IV.) The asymmetric T dependence of the at-
tenuation is in agreement with experiment. '"' Finally,
we show in Fig. 6 the attenuation a as function of the
measuring frequency co. We recall that the anomalous in-
crease of the attenuation a is absent in KCN, where the
ferroelastic phase transition is of first order.

vector dependence. We find [Eq. (4.20) and Fig. 1] that
the central peak intensity is a sum of two contributions, a
first one O'I, already present in the orientationally disor-
dered phase and varying as T . It is q independent and
accounts for local freezing. The second contribution
%'„(q) is due to the nonergodic instability, and represents
a collective freezing process. Its intensity is zero at Tf
and then increases continuously with decreasing T. The
total central peak intensity has therefore a steeper in-
crease than a T law for T(Tf. This fact had been
pointed out previously when the intensity 4h was com-
pared with the experimental situation in K(CN) Br,
for x =0.5. From the q dependence of %„(q) in Fig. 1,
we conclude that for T & Tf, correlated regions of dimen-
sions q

' and infinite lifetime start to build up. For a
given T, regions of larger extension are blocked more
easily than smaller regions. This fact is reminiscent of
the situation at a second-order phase transition, where
long-range correlations have a longer (finite) lifetime than
short-range ones. The proximity of a second-order phase
transition in the case x =0.50 is also borne out by diffuse
scattering intensities measured by neutron scattering
and by low-frequency shear response experiments ' in
K(CN) Br,

The low-frequency experiments are particularly in-
structive, since they allow the study of slow relaxation
processes. The primary elastic loss peak in the x =0.50
sample occurs at a temperature Tf =75 K, where the
elastic constant c44 reaches its minimum. The situation is
in qualitative agreement with our theoretical results on
the ultrasonic attenuation a (Figs. 4 and 5). The elastic
loss peak is due to the slow dynamics associated with
structural arrest [Eqs. (4.14a) and (4.14b)] and affects the
memory kernel II(z) in Eq. (4.1a) for the displacement re-
laxation function 4"(q,z). Notice that the asymmetric T
dependence (with respect to T~) of a is also in qualitative
agreement with experiment.

It has been suggested that the primary elastic loss is
due to dissipative motion of the walls of ferroelastic
quasidomains. This physical picture does not contradict
our theoretical formulation. Indeed, we can identify the
domains with the correlated regions, described by 4„(q)
in the glass state, and by the relaxation function F(q, z )

(see Sec. IV) in the regime of slow dynamics.
The presence of microscopic relaxation effects is obvi-

ous from many experimental data. ' ' In particular, the
T value where the elastic constant c44 is minimum de-
pends on the measuring frequency of the experimental
method. Our formulation (Sec. V) takes into account
single-particle orientational relaxation. The results of
Fig. 3 show that the position of the minimum shifts to
higher-T value with increasing frequency. Concomitant-
ly, the values of D'(co) at low T are much lower for the
low-frequency case than for the high-frequency case.
Also, here our results agree with experiment; in particu-
lar, one sees that the low Tresults of D'(co) -in the low-
frequency case are much lower than the corresponding
high-T results. The low-frequency results demonstrate
that the crystal remains soft to a large extent below T .f'

The essential new feature in dynamic scattering law
Eq. (4.17) is the appearance of a dynamic central peak. It
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accounts for the slow dynamics at structural arrest.
There are experimental indications for such a
phenomenon, which is still a subject of current
research.

The static and dynamic phenomena which are typical
for a nonergodic instability seem to account for the ex-
perimental situation in K(CN) Br& „ for x =0.5. This
value is close to x„where for x &x, =0.57 the system
still exhibits a second-order phase transition. In Table I
we have demonstrated that the nonergodic instability is
suppressed at low values of x. Here random-field e8'ects
dominate in comparison with the collective interaction,
and the freezing process is a local phenomenon.

The concepts which are at the basis of the present
theory are rather general. Substitutional disorder leads
to random strain fields, which have two effects: (i) linear
coupling to the order parameter and (ii) scattering of dy-

namic waves, giving rise to a nonergodic instability. It is
still an open and interesting problem to investigate
whether (ii) applies also to other glass-forming mixed
crystals such as Rb, „(NH)4)„H2PO4. Here the
inhuence of local random fields on the proton freezing
has been studied. Neutron-scattering results suggest
that dynamic phenomena, possibly associated with a
nonergodic instability, are important.
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