
PHYSICAL REVIEW 8 VOLUME 43, NUMBER 5 15 FEBRUARY 1991-I

Quasiparticle properties of doped quantum-well systems
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A two-pole model for the inverse dielectric matrix for a doped quantum-well system is developed,
including both intraband and interband excitations. Using this model response function, the quasi-
particle properties in GaAs quantum wells are investigated within the GR' approximation for the
electron self-energy. It is found that, for wide wells, intersubband scattering terms contribute
significantly to the subband-gap renormalization, effective-mass changes, and quasiparticle lifetimes.
It is found that intersubband electron-electron scattering rates may be similar to those for LO-
phonon emission, while intrasubband rates can be an order of magnitude higher.

I. INTRODUCTION

The electronic properties of quasi-two-dimensional
(2D) systems have been studied extensively both experi-
mentally and theoretically in recent years. ' In addition
to one-electron properties, many-body effects (quasiparti-
cle effective mass and correlation energy) have been stud-
ied. In this respect, changes in effective masses and sub-
band renormalization in silicon inversion layers' have
been of interest, since in this case the 2D electron density
can be varied continuously over a wide range and there-
fore provide the opportunity to test, in some detail, the
theory. More recently GaAs/A1As systems have become
the center of attention where, for instance, a single layer
of GaAs between two semi-infinite Ga-Al-As slabs pro-
duces a 2D quantum well for electrons in the conduction
band of the GaAs. In such systems, because of the low
GaAs band mass, many-body effects are not expected to
be as important as in silicon. However, there are still
'significant exchange-correlation contributions to the
quasiparticle properties.

The central quantity in any calculation of quasiparticle
properties is the electron self-energy. This requires the
calculation of the screened electron-electron interaction,
which in turn involves the calculation and inversion of
the dielectric response function. For homogeneous sys-
tems this can be greatly simplified by making use of the
well-known plasmon-pole approximation for the inverse
dielectric function. " In this approximation, the full spec-
trum of excitations (plasmons and electron-hole pairs) to
which the electrons may couple is replaced by a single
branch of effective bosons. The energy and oscillator
strength of the effective modes are then determined by
fitting to the static response function and to the longitu-
dinal f-sum rule. In the past, plasmon-pole approxima-
tions have been employed successfully in the calculation
of quasiparticle properties for the three-dimensional elec-
tron gas and, neglecting intersubband excitations, for the
quasi-2D electron gas. G eneralized forms of the
plasmon-pole approximation have also been applied to
the calculation of band-structure properties of semicon-
ductors and simple metals and to the calculation of

quasiparticle properties in layered 2D electron-gas sys-
tems.

The use of the plasmon pole concentrates attention on
the plasmons themselves and gives a clear physical pic-
ture of the self-energy as due to the virtual exchange of
plasmons and the lifetime of the state (given by the imagi-
nary part of the self-energy) as due to plasmon emission.
There have been a number of calculations of the plasmon
spectrum in quasi-two-dimensional systems using a
variety of formalism. ' The conclusion for the common
quantum-well system with one occupied band is that
there are as many plasmon bands as there are electronic
subbands. The lowest plasmon band is due to intraband
and the higher bands are due to interband polarization.
The energies of the plasrnons are typically of the order of
both the intersubband energies and, for typical experi-
mental parameters, optical phonon energies. This, to-
gether with the reduced dimensionality, suggests that the
self-energy and hence the quasiparticle parameters can be
expected to show Inuch more structure than in the case of
bulk semiconductors.

The purpose of this paper is to generalize the
plasmon-pole approximation to the multiband case in
quantum wells in order to both simplify the calculation of
the self-energy when intersubband excitations are of im-
portance, and hopefully clarify the physics. In Sec. II the
longitudinal f-sum rules for the elements of the inverse
dielectric matrix are described for a quantum well with
two subbands of importance, and in Sec. III the
plasmon-pole approximation is defined. In Sec. IV the
model response function is applied to the calculation of
quasiparticle properties in GaAs quantum wells. We em-
phasize the importance of intersubband scattering contri-
butions to the subband-gap renormalization and to quasi-
particle lifetimes. Conclusions are presented in Sec. V.

II. MODEL AND SUM RULES

We consider the lowest two subbands, n=0, 1, of a sin-
gle modulation-doped semiconductor quantum well of
width a within the effective-mass approximation. For
simplicity we assume that only the lowest subband is oc-

43 4323 1991 The American Physical Society



4324 J. A. WHITE AND J. C. INKSON 43

cupied with an areal electron density N. We also assume
that the subband wave functions are those of an infinite
square well. This is expected to be a good enough ap-
proximation for symmetric quantum wells in the
GaAS/Ga1 Al As system when the barrier height is
high compared to the energy gap between the subbands.
Electrons exhibit free-particle-like behavior in the plane
of the well, with "bare" mass m for each subband. The
screening of the Coulomb interaction by the intrinsic
semiconductor is described by a dielectric constant ~.

The Hamiltonian for the system then is that of parti-
cles in a simple 2D square-well potential interacting via a
Coulomb interaction e /~r. The spatial part of the wave
function for the single-particle state with parallel momen-
tum k, in subband n, is thus

gk(r) =P„(z)e'"~,
where r=(p, z) and any k dependence of the P„(z) is
neglected. Denoting the corresponding annihilation
operator for spin o. as ck„, the Hamiltonian may be
written

H g rqncqnacqno
q, n, o

1 11'nn '+
2 g Vq Ck+qlnck' qno Ck'n'0. 'Ck['~, (2)

q&0
k, k', o., o.'

l, l', n, n'

where t n =En+q /2m are the "single-particle" nth sub-
band energies, with minima at E0 =0 and E1 =Eg,

y ll'nn'

0 x —x
p (& )p (&') U

Dll'nn' (3)

are the Coulomb matrix elements between subband wave
functions ll'nn' for a momentum exchange of Aq,
U =2~/~q is the 2D Fourier transform of the Coulomb
interaction, and D is the weighting factor. All other sym-
bols have their usual meaning. In the Hamiltonian (2) we
have included all electron-electron interactions beyond
the Hartree approximation in the second term.

From the orthonormality of the subband wave func-
tions, it is easy to show that D, D '"', D "~1 and
D ' ' ~ qa as qa ~0, while all of these four terms are pro-
portional to 1/qa for qa ~~. By symmetry we also have
D 0001 D 1110 0

The random-phase approximation (RPA) dielectric
function for the system is most easily dealt with by con-
sidering the Fourier transform in the plane and then ex-
pressing it as a matrix in the subband pairs appropriate to
the Coulomb matrix elements in Eq. (3), thus

e p(q, co) =o
fs V~Pp(q, co), —

where the indices a and 13 are the subband pairs
(00),(01),(11). We shall denote such subband pairs with
greek letters throughout this paper.

The calculation for the intrasubband polarization P00
has been performed by Stern and for the intersubband
term P01 we use the formulation of King-Smith and Ink-
son. Since only the lowest subband is occupied, P» =0.

+ «Ip"",'Is & &sip,"'I0&]

(where s are the eigenstates of the Hamiltonian) and com-
paring with the definition of the density-density correla-
tion function. ' This allows the sum rules for the inverse
dielectric function to be written down as

f co lme ' (q co)de= ——V F0000 &

2 q q
(10)

The spectrum of excitations is given by the inverse dielec-
tric matrix

Ime fs'(q, co)%0,

i.e. , intraband electron-hole pairs when Im[PO0(q, co)]&0,
interband electron-hole pairs when 1m[Pa, (q, ~)]&0, »d
plasmons when dete ~(q, co) =0.

In this case the plasmon modes are unmixed because of
the symmetry, i.e., they are pure intraband and pure in-
terband excitations given by eoooo(q, co) =0 and

eo&o&(q, co)=0, respectively. In other words, there are no
off'-diagonal terms in e &(q, m) so that the inversion is
trivial and dete &(q, co) reduces to eoooo(q co)eo]o&(q, co).

The intraband plasmon corresponds to charge-density
oscillations in the plane of the quantum well and has the
well-known co ~ q' behavior at long wavelengths. The
interband plasmon corresponds to charge-density oscilla-
tions across the well and its energy tends to a constant
value in the q —+0 limit. The excitation spectrum is
shown in Fig. 1 for GaAs parameters (m=0.07, ir=13)
when the well width a=100 A, N =3.3 X 10" cm, and
the subband gap has been chosen as 30 meV. Also note
that there is no Landau damping of the intraband
plasmons lying within the interband electron-hole contin-
uum due to the symmetry, which ensures that
D0001 D 1110 0

Now, in order to make a plasmon-pole-type approxi-
mation for the inverse dielectric matrix we require the
longitudinal f-sum rules for the individual elements of
the inverse dielectric matrix. As we wish to take each
subband into account separately, we must consider the
operators

nn'
Pq ~ C k+qn o ~kn'o.

k, o.

such that the operator denoting the parallel density Auc-
tuations at point z with parallel wave vector q is

pq(z) = g P„*(z)P„(z)pq",
n, n'

and the real-space density operator is the two-
dimensional Fourier transform of this. The double com-
mutators

Fll'nn' —( 0I [ [H pl! ] pnn' ] I0 )

contribute to the oscillator strength sum for the inverse
dielectric matrix, where the expectation value is taken
over the interacting ground state. This may be seen more
clearly by writing

F '""'=—g (E, E)[(OIp 'Is)(sIp""'IO—)
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2

Foooo
q (12)

F0110 F1001 ~ N N
2n (13)

80

co (meV)

—1
( )d — ~ Volol(~allo+F1001 )

0
co mE0101 q, co co—

Unfortunately, expression (8) cannot be evaluated in
the general case without, in effect, solving the many-body
problem. Instead we restrict ourselves to the calculation
of the f-sum rule for the RPA inverse dielectric matrix.
This is obtained by replacing the full Hamiltonian in Eq.
(8) by the kinetic-energy term only. Then the density-
density correlation function becomes just the lowest-
order approximation to the polarization and the only
nonzero terms of F""" are those with I =n', I'=n. In
fact, this is just the Hartree-Fock approximation to the
inverse dielectric response function. This does not re-
strict the applicability of the resulting sum rules, howev-
er, since it can easily be shown that the Hartree-Fock,
RPA, and Hubbard-type dielectric functions' satisfy the
same longitudinal f-sum rule. Evaluating the commuta-
tors we find

with all other terms zero. Finally, it also follows that

colm@ ' (q co)dc@= ——V" F1100 &

2 q q
(14)

In the limit q ~0 these sum rules are exhausted by the
plasmon modes. Equations (10) and (14) are the same as
those used by Vinter ' to treat intrasubband excitations,
while Eq. (11) describes the total coupling strength to in-
tersubband excitations.

Now we ask how these results are affected if we go
beyond the RPA. Suppose only Coulomb terms that do
not scatter particles between subbands (i.e., terms of the
form V""")are included in the Hamiltonian (2) when the
double commutator of Eq. (8) is evaluated. This means
that all renormalizations of the Green functions due to
coupling to intraband excitations are included in Eq. (9).
These are expected to be the most important corrections.
In this case one finds that the density operators p and
p" each commute with the Coulomb potential-energy
operator so that the RPA result [Eq. (12)] remains valid.
p

' does not commute with the Coulomb potential, how-
ever, so that Eq. (13) is not valid at this level of approxi-
mation. The correction to F " and F' ' arising from
these terms is independent of q and so appears as a
correction to E when added to the RPA result [Eq. (13)].
We find

gF0110 gF 1001
q q

0 ~ V0000 V0011

k, k'
q'%0
o', o

60—

40—

20—

k+ q'Oo k' —q'Oo. ' k'Oo. ' kOo

Here ~0) is the ground state for the Hamiltonian contain-
ing only Coulomb terms of the form V '". Using the
Hartree-Fock approximation for ~0), only the "exchange
term" (q'=k' —k) contributes to the sum over q'. That
term proportional to V appears as just an average
(over the occupied levels) of the exchange energy in the
lower subband, while that proportional to V " must be
interpreted as an excitonic correction.

In practice a more exact calculation would start with a
self-consistent solution to the electronic states in the
quantum well so that most of these corrections are al-
ready taken account of in the definition of the energy lev-
els tk„. We shall therefore use Eq. (13) and assume from
now on that this renormalization of the energy levels is
included in the input value of E .

0
0

I

0.2
t

0.4 0.6 0.8 1.0
q/k

FIG. 1. Plasmon modes (thick lines) of a doped quantum well
with n =3.3X10" cm, well width a=100 A, Eg =30 meV,
~=13, and m=0.07. The shaded areas show the intraband and
interband electron-hole continua. Also shown (thin lines) are
the effective intraband and interband plasmon poles of Eq. (19),
which approximate the plasmons for small q and lie inside the
electron-hole pair bands for large q.

III. PLASMON-POLK APPROXIMATION

2

e '(q, co) = 1+
2 2

Ct) COq~+ l 5
(16)

Ensuring that the f-sum rules of Eqs. (10)—(13) are
satisfied gives

For the symmetric quantum well it is sufficient to con-
sider the diagonal elements of the dielectric matrix. Fol-
lowing Ref. 4 we approximate the elements of the inverse
dielectric matrix by
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2 y 0000~0000 ~ D 0000
F00 4 q q

(17) X„(k,E)=, g I6,', (k+q, E+~)W„»~(q, ~)
8m

~D 0101
2 V0101(E0110+E1001)~p01 q q

E +
2m

Xe' dq den:—g X'„„(k,E)6„
I

(22)

and the condition that each element be correct in the
static limit gives the "plasmon-pole" frequencies

where G„„ is the noninteracting Green function for elec-
trons in subband n and the 8'&& „„arematrix elements of
the screened interaction

co =co [1—e '(q 0)) (19) W t1(q, co ) = g e r'(q, co ) Vqr~ . (23)

The plasmon poles co 00 and co 01 are shown in Fig. 1 in
comparison with the actual (RPA) plasmons. For small

q, Eq. (19) gives the same dispersion, to lowest order, as
that of the actual plasmon modes. This further implies
that the residues of the poles in the inverse dielectric ma-
trix, or equivalently the screened interaction, are the
same for the approximate plasmon poles and actual
plasmon modes in this q~O limit. For large-q values,
the poles approximate the two electron-hole pair bands,
with one pole lying in the center of each electron-hole
continuum.

For an asymmetric well, for which the matrix elements
V ', etc. , are nonzero, the situation is more complicat-.
ed. It is no problem to obtain the RPA f-sum rules for
every element of the inverse dielectric matrix in this more
general case if we make use of the fact that

co 1m[a &'(q, co)Idco= —I colm[@ t3(q, co) jdco, (20)
0 0

which follows from the asymptotic form (co~ ~ ) of the
dielectric matrix. There is in this case, however, more
than one way to construct a plasmon-pole approximation
for which each element of the dielectric matrix satisfies
the f-sum rule and also has the correct co=0 behavior.
The simplest is to assume a single-pole form for each ele-
ment

X'„„(k,tk„) describes the perturbation of the quasiparticle
state (k, n) by its coupling, via the Coulomb interaction,
to the states consisting of a quasiparticle in state (k+q, l)
plus a plasmon of momentum q. " Thus the quasiparticle
energies are given approximately by

(24)

Using the plasmon-pole approximation for the
screened interaction, the energy and part of the momen-
tum integrations can be performed analytically resulting
in a Coulomb hole term, which involves integration over
the whole of two-dimensional momentum space, and a
screened exchange term for which integration is over
only occupied "internal" states (i.e., ~k+q~ (kF when
l=0 only).

For the terms with internal Green function l =n, the
plasrnon in the intermediate states are of intraband type
only (i.e., co&=co 00), while for the terms with lan the
plasmon in the intermediate states are of interband type
(i.e., co~ =co 0, ). Physically these correspond to the virtu-
al electron state being in the same or alternate subband
respectively, i.e., interband plasmons cause transitions be-
tween subbands while intraband plasmons leave the elec-
tron in the same subband.

2

e &'(q, co)=1+
COq~P+ l 6

(21)

which is the tight-binding equivalent of the reciprocal
space generalized plasmon-pole approximation used by
Hybertsen and Louie to calculate semiconductor-band
structures. We shall not go into other possible definitions
here, which may be defined analogously to the methods
of Refs. 6 and 7, but will instead use Eqs. (16)—(19) to in-
vestigate the importance of interband scattering terms to
the quasiparticle properties in a symmetric quantum well.

IV. QUAS I PARTICLE PROP ER TIES

The calculation of the quasiparticle properties involves
the evaluation of the self-energy. For the symmetric
quantum well, this is diagonal in the subband index and
each of the diagonal elements has two contributions,
which we label by the band index of the internal Green
function:

A. Quasi particie subband renormalization
and eft'ective masses

Figure 2 shows, for GaAs parameters, the real part of
the self-energy at the quasiparticle peak, i.e., the contri-
butions to the effective exchange correlation potentials as
a function of parallel momentum.

First consider the two largest terms 2&0 and X», which
involve intraband (virtual) scattering processes. The
self-energy in the lower subband has, generally, the larger
magnitude. This is partly because the Coulomb matrix
element is larger, but also because of the screened ex-
change term which acts only on the lower subband. This
means that the effect of exchange and correlation is to in-
crease the subband gap. The other significant feature of
these two terms is the sharp downward "spike" at around
k = 1.4kF, which occurs at the threshold for an electron
to emit plasmons. This is seen in 3D systems as well,
but is more pronounced here because of the reduced
dimensionality. This spike is largest in the higher sub-
band because the electron-plasmon scattering is restricted
in the lower subband by the Pauli principle.

The other main effect of the screened exchange term
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may be seen in the different behavior of X and X' f
k&k .

pp an 11 ol
F. Screened exchange reduces the energy of states

inside the Fermi circle and this effect increases with in-
creasing density. For sufficiently high densities then, Xpp
is an increasing function of k for small k whereas X'
always a decreasing function of k for small k.

1 0The terms Xpp and X» involve intersubband scattering.
These terms are much smaller than the intraband scatter-
ing contributions because of the smaller Coulomb matrix
elements. Again, each term has a peak corresponding to
the threshold for emission of the effective intersubband
plasmons. These are just visible at k =1.1kF for X and
k =2.3k forF for Xpp. Note that Xpp is usually negligible be-

F or 11 an

cause there is no exchange contribution and also because
of the large energy separation between the states coupled
by the interaction. In X&1 it is bare exchange that is the
dominant contribution. This is strongly dependence on
the well width through its dependence on the Coulomb
matrix element V ' '.

Figure 3 shows the exchange-correlation correction to
thee subband gap as a function of electron density, with
and without the effect of intersubband scattering, for two
values of the well width. Here the gap has been evaluated
at the Fermi wave vector. Note that the interband terms
cause a decrease in the subband gap which, in this case,
cancels by about 30% the correction from intraband
scattering. This reduction is seen to be relatively more
important for the larger well width. The largest value of

1 1 d
+k dkR X (k, t )I (25)

curacy yThis can easily be calculated to the desired accurac b
numerical differentiation of the self-energy. From Fig. 2
we saw that the interband scattering contribution Xpp to
the self-energy is very small and is, moreover, a very Oat
unction of k in the region k =kF. Its effect on I * is

therefore negligible, as was also shown by Ohkawa for
silicon inversion layers. The behavior of I* is therefore
determined by the intraband term in the self-ene Xe -energy

X plotted here corresponds to EF=F. , i.e., the higher
density for which only the lowest subband is occupied. It
should be noted that the results for the exchange-
correlation correction to the subband energies cannot be
compared directly with experiment since we do not have
the Hartree potential. However, it can be seen that if a
comparison of theory and experiment is to be made, then
this will require the inclusion of intersubband scattering
effects in the exchange-correlation potential. Another in-

bod
teresting point would be to compare the results f

o y perturbation theory with those of density-functional
theory, in order to investigate to what extent these inter-
subband scattering processes are included in a density-
functional approach.

The quasiparticle effective mass I*, which is defined
in terms of the quasiparticle group velocity U at the Fer-
mi surface, is given by

Re(Q (k,t~))
(2)

6
hE (me V)

(3)
(2)

-10—

(4)

-20

0.0 0.2
I

0 4 0.6 0.8 1.0
N(10' ~m-2 )

FICr. 2. Real part of the contributions to the self-energy,
evaluated at the quasiparticle peak, as a function of k. Zoo [line
(l)], Zoo [line (2)], g, [line (3)], and X', , [line (4)], as defined by
Eq. (22), are shown. Here N=6. 4X10" cm, E =30 meV
and a=100 A.

FICy. 3. S 1-e f-energy contributions to the subband gap AE~gW

evaluated at k =kF, as a function of electron density N, shown
for a = 50 A, excluding interband scattering [line (I)] and includ-
ing interband scattering [line (2)]; also for a=200 A, excluding
interband scattering [line (3)] and including interband scatterinan sca

erring
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Figure 4 shows m* as a f
for t

a function of electron densit N

eral behavior of m UX th
an 200 A. Th

m U t at we see is in agreement
previous calcu lation 1 2s; ' e effective mass is higher than
t e are mass at low electron density and dro s ra idl

e variations are in the re ion o
o in t e density range considered. Notice
g y lower for the wider well. This ist at m* is si nificantl

because the short-ran e art o
'

uceg par of the interaction is reduced
in wide wells, which increases the im orta

ed that for a simple well like 30
electron as the F

7 a

which the self-en
' '

i
g, ermi level lies away from th
e self-energy is varying rapidl . Th

p
'

e size of the mass changes [E . (25)]. Fq. . or dou-
coup ing etween plasmons can be impor-

tant, t is is not necessarily the case and a 1

can result. '
n a arger change

B. Quasiparticle lifetime

In a quantum-well system the uasi ar
'

p
ne y t e possibility of the excitation of lasmons

phonons, or electron-holen- o e pairs. In our present model
system phonons are neglected a d h
approximation the electron-hol

~ ~

an in t e plasmon- ole-P
on- o e excitations have been

su sume . Calculations using the full RPA response

function show the efFect of thes bese to e small anywa so
what we are concerned with here is the ma nitu

e o t at expected from the low-ener
bulk value, which is dominated b h

w-energy

athematically, the inverse lifetime for ua
bbin su and n due to scattering into b-

and n' is given by
0 su

rg„'„=—2 ImX„"„(k,tk„) . (26)

30

-1
knn

(meV)

Like an realy scattering process, energy d
turn must be con

y an momen-
e conserved. This gives a well-defined thr

old for emission and he
e- ene t resh-

nd hence a sharp structure for the life-
time as a function of quasiparticle state. Results f

ue to tntrasubband scattering (the
sion of an intraband lap asmon) as a function of ua

' t'-
e emis-

c'e momentum k, ~ ' an
uasiparti-

, ~koo, and ~k11, are shown in Fig. 5 for
an electron density N=6. 4X10" cm and for w
widths a=50 and 200 A. The i

p o e in units of ener wi1 ttd'
e inverse lifetime has been

1013 —1s
gy, with 6.5 meV corresponding to

Since the C
s e wit

ou omb matrix elements f
cattering are reduced as well width

or intra and

wi t corresponds to a lower emission threshold and
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FIG. 5. Inverse lifetime ~k
' to ini trasubband scattering

turn k. Plotted f
in su an n as a function of uasi artiq 'par icle parallel mornen-

otted for both subbands and fofor two well widths:
A [hne (2)]; n=0, a=200, a= ine (1)]; n=1, a=50

ine; n= 1, a=200 A [line (4)]. Here IV =6.4X10"
and Eg =30 meV.
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also to a reduced scattering rate. The discontinuous
change in the intraband scattering rate in the higher sub-
band is typical of scattering from plasmons in a two-
dimensional electron gas. ' This discontinuity is not seen
for intraband scattering within the lowest subband, how-
ever, because of the restrictions of the exclusion principle
on scattering.

Figure 6 shows the intersubband scattering rates, again
for % =6.4X 10" cm and for two values of well width,
a=50 and 200 A. The subband gap has been taken as
E =30 meV. Of course, the threshold for the process
0~1 (emission of an n interband plasmon together with
excitation to the higher band) is much higher than that
for the process 1 —+0 in which the electron falls to the
lower subband. The largest effect, however, is that the in-
tersubband scattering rate is much larger for the wider
well. At a=50 A the interband scattering rate is only
about 1% of the intraband rate whereas at a =200 A this
has increased to about 10 fo. This ratio increases still fur-
ther for larger well widths, although for a) 500 A both
intraband and interband scattering rates are decreasing
functions of well widths as all Coulomb matrix elements
fall off as 1/a for qa )& l.

1.2

-1
knn'

(me V)

0.8—

As for the real part of the self-energy, we find that the
7 k ~o is almost independent of the input value of Eg This
is because the effect of the energy shift appearing in the
screened interaction and in the Green functions (i.e., the
changes in the interband plasmon energy and the band
gap) largely cancel. As expected, rko', is strongly depen-
dent on E, with the threshold wave vector increasing
and the scattering rate decreasing as Eg increases. Here
the same subband gap E =30 meV has been used for
both a=50 and 200 A, thereby isolating the effect of the
Coulomb matrix element. In reality, as d decreases, E
increases, so that the importance of 7.

I,O, is reduced still
further for narrow wells.

For the electron density considered here, the rate for
intrasubband scattering via the Coulomb interaction is
large compared with other scattering processes, such as
scattering from LO phonons. ' It is also found that in-
traband Coulomb scattering corresponds to large
momentum transfers (approximately kf ) so that it is an
effective channel for momentum relaxation. It is there-
fore expected to be the dominant scattering process in
hot-electron transport. The intersubband scattering rate
(1~0), although much lower than the intrasubband rate,
is still significant. From Fig. 1 it is apparent that, be-
cause interband plasmons exist only for small wave vec-
tors, interband scattering is predominantly due to emis-
sion of electron-hole pairs. For a=200 A, however, the
intersubband lifetime of about 10 ' s is still similar to
that for interband relaxation by LO-phonon emission. '

It might therefore be expected that electron-electron in-
teractions will also become the dominant intersubband
relaxation process inside wells for which the subband gap
is small enough to restrict LO-phonon emission.

These Coulomb scattering rates, both intraband and in-
terband, increase as electron density increases. From the
fact that residue of the screened interaction at the
plasmon pole (i.e. , the square of the electron-plasmon
coupling matrix element) scales as a~~!co~, the depen-
dence of scattering rate on electron density may be es-
timated. Using Eqs. (17)—(19), we find that the intraband
scattering rate scales approximately as between X' and
X, while the interband scattering rate scales approximate-
ly as X.

(3)

I

1.5
I

2.5

FIG. 6. Inverse lifetime ~k„„ to intersubband scattering from
subband n to subband n'Wn, as a function of quasiparticle
parallel momentum k. Plotted for both subbands n and for two
well widths: n= 1, n'=0, a=200 A [line (1)]; n=0, n'=1,
a =200 A [line (2)]; n = 1, n

' =0, a = 50 A [line (3)]; n =0, n
' = 1,

a=50 A [line (4)]. Again %=6.4X10"cm ' and Eg =30 meV.

V. CONCLUSIONS

The screened interaction quasiparticle properties of a
symmetric doped quantum well, including two subbands
with only the lowest occupied, have been considered. A
longitudinal f-sum rule has been derived for the elements
of the inverse dielectric matrix. This derivation is re-
stricted to the RPA, although the result is also valid for
Hubbard-type dielectric functions and is expected to be a
good approximation for the exact sum rule. A plasmon-
pole approximation to the screened interaction is then
defined which satisfies this f-sum rule and which treats
intraband and interband excitations separately. For the
symmetric well these modes are unmixed by symmetry.
For an asymmetric well the f-sum rule for the RPA in-
verse dielectric matrix follows from Eqs. (4) and (20) so
that a generalized plasmon-pole approximation could
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also be constructed in this case. This approximation to
the screened interaction was then applied to the calcula-
tion of quasiparticle properties in GaAs quantum wells.

We have seen that the positive exchange-correlation
contribution to the subband gap due to intraband scatter-
ing is partially canceled by the negative contribution
from intersubband scattering, which is predominantly
due to the bare exchange energy in the higher subband.
This cancellation is largest for wide wells for which the
intersubband Coulomb matrix element is relatively
larger. Further, the subband-gap correction was found to
be only weakly dependent on the first approximation for
the gap.

Intersubband effects were found to be negligible for the
quasiparticle effective mass I*, although I ' is strongly
dependent on well width through its effect on the
Coulomb matrix elements. Electron-electron interactions
cause m* to increase as well width decreases, which, in

GaAs/A1As systems, adds to the one-electron effects of
confinement and nonparabolicity which also tend to in-
crease m ' as well width decreases.

The quasiparticle lifetime to intrasubband and inter-
subband scattering has also been calculated. While the
exact form of scattering rate as a function of quasiparticle
momentum is not expected to be given accurately (in par-
ticular losses to electron-hole pair excitations are not
treated correctly), the magnitude of the scattering rates
should give a good account of the importance of the vari-
ous scattering processes. For typical 20 electron densi-
ties, intrasubband scattering rates are large and are ex-
pected to be the dominant relaxation process for hot elec-
trons: Relative to intrasubband scattering rates, intersub-
band scattering was found to be small, especially in nar-
row wells. The intersubband scattering rates are, howev-
er, significant and may be comparable to the intersub-
band transition rate via LO-phonon emission.

*Present address: Department of Theoretical Physics, Universi-
ty of Lund, Solvegatan 14A, S-22362 Lund, Sweden.

~T. Ando, A. B. Fowler, and F. Stern, Rev. Mod. Phys. 54, 437
(1982).

2J. L. Smith and P. J. Stiles, Phys. Rev. Lett. 29, 102 (1972); C.
S. Ting, T. K. Lee, and J. J. Quinn, ibid 34, 870.(1975); F. J.
Ohkawa, Surf. Sci. 58, 326 (1976); B. Vinter, Phys. Rev. B 13,
4447 (1976).

3G. Kawamoto, R. Kalia, and J. J. Quinn, J. Surf. Sci. 98, 589
(1980); T. Ando, in Third Brazilian School of Semiconductor
Physics, edited by C. E. T. Goncalves da Silva, L. E. Oliveira,
and J. R. Leite (World Scientific, Singapore, 1987).

4B. I. Lundqvist, Phys. Kondens. Mater. 6, 193 (1967); 6, 206
(1967);A. W. Overhauser, Phys. Rev. B 3, 1888 (1971).

5B. Vinger, Phys. Rev. B 15, 3947 (1977).
M. S. Hybertsen and S. G. Louie, Phys. Rev. Lett. 55, 1418

(1985); J. E. Northrup, M. S. Hybertsen, and S. G. Louie,
Phys. Rev. Lett. 59, 819 (1987); W. von der Linden and P.

Horsch, Phys. Rev. B 37, 8351 (1988); J. A. White and J. C.
Inkson, Soild State Commun. 66, 371 (1988).

7J. A. White and J. C. Inkson, Semicond. Sci. Technol. 4, 724
(1989).

8F. Stern, Phys. Rev. Lett. 18, 546 (1967).
D. Dahl and L. J. Sham, Phys. Rev. B 16, 651 (1977); A.

Eguiluz and A. Maradudin, Ann. Phys. (N.Y.) 113, 29 (1978);
A. Tselis and J. J. Quinn, Surf. Sci. 113, 362 (1982); R. D.
King-Smith and J. C. Inkson, Phys. Rev. B 33, 5489 (1986).
G. D. Mahan, Many-Particle Physics (Plenum, New York,
1981), Chap. 5.

"T.M. Rice, Ann. Phys. (N.Y.) 31, 100 (1965).
~J. A. White and J. C. Inkson (unpublished).

'3P. Hawrylak, Cx. Eliasson, and J. J. Quinn, Phys. Rev. 8 37,
10 187 (1988)~

~4B. A. Mason and S. Das Sarma, Phys. Rev. B 35, 3890 (1987).
~5B. K. Ridley, Phys. Rev. B 39, 5282 (1989); M. C. Tatham, J.

F. Ryan, and C. T. Foxon, Phys. Rev. Lett. 63, 1637 (1989).


