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Quasiparticle calculation of the dielectric response of silicon and germanium
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We calculate the dielectric function e&(co) of silicon and germanium for frequencies below the
direct band gap at the experimental lattice constant as well as the pressure dependence of the static
dielectric constant e&(P). Our theory is an extension of the local-density approximation (LDA). We
include self-energy effects by adding an operator to the usual LDA Hamiltonian; i.e.,
H„=Hk "+AkP, k. This form leads to a Ward-identity replacement p~(c„k—Hk ") '(c, k—Hk)p. Our theory is in agreement with experiment for e&(cu) at the level of a few percent. For
e&(P), we are in agreement with experiments for silicon and some of the conAicting experiments for
germanium. A prediction is made for the pressure dependence of the dielectric function of silicon
beyond the linear regime.

I. INTRODUCTION

In the past few years, a number of highly accurate
local-density-approximation' (LDA) calculations of the
dielectric constants of semiconductors have appeared,
supplementing earlier work and recent work which
makes additional geometric assumptions. ' ' " LDA
overestimates the macroscopic dielectric constant by at
least 10% in most cases; ' for germanium, there is an er-
ror of 25% (Ref. 3) or more. ' From one point of view, "
this failure is surprising: the static dielectric response of
a system is a "ground-state" property, and therefore it
should be well predicted by density-functional theory,
which in turn is thought to be well represented by the
LDA. '

From a second point of view, there is no surprise. The
overestimate of the dielectric constant in LDA is related
to the underestimate of the optical-absorption energies by
the Kohn-Sham eigenvalues. ' To take a simple model, if
there is only a single optical excitation energy E, then
the f-sum rule and the Kramers-Kronig relations suffice
to impose the relationship

COp

e(co) = 1+
Eg 67

where e(co) is the dielectric function and co is the plasma
frequency. Clearly, an underestimate of E will lead to
an overestimate of e(co) for small co. LDA's underesti-
mate of band gaps plays just this role. Density-functional
approaches beyond LDA such as weighted-density, ' '
Levine-Louie, ' or nonlocal exchange' improve the cal-
culation only to a limited extent. The principal improve-
ments must come from outside of density-functional
theory. Recently, Godby, Schluter, and Sham have
presented clear evidence that the density-functional for-
malism is incapable of correctly predicted the band gaps;
the local of a local approximation contributes an addi-

tional error in energies of about 20%. '

The GR' approximation has proved capable of pre-
dicting the optical excitation frequencies in semiconduc-
tors' ' ' and semiconductor surfaces ' to within 0.1 eV.
In brief, the GR' approximation is the Hartree-Fock ap-
proximation with the bare Coulomb interaction between
the electrons (1/r) replaced by the screened Coulomb in-
teraction (1/er). In addition to the computational suc-
cess, tentative estimates of corrections to GR'are seen to
be small for these systems. Happily, the quasiparticle
wave functions calculated in the GR' approximation' ' '

are in excellent agreement (wave-function overlaps
exceeding 0.999) with the LDA wave functions. This is
consistent with arguments that the excited-state
exchange-correlation functional differs from the ground-
state functional only by a position-independent con-
stant.

The highly successful 68' theory was flawed in that it
depended crucially upon dielectric screening, yet at-
tempts to use the improved eigenvalues of 68' actually
degraded the values of e compared to experiment. In
practice, the LDA dielectric function is used or the
local-density approximation and random-phase approxi-
mation (LDA/RPA) dielectric function. (In LDA/RPA,
exchange-correlation corrections to the local field are
neglected. ) Our thesis is that previous attempts to use
the 68' energies were performed naively because the ve-
locity operator was not renormalized; such renormaliza-
tion yields an excellent description of the dielectric
response of semiconductors.

Motivated by the 68' results, we propose that the
many-body effect of a quasiparticle energy shift in the op-
tical response may be included in one-electron theory at
the level of a scissors operator'"' AkPk, i e., a k-
dependent energy shift in the conduction bands which
does not change their wave functions. P,k is the projec-
tion operator onto all conduction bands at wave vector k
and 6k is some energy shift. That is, we adopt the Ham-
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iltonian

~LDA +g (1.2)

(nk~r~nk) and then converting to more sensible symbols
before any calculation takes place.

with the self-energy Xk chosen to have the scissors form

&i =~i~.k ~ (1.3)

We perform realistic calculations in our theory in the
cases of silicon and germanium. As discussed below, the
origin of "p" in "q.p" perturbation theory is the velocity
operator VkHk. The self-energy term modifies both the
eigenvalues and the velocity operator; moreover, even if
6k has no k dependence, the k dependence of the projec-
tion operator P,k is critical. The modification of the ve-
locity operator by a self-energy is known as a Ward iden-
tity. The magnitude of the shift can be found semi-
empirically ' from a quasiparticle local-density calcula-
tion or other simple models ' ' or from G8 calcula-
tions. ' ' ' A preliminary report of this work has al-
ready appeared.

Our results reproduce the experimental dispersion (i.e.,
frequency dependence of the dielectric function) and the
static dielectric constant as a function of pressure to
within a few percent. The scissors operator yields con-
sistently better results than LDA, although the LDA also
gives a reasonable picture. In the case of the pressure
dependence in the linear regime, we favor certain of the
mutually contradictory experiments over others. We
make a true prediction, i.e., a calculation in advance of
the experiments, for the value of the pressure dependence
of silicon in the nonlinear regime.

5n (r;co) = f dr'y(r, r';co)P'"'(r', co), (2.1)

where g(r, r;co) is the susceptibility associated with the
fully interacting system. To make progress, the suscepti-
bility is replaced by the independent-particle susceptibili-
ty go(r, r', co), and the external field is replaced by a self-
consistent field P "(r;co) in the expression

5n(r;co)= f dr'yo(r, r';co)P "(r';co) . (2.2)

The self-consistent field is related to the external field by

"(r;co)=(h'"'(r;co)+P'" (r;co) .

The induced field is taken to have two parts

P'" (r;co) =P (r;co)+P"'(r;co),

an induced Coulomb potential

(2.3)

(2.4)

A. TDI.DA —general formulation

The TDLDA has been presented earlier, ' ' so only
the basic equations will be given here. With the excep-
tion of the exchange-correlation term of Eq. (2.6), the for-
mulation has been given earlier for extended systems by
several authors ' ' and applied in realistic calcula-
tions. ' Consider the linear response of a system to a
time-dependent scalar potential P'"'(r; co ). In linear-
response theory, a number density will be induced ac-
cording to

II. THEORY
P (r;co)=e Jdr'

/r —r' (2.5)
We will modify the time-dependent local-density ap-

proximation (TDLDA) to take into account scissors
eff'ects at the level of a scissors operator. The goal is to
calculate the macroscopic dielectric function of semicon-
ductors (specifically silicon and germanium in this work)
using a plane-wave pseudopotential approach.

Our presentation is organized as follows. The TDLDA
equations will be presented and specialized to the case of
periodic solids in a plane-wave basis, and more
specifically to the semiconducting case. The long-
wavelength limit is of particular physical interest. The
equations are worked out in detail in the appendixes.
The modifications of the equations required to accommo-
date the self-energy operator in the scissors form are
presented next. The principal result is given by Eq.
(2.27). In a key example, we show that the net effect on a
well-known formula for the static dielectric constant
without local-field correction is to modify only one of
three energy denominators. The discussion concludes
with a section on the methods we chose to solve the equa-
tions. Specifically, we have adopted Richardson itera-
tion to find induced wave functions and the Shanks
transformation ' to aid in determining the self-
consistent fields.

We follow the suggestion of Martin and consider the
response of the system to an externally imposed potential
Joe'q' in the limit q~O. In this way, we avoid the usual
practice of writing ill-defined quantities such as

and an induced exchange-correlation potential

5 V„,(r)
P"'(r;co) = 5n (r;co) .

5n(r n(r)=no(r)
(2.6)

(2.7)

where the sum is taken over all single-particle states, the

The choice of Eq. (2.5) is characteristic of the Coulomb
gauge. 44

The use of Eq. (2.6) implies neglect of the nonlocality
and energy dependence of the electron's self-energy. In
the zero-frequency limit, the TDLDA involves no as-
sumptions beyond that of the LDA and linear-response
theory. Runge and Gross have proposed a time-
dependent density-functional theory which agrees with
the TDLDA in the static limit. " The corrections to the
TDLDA in a local-density-functional version of this
theory appear to be small. Note that the theory of
Runge and Gross is a density-functional theory of the
electron gas, whereas the displacement of the Kohn-
Sham eigenvalues' from the many-body quasiparticle en-
ergies both lies outside of the realm of density-functional
theory and depends upon the nature of exchange and
correlation in insulators.

The independent-particle susceptibility is given by
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+q), (r)G,*(r,r', E, fico—)y,*(r')P "(r;co) .

(2.8)

It is convenient to introduce the quantities

u,'+'(r; E,. +fico) = J dr'G, (r, r'; e;+fico)q); (r')ct) "(r';co)

(2.9a)

u,.
' '*(r;E, —fico)= Jdr'G, *(r,r', e; —fico)&p,*(r')P "(r;co)

(2.9b)

in terms of which

OCC

5n (r;co)= g q),
*. (r)u +'(r;e;+fico)

+u '*(r;e; —i)ico)q), (r) . (2.10)

The quantity u, ' '(r; E;+A'co) obeys

(E, +fico H)u, ' '(r;—E, +A'co)=P, q), (r)P "(r;co)

and u '(r; E; fico) ob—eys

(2.11a)

(E; fico H)u '(r;E—; —A'c—o) =P,y;(r)P "*(r;co),

(2.11b)

where P, is the projection operator onto the unoccupied
states, and it is understood that the u '(r; E;+fico) are—or-
thogonal to the occupied states. The induced monopole
is given by f d r 5n (r; co). This quantity vanishes, because
the u —'(r; E;+fico) are orthogonal to the occupied states
cp, (r). Solving for the linear response in this formulation
has been discussed earlier by other authors. '

B. TDLDA for periodic solids in a plane-wave basis

Assume that a periodic single-particle Hamiltonian ex-
ists which defines the states y, (r). For simplicity, the
Hamiltonian is taken to be spin independent. The wave
function may be expressed in terms of the reciprocal-
lattice vectors G as a sum

i(k+G) r

G
(2.12)

where the index i has been replaced by the band index n
and the crystal momentum k. Similarly, the potential
may be taken to be of the form

f, are orbital occupation factors, and il is a positive
infinitesimal. In the following, the single-particle states
will be taken to have occupancies of 0 or 1. Let
G, (r, r', F) be the Green's function associated with the
subspace of unoccupied single-particle orbitals. The in-
duced electron density from Eq. (2.2) may be written

OCC

5n (r;co) = g J dr'q), *(r)G,(r, r', E;+)ii'co)q), (r')P "(r', co)

(r) y y
ei(q+G) r

G
(2.13)

If the external potential has this form, the induced and
self-consistent potentials will retain it. Similarly the
functions u„k~q (r;s„k+fico) may be represented as a func-
tion which has the periodicity of the unit cell times a
phase factor e'"—+ ",

u (+) (r. E +g ) ~ (+) ((k+q+G) r
unkq r, ink —N —m unkqGe

G
(2.14)

(2.15)

where the f„k+ G are expansion coefficients in

P, y„k(r)P+q(r) = g f„k+qGe'" —'+
G

As long as the photon energy %co is less than the band gap
of the material (as calculated in the LDA), the operator
(E„k+fico—H)P, will have only negative eigenvalues.
(Here, e„k is the eigenvalue of an occupied state. ) As dis-
cussed below, this is a favorable circumstance for the use
of iterative solution methods. This motivates retaining
the operator P, in the formulas. In contrast, Ref. 40
eliminates the need for it with an identity to simplify
their representation of the one-particle Green's function.

The long-wavelength limit (q~0) is of particular in-
terest because visible light has a wavelength large com-
pared to the crystal unit cell, and because it is only in this
limit that the use of the longitudinal potential is justified
for a crystal. ' The long-wavelength limit is derived in
detail in the appendixes. In reciprocal space, the induced
Coulomb potential is given by

4ire 5n ( q; co )
q;co =

q
(2.17)

Fixing the direction of q to be Q, a power-series expansion
in the scalar q may be written as

5n(q;co)=5n' '+q5n"'+q 5n' '+O(q ) . (2.18)

The first term represents an induced monopole, and
hence vanishes by the argument given at the end of Sec.
II, as well Eq. (A9). The second term also vanishes, by
Eq. (A10). The third term is given by Eq. (A14) or Eq.
(A17) for a long-wave perturbation and Eq. (A13) for a
short-wave perturbation source. Note that Eqs. (A14)
and (A17) are manifestly second order, but Eq. (A13) is
first order. Since the long-wavelength perturbation pro-
duces a response only in first order by Eqs. (A8) and
(All), the short-wave potentials are first order, so only
one additional order in q is required to avoid the q
divergence manifest in Eq. (2.17). The long- and short-
wave potentials must diAer by one order in q so that the
respective electric fields remain of the same order of mag-
nitude. The situation is summarized in Fig. 1. The angu-
lar dependence of the surviving terms in Eq. (2.18) is dis-
cussed in Appendix C.

The problem has been reduced to solving the system of
inhomogeneous linear equations

g (k+q+GIE„k+&co Hlk+q+G')u„kq~G =f„k+ G,
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(long)
OA

-2
q Poisson

(long)

write

leading to

+ln, k&(n, kl(q V„H„)G„„,

q VkP, k= —g G„k(q VkHk}ln, k&(n, kl

(2.24)

(sh (short)

Poisson + Exch, -Cort.

P, k(q. Vkp, k) ln, k &= —P,kG„k(q VkHk)ln, k& (2.25)

for an occupied state
l n, k &, where P„k is the projection

operator ln, k&(n, k . Putting this result into Eq. (2.21)
and taking the scissors form Eq. (1.3) for the self-energy
Xk leads to
p, k(q VkHk)ln, k&=p„[(q VkHk ")

~kG„k(q VkHk ) j ln, k &

FICx. 1. Schematic representation of self-consistent-field cal-
culation in crystals. The indicated powers of q are gained at
each stage in the cycle. The indicated factors of I are appropri-
ate below the absorption threshold. The top stroke is per-
formed analytically, as discussed in Appendix C. See also Sec.
II B.

After a little algebra,

p, k(q VkHk)ln, k&

GLDA(E H )p (q V HLDA
) & k &

(2.26)

(2.27)

C. Self-energy operator

HkLD~ =-,'(p+k)'+ vk, (2.19)

consisting of the usual kinetic- and potential-energy
terms to

H„=—,
' (p+ k ) + Vk+ Xk (2.20)

In the Introduction, we motivated the generalization of
the LDA Hamiltonian

Equation (2.27) is the main theoretical result of this pa-
per. The order of magnitude of GLkD~(E„k —Hk) is the
ratio of the true direct band gap to the LDA direct band
gap; for silicon and related semiconductors, this
represents a 20% correction. ' ' Standard TDLDA is
recovered for 6k=0 since G„"k A(E„k—Hk )P,k=(I P„k)P,k=—P,k. The presence of P,k in these formu-
las causes no difhculty, as discussed in the first paragraph
of Appendix B. Using the equations in this section, Eq.
(2.27) may be generalized to

which has an additional self-energy term Xk included; Xk
is, in our approximation, a one-electron operator which
does not change the problem symmetry. The potential
energy Vk has k dependence to allow for nonlocal pseu-
dopotentials. ' When the scissors form Eq. (1.3),
Xk= hkP, k, is taken, Xk has k dependence through both
a„and P,„.

The various formulas for the induced charge density,
such as Eqs. (Al 1), (A13), and (A17},contain the term

(q.V„H„)=(q V„Hk )+(q Vkhk)P „

(q VkHk

+p (q. V HLDA }GLDAP (2.28a)

(q VkHk)ln, k&=q (p+k+VkVk+VkXk)ln, k&, (2.21)

where the tilde over a term denotes the part that is
periodic in the Brillouin zone or the unit cell, as ap-
propriate. This leads us to consider the term G„k(q VkHk) l n, k &

= G„"k (q V„H„)ln, k & . (2.28b)

a result given only for reference. This equation may be
used to generalize Eq. (2.27) slightly to

(q Vk~kp k}l~ k& ~k(q Vkp k}ln k& . (2.22)

The periodic part of a wave function of a nondegenerate
Hamiltonian may be expressed as

ln, k+q&=ln, k&+G„k(q VkHk)ln, k&+O(q'), (2.23)

where G„k=(E„k—Hk) ' and the pseudoinverse is in-
tended; i.e., G„kin, k & =0. The identity I =P,„+P,„ im-
plies 0=VkP, k+ VkP«, wh~re P,k is the projection opera-
tor onto the valence bands with wave vector k and I is
the identity operator. These considerations allow us to

Equation (2.27) may be applied to all of the results in
the appendixes such as Eqs. (All), (A13), (A14), and
(A17). Although we primarily consider the real part of
the dielectric response in this paper, Eq. (2.27) applies
equally well to the imaginary part of the dielectric func-
tion. We exhibit only one application of Eq. (2.27): the
static limit of Eq. (A17) for the long-wave charge induced
by a long-wave potential in a semiconductor determines
the macroscopic dielectric constant without the local-
field correction from
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2 OCC

q e q=1+ lim
z Qof dkg &n, ki(q V„H, )G„',(q V„H, )ln, k&

q~0 q BZ

A naive appreciation of the self-energy correction might lead one to correct the LDA formula

2— OCC

q F" q=1+ lim Aof dkg &n, k~(q VkHk )(G„k ) (q VqHk )~,k)
q~0 q

(2.29)

(2.30)

to
2 OCC

q e q=l+ lim Qof dkg &n, ki(q VkHk )G„k(q VkH|", )in, k).
q~0 q

(2.31)

This would be equivalent to replacing the energy denominators of an Adler-Wiser expansion of the dielectric function
with energy denominators corrected by the scissors operator Eq. (1.3). Although this would appear a sensible correc-
tion, we show just below that this would result in a large overcorrection for the LDA error. The correct approach is to
replace only one of the three energy denominators with a scissors-operator-corrected version. Application of Eq. (2.27)
to Eq. (2.29) leads to

2 OCC

q Fq= 1+ lim Qo f dkg &n k~(q VkHk )G k 6 kG k (q VkH& )~n k) .
q~0 q

(2.32)

Thus, in effect the scissors form of the self-energy operator Eq. (1.3) leads to the replacement of only one of three energy
denominators. We understand this in that one of the energies is a true many-body energy, but two are associated with
the "q p" expansion of the LDA wave functions, which are, empirically, nearly identical to more sophisticated GW
quasiparticle wave functions. Hybertsen and Louie have, in effect, previously considered the attractions and draw-
backs of Eq. (2.31).

D. f-sum rule aud plasma frequency

In the case of a semiconductor or insulator the f-sum rule for crystals, Eq. (A16), states

OCC

Ao f dk g &n, k~[(q VkHk)G„I (q VkHk)+ —,'(q Vkq V&Hk)]~n, k) =0 .
BZ

(2.33)

Let the quantity N„, be the number of occupied bands (times two for spin); in a semiconductor, this value is the same
at every point in the Brillouin zone. Since

OCC OCC

flof dkg &n, k~ —,'q ~n, k) = ,'q Aof—dkg&n, kin, k) = ,'q N„, , —
n n

(2.34)

the quantity
OCC

Xf = Qo f dkg —&n, ki(q VkHk)G„k(q V&Hk)~n, k)+&n, k~[ —,'q —
—,'(q. V|q VIH&)]~n, k)

q N„,
(2.35)

will be equal to unity. Here Xf is the sum of the oscillator strengths, or f sum. We may transform the term in

—,'q —
—,'(q V„q V„H„)as follows:

Occ

Aof dkg &n, k q Vk[q Vk(Vk+Xk)]~n, k)
BZ

Occ OCC

=Qof dkgq Vk&n, k~[q Vl(Vk+Xk)j~n, k) Qof d—kg &q Vkn, k~[q Vk(V„+2k)]in, k)
n

OCC

IIDf dk & & n kl [q'Vk( Vk+&k)]~q. V„n,k)
n

Occ OCC

= —IID f dk g& n, kl(q VkHk)G. k[q Vk( Vk+&k)]In k & flo f dk—g&n, kl [q V„( V„+&„)]G«(qV„H„)ln,k).'
BZ BZ

(2.36)
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The first step is simply the rule for diA'erentiation of a
product; in the second step, the first term vanishes by ap-
plication of the divergence theorem, and the second and
third terms make use of Eq. (2.23) in the form

lq Vkn, k&=G„i(q VkHk)ln, k& . (2.37)

Applying the substitution in Eq. (2.36) to Eq. (2.35) leads
to

2
Xf — QO

+occ
Occ

x f dk+R e(~, klq pG. k(q Vi,Hi, )ln, k& (2.38)
n +O(co ) . (2.40)

puter program, replacing the Brillouin-zone integral by a
special-points quadrature. The results test the quality
of the Brillouin-zone integration, as discussed in Sec.
III A.

At high frequencies, the dielectric function may be de-
rived from Eq. (A14) with the aid of Eqs. (C12) and (C13).
The formula is

4~e 2
e.(co)= 1 —lim Qp

q~O q
OCC

x f dkg (n, klq Vk(q ViHk)ln k&
BZ

In the case of the self-energy operator X&=hkP, k, Eq.
(2.27) may be applied to yield the expression

2
AO

+occ
Occ

dk Re n, k q.pG, k q-V„H„" n, k

(2.39)

i.e., the scissors form of the self-energy operator has no
effect on the f sum. We evaluate Eq. (2.39) in our com-

2

e(co)=1— " +O(co )
CO

with co =4irN„, AO 'e is recovered from Eq. (2.40) in
the standard case q Vk(q VkHk)=q via Eq. (2.34). In
the present theory, the coe%cient of the ~ term in Eq.
(2.40) forms an "effective plasma frequency"

(2.41)

The long-wave formula Eq. (A14) leads to corrections of
order cu ",' local-field corrections enter in order co . The
usual high-frequency formula for the dielectric function

( efr)2 2 2
2~

Occ

OCC

f),f dk+Re(n, k [(q V„H„)—q.p]G„k(q VkHi, )lii, k&
BZ

(2.42)

E. Algorithmic considerations

Richardson iteration is a convenient method to solve
the system of inhomogeneous linear equations (2.15), or
the related equations Eqs. (A7), (Al 1), (A13), and (A17).
Consider the equation

Llu &=ly& (2.43)

in which L is a general linear operator [(e„i,+iiico H)P, —
in our case], lu & is the desired solution vector, and

l f & is

a known vector. In Richardson iteration, an approxi-

The physical origin of this deviation may be taken from
the following observation. First, note that the sum rule
of Eq. (A16) may be seen as connecting total oscillator
strength with the efFective plasma frequency discussed
here. Every level has one unit of oscillator strength in its
transitions to other levels. This is, however, a signed
quantity, being positive for absorption transitions and
negative for emission ones. Transitions between two oc-
cupied states sum to zero net oscillator strength. In the
pseudopotential construction, the core electrons are re-
moved. The valence electrons only have higher states to
make transitions to, leading to an excess of oscillator
strength. The corrections to the valence-electron plasma
frequency have been discussed by Smith and co-
workers. ' The effect of a nonlocal potential on the f
sum rule, as well as the relationship of the "length" and
"velocity" forms of a matrix element in the presence of a
nonlocal potential, has been discussed in the context of
finite systems by Starace.

mate solution undergoes the process

(2.44)

where L, ' is an approximate inverse operator. The se-
quence converges if all of the eigenvalues of L, 'L have
the same sign. Assuming M is the maximum eigenvalue
of L,z'L and m is the minimum, then a,„,=2/(M+m),
and the magnitude of the error is reduced by a factor of
(M —m)/(M+m) on every iteration. We choose the di-
agonal elements of c„k+6'co—H for L, , with a least nega-
tive value of c,„k+Aco —c,&, where E,k is the minimum
conduction-band eigenvalue. The low-lying eigenvectors
are rich in small-G plane waves. The action of
(E„k+Aco s,'k)—P, on a single small-G plane wave is pri-
marily to multiply it by a factor of order c,k+6~ —E,k to
E«A~ —e, k, where E., k is another "typical" low-lying
conduction-band eigenvalue. This factor is substantially
removed by L,~'. For large G, E«+Am —H is diagonally
dominant, and so the approximate inverse is excellent.
Indeed, the difficulty of finding a solution (i.e., number of
iterations required) depends primarily upon the small-6
components, and does not grow with the number of stars
of reciprocal-lattice vectors.

If a few low-lying conduction-band states lmk& are
known, then ~f & may be broken into the parts parallel
and orthogonal to these states, with the total solution be-
ing the sum of the two subspace solutions. In the parallel
subspace, the solution is immediate:
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known

conduction-band

states

l~k&(s„„+&"—s k) '&~klf) .

(2.45)

A„+(A„
A, +i+A, i

—2A„
(2.46)

If the sequence is of the form A, = A +cq", this trans-
formation is exact (i.e., if A is formed from any three
consecutive elements of a geometric sequence, A = A ).
We apply the Shanks transformation (2.46) independently
to each Fourier component of the short-wave induced
charge density. We are motivated to do this to reduce
the "charge sloshing" problem co™onin electronic-
structure calculations. The transformation leads to an
acceleration of the convergence of a factor of about 3
compared to a simple mixing scheme. We find about ten
iterations are sufticient to achieve a reasonable degree of
convergence (10 ' relative accuracy in the potential), or
seven iterations if a guess from a nearby case is available.
Overall, it takes about 2 —3 ™esas long to solve the SCF
short-wave equation (A7) as the non-SCF long-wave
equations (All) and (A17) because we do not fully con-
verge the short-wave-induced wave functions before up-
dating the short-wave potential. [Equations (All) and
(A17) rely on the same inhomogeneous equation, and so
are in effect solved together. The loop is closed with Eq.
(A13) which takes very little time after Eqs. (A7), (Al 1),
and (A17) have been solved. ]

In the orthogonal subspace, the rate of convergence is
improved because the excluded states are the least diago-
nally dominant. The cutoff state c should be the one as-
sociated with the lowest-lying state not projected out by
Eq. (2.35). If we wish to study absorption processes, it is
necessary to project out all states with energies below
c,k+co to preserve the single signed character of L, 'I,
and hence the convergence of the iterative scheme. Here
c,k is the maximum eigenvalue in the valence band for
the k point. For frequencies near the absorption thresh-
old, projection is a practical necessity: in the language of
the previous paragraph, if c„k+Aco —c.,k is nearly vanish-
ing, it is not of the same order of magnitude as
c„k+Aco —c,.k, leading to large values for M, while I
remains of order unity. In practice, we usually used six
known conduction-band states. For the systems involved
in this study (silicon with a plane-wave energy cutoff of 9
hartrees and germanium with a 10-hartree cutoff) stan-
dard matrix diagonalization is superior to the method de-
scribed above. For larger systems, we expect the iterative
methods described above to be more eKcient.

To determine the short-wave self-consistent induced
field P ", we used the Shanks transformation. ' The
Shanks transformation acts on three members of a se-
quence A „ i, A „,and A, + &

via the expression

This program minimizes the total energy of the system
with a new iterative method. ' The exchange-correlation
functional is chosen to be the Perdew-Zunger parame-
trization of the exchange-correlation potential derived
from the calculation of Ceperley and Alder of the
exchange-correlation energy of the electron gas. Our
pseudopotential is a norm-conserving separable potential
of the form introduced by Kleinman and Bylander.
The pseudopotential itself is generated by Hamann's pro-
gram. We choose the s part of the pseudopotential to
be local in the Kleinman-Bylander construction, and in-
clude nonlocal p and d pseudopotentials. Choosing the d
part to be local is adequate for silicon but not for ger-
manium. We work in a plane-wave basis. We chose the
relatively high plane-wave energy cutoffs of 9 hartrees for
silicon and 10 hartrees for germanium, but did not sys-
tematically vary these limits. We performed the calcula-
tions with 60 special points. The linear calculation makes
use of the ground-state program in two ways: to calcu-
late ground-state information, and as a subroutine library
for the linear-response program. In particular, the Ham-
iltonian used for the ground state is identical to the LDA
part of the Hamiltonian used for linear response.

A. Static response and sum rules

We calculated the static dielectric constant of silicon
and germanium in the LDA, the naive model, and the
present theory at the experimental lattice constants at
zero temperature, given in Table I. Without the local-
field correction, these three theories correspond to Eqs.
(2.30), (2.31), and (2.32), respectively. We present the re-
sults with and without the local-field corrections in Table
II, and compare to other work.

The present results differ from our earlier report in
that (a) the Hamann pseudopotential is used for both
silicon and germanium instead of just germanium, (b) the
energy cutoff for silicon has been raised to 9 hartrees
from 6 hartrees, (c) we choose 0.9 eV rather than 0.7 eV
for the scissors operator based on the recent study of
Zhu, Fahy, and Louie, and (d) we present the germani-
um results for two values of the self-energy operator 0.7
and 0.8 eV (see Table III). We feel 0.8 eV is more reason-
able based on the work of Hybertsen and Louie. ' By
presenting both values, we give some indication of the
sensitivity of the dielectric constant to this parameter—
about 3% in germanium for the 0.1-eV variation. In sil-
icon, the sensitivity is expected to be somewhat lower but
was not investigated explicitly.

We find excellent agreement between the present
linear-response program and the results calculated from

TABLE I. Experimental values of lattice constant ao, bulk
modulus Bo, and pressure derivative of bulk modulus Bo for Si
and Ge. These were the values used to convert between lattice
constant variations and pressure variations.

Si
III. RESULTS

We have extended the ground-state LDA program of
Allan and Teter to calculate linear optical response.

ao (A)
Bo (GPa)

Bo

5.429
99
4.2

5.655
77
4.6
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TABLE II. Experimental and theoretical values of e and related quantities for silicon from the
literature and the present work. zoo omits the local-field correction. e, is sometimes called eM. The f
sum XI is defined by Eq. (2.38) and co~ is defined by Eq. (2.42). co~=16.6 eV for silicon. Energy cutoffs
are 7 hartrees for Refs. 2 and 3 and 9 hartrees for the present study. Values shown for 60 special in-

tegration points in the irreducible wedge of the Brillouin zone {Ref.56).

Silicon

LDA'
LDAb
Present LDA
Present "naive" approximation 6=0.9 eV
Present 5=0.9 eV
Experiment' (0 K)
Experiment' (300 K)

'Reference 2.
Reference 3.

'Reference 69.

&oo

13.4
13.6
14.2
8.1

11.7

12.7
13.0
13.5
7.7

11.2
11.4
11.7

f sum (X&)

1.013
0.856
1.013

CO& /CO&

0.972
0.978
1.060

the ground-state program by applying a finite field and
taking finite differences. We considered two cases: a
short-wave perturbation which is commensurate with one
of the reciprocal-lattice vectors and a long-wave pertur-
bation. For the long-wave perturbation, we extrapolated
the result from a series of supercell calculations with up
to 12 standard unit cells (i.e., 24 silicon atoms). The re-
sults presented in this paper compare well with the re-
sults of Baroni and Resta and Hybertsen and Louie.
Agreement is excellent with de Gironcoli, Baroni, and
Resta in the cases of A1P, A1As, GaP, and GaAs:
specifically, the local-field-corrected static macroscopic
dielectric constants calculated at the lattice constant cor-
responding to the minimum of the LDA total energy are
8.4, 9.3, 9.7, and 12.0, respectively, for Ref. 4 compared
to 8.4, 9.4, 9.8, and 11.8 in the present calculation. Our
Brillouin-zone integration yields an f sum, defined by Eq.
(2.38), of 1.013 for silicon and 0.993 for germanium
(where 1 is the ideal value) when 60 special points are
chosen. Omission of the nonlocal term increases the
value of e by about 15% in the case of silicon, in agree-
ment with Hybertsen. Omitting the nonlocal operator
leads to f-sum values of 0.959 for silicon and 1.070 for
germanium.

Because we have been relying primarily upon published

results for the magnitude of the scissors operator, we
have not attempted to include any k dependence in 6k
(although our theory and program is capable of including
such effects). The magnitude of the k dependence of the
scissors operator has been estimated to be 0.1 eV in sil-
icon and 0.2 eV in germanium. ' Since we are calculat-
ing Brillouin-zone averages this probably represents a
small effect, although it may be significant in the case of
photon frequencies near the band edge.

As seen in Table II, the self-energy operator is seen to
improve the agreement with experiment dramatically
compared to the LDA results. The "naive" model leads
to a large overcorrection as suggested earlier. Agree-
ment at the level of a few percent is achieved. The local-
field correction is found to be about a 5% effect. It is not
clear why our local-field correction is substantially small-
er than that of Ref. 3 in the case of germanium but nearly
equal in the case of silicon.

The accuracy of the f sum at the level of about l%%uo

suggests uncertainties in the integration at the level of
perhaps 4%, since the static dielectric constant depends
upon the inverse third power of the energy gap, rather
than the inverse first power. The "naive" model leads to
substantial f-sum-rule violations. The "effective plasma
frequency" from Eq. (2.42) is also given in Table II. The

TABLE III. Experimental and theoretical values of e and related quantities for germanium from the
literature and the present work. See Table II for details. ~~ =15.6 eV for germanium. Energy cutoffs
are 10 hartrees for Ref. 3 and present work. Integration on 60 special points.

Germanium

LDA'
Present LDA
Present "naive" approximation 6=0.7 eV
Present 5=0.7 eV
Present 5=0.8 eV
Experiment {0 K)
Experiment (300 K)

'Reference 3.
Reference 69.

&oo

21.9
22.0
10.8
17.0
16.6

20.7
21.3
10.4
16.5
16.0
15.3
16.0

f sum (X&)

0.993
0.857
0.993
0.993

COp /COp

1.039
1.035
1.119
1.121
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considerations in Sec. II D suggest co' ) co . This condi-P'
tion is violated for the LDA in the case of silicon. Both
the magnitude of this correction and the trend are in line
with rough expectations based on calculations of alkali-
metal atoms.

B. Frequency dependence

We calculated the frequency-dependent dielectric func-
tion for frequencies below the direct band gaps, which are
3.4 eV for silicon and 1.0 eV for germanium. Following
Wemple and DiDominico, we plot the results in the
form of (e—1) ' versus co . If the response follows that
of a single oscillator, given by Eq. (1.1), then such a plot
will be a straight line. The experimental data fit this sim-
ple relationship to a remarkable degree for a wide range
of semiconductors and insulators below their band gaps
including silicon and germanium. Our theory also
yields a nearly linear relation in these variables. Correc-
tions will lead to larger values of e, i.e., deviations below
a straight line in our plot.

The role of local fields is illustrated in Figs. 2 and 3.
The local-field correction is seen to be a modest, feature-
less correction throughout in the range of this study. At
excitation frequencies near transition energies, the local-
field effects can be striking.

Our results for silicon, with the self-energy operator
taking the value of 6=0.9 eV are shown in Fig. 4, along
with experimental data. The data are given for 100 and
300 K but the parameters of our theoretical calculation
would be suitable for the zero-temperature case. Presum-
ably, the lower temperature will bring the curves into
closer agreement perhaps at the level of no worse than
10%%uo over the range plotted. At lower temperatures,
agreement with the LDA wi11 be somewhat worse than

0.10

0.07

0.06
4

V
~ W

0.05—

A

0
0.04

0.03

0.0 0.5 1.0
Photon Energy Squared (eV )

0.10

FIG. 3. Dielectric function of germanium as a function of
frequency calculated in the TDLDA and present theory with

the self-energy operator in the scissors form. Solid (dotted) lines
include (exclude) local-field effects. The kink in the TDLDA
curve is due to the limited number of points at which we calcu-
lated the frequency.

for the room-temperature data of Fig. 4. The small
mismatch between the data compiled by Li and the data
of Aspnes and Struda is, we feel, more likely to be due
to the use of different samples (or possibly measurement
technique) than a physical effect, due to, say, the onset of
phonons coincident with the indirect band gap at 1.2 eV.
Measurements of the dielectric function by two other

0

0.08

0.06

0
~~
O

0.08
Q

~ M

O
Q)

A

0.06

I I I I I I I I I I I I I I I I0 04
0 2 4 6

Photon Energy Squared (eV )

FIG. 2. Dielectric function of silicon as a function of fre-

quency calculated in the TDLDA and present theory with the
self-energy operator in the scissors form. Solid (dotted) lines in-

clude (exclude) local-field effects.

I I I I I I I I I I I I I I I I04
0 2 4 6

Photon Energy Squared (eV )

FIG. 4. Dielectric function of silicon as a function of fre-
quency. Comparison of the TDLDA and present theory (solid
lines) with experiments. Theoretical values are given in Table
IV. Dashed-dotted lines are from Ref. 69; dotted lines are from
Ref. 70.
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groups ' across the indirect band gap show no sign of
deviation from the simple linear relation between

1/(e —1) and co .
The germanium results are shown in Fig. 5. The range

plotted is smaller than for silicon because we only calcu-
late below the direct band gap. The TDLDA curves are
calculated omitting any imaginary part of the response
above its threshold. Overall agreement with experiment
is quite good. At zero temperature, the removal of
thermal effects will reduce e, below the value shown in
the figure [i.e. , (e ' —1) ' will increase]. Disagreement
with the experiment is at the level of a few percent. Since
the sign of the error is different in silicon compared with
germanium, it is difficult a priori to name a particular
effect which is responsible for the observed discrepancies.
At very low frequencies the data show a small but sudden
increase. This effect, representing a shift in e from 16.0
to 15.8, is due to the excited carriers with a plasma fre-
quency of order 100 peV; this is outside the scope of the
present theory.

Our calculated results are given in Table IV. The final
two significant figures presented are intended for use in
relative comparisons of the data to itself, e.g. , finite
differences. In Table V, the initial slopes are fit to single-
oscillator parameters in the form

0.07

0.06

Q
~~

U 0.05—

A

0
0.04

300 K

0.03

0.0 0.5 1.0
Photon Energy Squared (eV )

FIG. 5. Dielectric function of germanium as a function of
frequency. Comparison of the TDLDA and present theory
(solid lines) with experiments. Theoretical values are given in
Table IV. Dashed-dotted lines are from Ref. 69; dotted lines are
from Ref. 100.

fcc)&

e, (co) =1+
Q)0 co

where f is an oscillator strength, and co is the plasma
frequency associated with the valence electrons. These
parameters do not have a great deal of physical meaning
other than to roughly identify the position and strength
of the main absorption peak in the two semiconductors,
and to illustrate the expected result that shifting the spec-
trum by the self-energy operator is reAected in the aver-
age oscillator position by about the same amount. We in-
clude these parameters to permit comparison of several
calculations and experiment within the oversimplified
single-oscillator model.

C. Pressure dependence

The pressure or lattice-constant dependence of the real
part of the electronic dielectric constant at zero frequen-
cy, e'&(P), plays a fundamental role in theories of covalent
bonding in crystals. 73-75 The fractional change in el
with pressure, at zero pressure, din[@, (P)]/dP, is about
an order of magnitude larger in Ge than in Si. One finds
several measurements for din[@&(P)]/dP for Si and Ge in
the literature, with only moderate agreement among the
measurements (values and references given in Table VI).
There are also a number of theoretical descriptions of
dln[E&(P)]/dP from simple models ' to semiempirical
treatments to more sophisticated calculations. The
simple models do not reproduce the order-of-magnitude
difference between the size of d in[a, (P) ]/dP in Si and Ge

TABLE IV. Dielectric function for silicon and germanium. 6'op excludes the local-field correction, but E'& includes it. Frequency
values are exact multiples of 0.01 hartree. Plane-wave energy cutoff of 9 hartrees for silicon and 10 hartrees for germanium; integra-
tion on 60 special points.

co {eV) &oo

LDA
Silicon

6=0.9 eV
&oo &oo

LDA
Germanium
6=0.7 eV

&oo

5=0.8 eV
&oo

0.00
0.27
0.54
0.82
1.09
1.63
2.18
2.72

14.227

14.521

15.503
17.606
22.487

13.484

13.759

14.679
16.648
21.234

11.715

11.861

12.330
13.223
14.794
17.738

11.160

11.297

11.737
12.575
14.049
16.814

22.027
22.548
24.645
36.347

21.293
21.807
23.879
35.444

17.034
17.180
17.650
18.559
20.256

16.468
16.612
17.072
17.966

16.577
16.722
17.117
17.901
19.291

16.029
16.164
16.585
17.328
18.696
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TABLE V. Oscillator parameters from Eq. (3.1) for silicon and germanium computed from the
frequency-dependent results of Table IV. Parameters from Ref. 67 are computed from f =EdEoco
and cop=Ep where Ed and Ep are defined in the reference.

Present LDA
Present 6=0.7 eV
Present 6=0.8 eV
Present 6=0.9 eV
Semiempirical'
Experiment 100 K
Experiment 300 K

'Reference 67.
Reference 69.

0.62

0.85
0.64
0.80
0.56

Silicon
~p (eV)

3.7

4.8
4.0
4.6
3.8

0.22
0.50
0.51

0.45
0.49
0.35

Germanium
~, (eV)

1.6
2.8
2.9

2.7
2.9
2.4

and the more sophisticated calculations do not agree well
in their predicted values either (Table VI), nor do they
agree particularly well with experiment. Thus it is ap-
propriate to use the current parameter-free theory to pro-
duce reliable values for din[@&(P)]/dP for Si and Ge for
comparison with the different experimental and theoreti-
cal results and for gaining insight into the large difference
in the value for Si and Ge.

In our calculations we actually vary the lattice con-
stant and compute values of e&. The connection to pres-
sure is accomplished via an equation of state. This can be
done using the theoretical equation of state or almost
equivalently by using the Murnaghan equation of state
with the experimentally measured values of the bulk
modulus and its pressure derivative. Our theoretical
equilibrium lattice constants are less than 1% too low

TABLE VI. Experimental and theoretical values of din[@, (P)]/dP for Si and Ge from the literature
and the present work.

Si

din[a, (P) ]
dp

(10 ' /Pa), expt. —2.8+ 12%'
—2.3+5%"'
—6+67%'
—4+25%%uo'

—34+4%%

—23+6%d

—14+29%'
—12+25%%'
—50.6+4%

dln[e, (P) ]
dp

(10 "/Pa), theory —6.1g

lh
—3.0'
—6.2"

4 lh
—22'

—17.8"
—6.0, —16"

Present LDA —4. 1 —47

Present 5=0.9 eV (Si), 0.8 eV (Ge) —2.6 —31

'Reference 84.
Reference 83.

'Reference 96.
Reference 85.

'Reference 97.
Reference 98.

g Reference 73.
hReference 76.
'Reference 77.
'Reference 99.
Reference 78, a smaller number is quoted in the paper while a larger number is derived from their

Table VII.
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BoP=
Bo

ao
(3.2)

where Bo is the bulk modulus at zero pressure, Bo is the
pressure derivative of the bulk modulus at zero pressure,
ao is the equilibrium lattice constant at zero pressure,
and a is the lattice constant at pressure P. The experi-
mental values for ao, Bo, and Bo are given in Table I.
The present study uses the experimental (0 K) values for
the zero-pressure lattice constant. We could have used
the equilibrium lattice constant predicted by the LDA,
which is about 1% smaller than experiment. This would
result in less than a percent decrease in e& for Si and
about 7/o decrease in e& for Ge, based on our results for
din[@,(P)]/dP. The conversion between din[@, (a)]/dlna
and din[@&(P) ] /dP at P=O is given simply by

d In[@,(P) ] I din[@, (a) ]
dP 3Bo d lna

which comes from

(3.3)

d lna
dp

1

3Bo
(3.4)

One simple model is to assume the Clausius-Mossotti
form for the dielectric function

compared with experiment and our theoretical bulk
modulus and its pressure derivative come out within a
few percent of experiment, as is typical for LDA calcula-
tions. For the present work we use the pressure —lattice-
constant relation from the Murnaghan equation of state,

3BO

Our calculations for e&(a) at lattice constants away
from the experimental lattice constant are carried out as
described above, in particular using the same fixed self-
energy shift A. Evidence for 6 remaining approximately
constant under compression comes from successful LDA
predictions of energy-gap variations compared with ex-
periment ' and directly from comparison of pressure-
dependent energy gap in the LDA with quasiparticle pre-
dictions. Our self-energy operator differs from the
"false Darwin shift" or "spike" used by Alouani, Brey,
and Christensen in an important respect. Both methods
are introduced to correct the LDA underestimate of the
energy gap. The self-energy operator, however, does not
modify the wave functions but merely shifts the
conduction-band states by a constant amount, approxi-
mating the behavior observed in quasiparticle calcula-
tions. The spike, which actually modifies the potential
at the origin for each atom, does change the wave func-
tions and therefore represents a departure from the accu-
rate wave-function description available from the LDA.
We obtain din[@&(a)]/dlna by computing e& at the exper-
imental lattice constant ao and +0.4% of ao (about +1
GPa equivalent pressure) and taking a numerical deriva-
tive. We examine the higher-pressure behavior of e&(P)
at lattice constants approximating 3, 6, and 10 GPa as
shown in Fig. 6 and Tables VII and VIII.

The first result we see is a rather close agreement of
our computed din[@, (P)]/dP with the most precise rela-
tively low-pressure measurements of Vetter. 8~ 8~ (Com-
pare the first and last rows of Table VI.) In particular we
reproduce the order-of-magnitude difference between Si
and Ge even in the uncorrected LDA, and with the self-

4m.

e)+1 3
(3.5)

where n is the number of polarizable bonds (or ions) per
unit volume and a is a polarizability. If a is assumed to
be constant with pressure one may very simply compute a
resulting din[@,(P)]/dP, which is positive due to the in-
crease in n at higher density under compression and
which therefore has the opposite sign to that observed ex-
perimentally. Apparently the effective a must decrease
with compression, which is expected for a covalent ma-
terial when bonding-antibonding splitting becomes larger
with compression. In an effort to include the changing
polarizability with compression, Harrison treated the
change in linear susceptibility yI with a lattice constant
in the bond orbital approximation. His result, given in
Table VI, comes out with the correct sign and agrees fair-
ly well with experiment for Si but is far too small for Ge.
This results from oversimplification of the difference in
the band structures of Si and Ge. Van Vechten's
theory, which also greatly simplifies the band structures
of covalent semiconductors, also gets the sign of
din[@&(P)]/dP correct but cannot make quantitative pre-
dictions. Part of the problem here is the fitting of un-
known parameters to describe the simplified models. An
insight gained from the Van Vechten model is that the
sign of din[@&(P)]/dP is negative because the average gap
increases faster with compression than the plasma fre-
quency increases.

20—

0
0 x Ge Ref, 84

Ge LDA

O

f5
O

Si LDA

Si h, =0.9eV Ge Ref. 77

10
5

Pressure (GPa)
10

FIG. 6. Pressure-dependent dielectric function of Ge and Si
from several sources. X's are experimental data for Ge from
Ref. 85; the dashed line is the theoretical value for Ge from Ref.
78; the double-dashed lines are straight LDA for Ge and Si;
solid lines are the LDA with a self-energy correction in the
form of a scissors operator for Ge and Si. The LDA and self-
energy corrected results are also given in Tables VII and VIII.
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TABLE VII. Si: theoretical e& at various lattice constants in the LDA and the LDA modified by the
scissors form of the self-energy operator (6=0.9 eV) versions of theory (plotted against equivalent pres-
sure in Fig. 6).

a (Bohr)

10.300 34
10.259 3
10.218 26
10.166 97
10.074 63
9.972 04

a /ao

1.004
1.000
0.996
0.991
0.982
0.972

P (GPa)

—1.16
0
1.22
2.84
6.06

10.1

Ei (LDA)

13.554
13.484
13.422
13.335
13.258
13.187

e& (b =0.9 eV)

11.197
11.160
11.128
11.095
11.051
11.028

energy operator corrected version of the theory we obtain
quantitative agreement with experiment. We explain the
order-of-magnitude-larger effect in Ge than Si with a pic-
ture similar to that proposed by Brust and Liu. The
dominant contributions to e& in Si and Ge come from
electronic transitions along the I ~L line (A3~A, ). Ge
differs from Si in two respects: it has a far smaller direct
gap [0.98 eV for Ge versus 3.4 eV for Si (Ref. 66)] so that
the relative variation in the gap with presure is larger,
and the pressure dependence of the direct band gap Eo is
much larger in Ge than in Si IdE0/dP is —120 (10
eV/Pa) for Ge (Ref. 85) but only —5 to —6 (10
eV/Pa) for Si (Ref. 64)]. These two effects taken together
explain the much larger pressure dependence of e& in Ge
than in Si. The simple models without sufficient details
about the differences in the conduction bands of Si and
Ge cannot reproduce this larger dependence.

The second result is quantitative agreement for the
high-presure behavior of e&(P) for Ge in comparison with
the measurements of Goni et a/. In particular, our
present theory reproduces the observed nonlinear depen-
dence of e, (P) at higher pressures (above about 4 GPa),
as shown in Fig. 6. On the basis of the present calcula-
tions we predict similar behavior for Si at pressures above
about 4 GPa (Fig. 6 and Tables VII and VIII), albeit with
variations in e, about ten times less than for Ge. To our
knowledge the analogous experiment has not yet been
carried out for Si.

These calculations show that the scissors form of the
self-energy operator cannot only correct the LDA to give
reliable results for the electronic part of the dielectric
constant e, , but can yield very good values of e& as a
function of lattice constant or pressure variations.

IV. CONCLUSION

We have extended the local-density approximation by
adding a self-energy operator to the usual LDA Hamil-
tonian, for the purpose of improving the description of

the dielectric function in solids. Without such a
modification, the LDA predicts a dielectric function
which is too large at low frequencies. We were motivated
to try this extension of LDA because the highly success-
ful GR' calculations indicated that the LDA wave func-
tions were a good description of the quasiparticles, al-
though the excitation energies are given improperly by
the Kohn-Sham eigenvalues. Although G 8' depends
upon the dielectric function in a critical way, early at-
tempts to use the improved eigenvalues of G8' did not
improve the dielectric function. We trace this to the need
to modify the velocity operator (a Ward identity) as well
as the eigenvalues in the expressions for the dielectric
function.

In the usual point of view, the dielectric response in the
static limit is regarded as known in-principle through
density-functional theory; moreover, LDA is now
thought to be an excellent representation of the exact
density-functional theory. We find that the static dielec-
tric constant may be found only through consideration of
quasiparticle excitations which are usually considered not
to be ground-state properties of the system. This is, at
the very least, a puzzle.

The resulting frequency- and pressure-dependent e, (co)
or e&(P) is improved remarkably over the LDA and
agrees with experiment at the level of a few percent. Cal-
culated results for e&(co) and e&(P) for Si and Ge are
presented and compared with experiment. The results
for e, (P) for Si constitute a prediction in that no mea-

surements are known beyond about 1 GPa. The detailed
expressions for linear response are presented in the ap-
pendixes. The present approach completely avoids ma-
trix diagonalization and explicit summation over
conduction-band states in solving for e&.
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APPENDIX A: LONG-WAVELENGTH LIMIT

The expression for the induced electron density, Eq.
(2.8), may be specialized to the case of a periodic solid re-
placing the label i by the band index n and the crystal
momentum k. Introducing Dirac notation, the electron
density may be written

OCC

5n (r;co) =NQo j dk g & nklr &
BZ

&& & rl G(E„k+co)P "(co)ink &

+&n —klr&&rlG(e„k —co)P "(co)ln —k&

OCC

5n(r;co) =NQo f dk g & nklr &

BZ +

X &rlG(E„k+hco)$ "(co)ink&,

(A2)

where the sum over + simply represents adding the terms
with the two indicated signs.

By Bloch's theorem, the ground-state wave functions
are in the form of a plane wave with wave vector q times
a function which is periodic in the Bravais lattice, re-
ferred to here as the "Bloch form. " If the external
potential has the form of a plane wave P'"'(r; co )= Joe ' 'cos( cot ), the electron density and the self-
consistent potential will be in this form as well. To see
this, consider the independent-particle susceptibility
defined in Eq. (2.7) for the case of single-particle orbitals
which are Bloch states. It may be seen that
go(r, r', co) =go(r+R, r'+R;co) for Bravais lattice vectors
R. If P "(r;co) is in the Bloch form, then from Eq. (2.2)
the induced electron density has the property

5n (r+R;co)= jdr'yo(r+R, r'+R;to)P "(r'+R;co)

=e'q' jdr'yo(r, r', co)P "(r', co)

(A 1)
=e'q 5n(r;io), (A3)

using time-reversal symmetry ( l
n k &

*=
l
n —k & and

E„k=E„&).N is the number of unit cells in the crystal.
The constant GO=AD/(2m), where Qo is the unit-cell
volume. The domain of integration over k is a Brillouin
zone. The spin index is implicit in the sum on occupied
states. The operator P "(m) is defined to be

f dr'lr' &P "(r;co)& r'l. For simplicity, the spin-orbit
term is not considered in this discussion. The Green's
operator G appearing in Eq. (Al) includes the occupied
states in contrast to the Green's function G, (r, r';s„k+co)
defined before Eq. (2.8); these forms are equivalent, as the
reader may verify. The dummy variable k may be
changed to —k, leading to the expression

which shows 5n (r;co) has the Bloch form. If 5n (r; co) has
the Bloch form, the induced Coulomb potential v ill have
it [by a similar argument applied to Eq. (2.S)]. The func-
tional derivative 5V„,(r)/5n(r)l„~,

~ „~,~
is a local func-

0
tion of the ground-state electron density, and hence is
periodic in the Bravis lattice. Hence the induced
exchange-correlation potential defined by Eq. (2.6) inher-
its the Bloch form from 5n (r;co). The self-consistent po-
tential is the sum of three terms each of which has the
Bloch form. A tilde will denote the part of the corre-
sponding function which is periodic in the Bravais lattice.

From Eq. (A2), the electron density will be in the form
5n (r;co)=Go 'e'q'5n(r;co) with the periodic part of the
electron density given by

OCC

5n(r;co)=QO f dkg &n, klr&&rl(E„k+Rco Hk+ ) 'P —(co)ln, k&,
Bz +

(A4)

where Hk is the "q p" Hamiltonian

Hk= —,'(p+k) + Vk+X„ (AS)

The operator P "(co) is defined analogously to P "(co),
i.e.,

"(co)=Go ' jdrlr&(5 "(r;co)&rl,
in atomic units. Here, p= —iV, Vk is some external po-
tential (k dependence in the Fourier transform will usual-
ly arise if a nonlocal external potential is used ' ), and Xk
is the self-energy; at this stage no assumptions of the
form of the self-energy have been made other than that it
is a one-electron operator and is consistent with Bloch's
theorem. The states ln, k& are periodic functions in the
Bravias lattice, related to the states

l
n k & by

&rink&=(NQO) ' e'"'&rln, k& .

with the integral to be taken over unit cell; the tilde again
refers to the periodic part: P "(r;co ) = e ' 'P "(r;m ).
By our convention, Qo fodrlr & & rl is an identity opera-
tion. The operator (E &+Aco Hz+ )

' is a factor of-
NQo larger than (E„z A'co H) ' in its norm—alization.
The integral implicit in the "bra-ket" of quantities in-
volving the "q p" Hamiltonian is taken to be Ao

' f odr.
The long-wavelength limit may be obtained via the

Taylor expansion
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(E „+Aro H—„) '=6„„(+~)+6„„(+o~)(qV„H„)6„„(+~)+6„„(+~o)(q.V„H„)G„„(+co)(qV„H„)6„„(+~)

+6„„(+co)—,'(q. V„q.V„H„)6„„(+co)+O(q ) (A6)

with G„k(+co)=(E„k+ficu Hz—) '. Usually, a "double
commutator" is invoked at this stage of the argument,
or the introduction of ill-defined symbols such as
(nk r nk). We find the present line simpler. Had we
desired to use a Green's operator restricted to the unoc-
cupied states, the expansion in Eq. (A6) would have re-
quired an expansion of the projection operator onto the
conduction bands Pck+q to second order in q. In the
present derivation, we will require only first-order expan-
sion and then only because we explicitly consider a self-
energy operator in the scissors form.

Consider the electron density induced by the external po-
tential of amplitude $0 (or some other potential lacking a
"local field" ) in zeroth order. In this case,

OCC

&n(r;~)=$000 f dkg (n, klr)(rlG„„(+co)ln, k)
BZ

OCC

=Poco 'Aof dkg+(n, k r)(rln, k)'
BZ

1. Zeroth order in q

To zeroth order in q, the induced electron density is
given by

=0 (A8)

OCC

6n (r;co) =AD f dk g ( n, klr )
BZ +

X (rlG„„(+co)P' "(co)ln, k) .

(A7)

Hence, a long-wave perturbation induces no electron den-
sity in zeroth order in q.

The long-wave or Cx=0 component of 5n (r;co) is found
by integrating over a unit cell,

OCC

IIQ
' f dr6n(r;co)=AD ' f dr Ao f dkg (n, klr)(rl6„(+|co)P "(co)ln, k)

0 0 BZ

OCC

=00 dk nk 6 k+co "co nk'
BZ

OCC

'Q0 dk + nk
BZ

=0. (A9)

This is the same result as mentioned at the end of Sec. II, that no monopole may be induced. In the present language,
no perturbation induces a long-wave electron density in zeroth order in q.

However, a short-wave perturbation induces a short-wave electron density in zeroth order in q, by Eq. (A7), or
equivalently by Eq. (2.15) with q=O.

2. First order in q

Consider next the long-wave response to a long-wave perturbation to first order in q. The zeroth-order term has been
shown to vanish, and so it suKces to replace (E„k A'cu H&+ )

' by the —first-order term given in Eq. (A6). The general
expression of Eq. (A4) reduces to

OCC

IIO
' f dr 6n(r;co)=$000 ' 1 dr Qo f dk g (n, klr) (rl6„&(+co)(q VqHk)G„k(+co)ln, k)

0 0 BZ

OCC

=2$oco Qof dkg (n, kl(q. VkHk)ln, k)
BZ

OCC

=2$0co Qo f dk g q Vk(n, klHkln, k)
Bz

=0. (A 10)
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The Hellmann-Feynman theorem is invoked in proceedings from line 2 to line 3 in Eq. (Al()). The final cancellation
occurs by noting &n, klHkln, k) =e„k and considering +k pairs. These considerations indicate the long-wave response
to a long-wave perturbation vanishes to first order in q.

For a long-wave perturbation, the short-wave response is given by

OCC

5n(r; co)=P DQ Of dkg &n, k~r)&r~G„k(+co)(q VkHk)G„k(+co)~n, k)
BZ +

OCC

=Poco 'Qo f dk g+ &n, k~r) &r~G„k(+co)(q VkHk)~n, k)
BZ +

OCC

2—$0&of dkg &n, k~r)&r~G„k(co)G„k( —co)(q VkHk)~n, k) .
BZ

(A 1 1)

In proceeding to the last line of the equation, the identity

G„k(co)—G„k( —co) = —2coG„k(co)G„k( —co) (A12)

is exploited. The use of this identity eliminates a numerical finite difference in the second line of Eq. (Al 1); moreover,
the static limit is manifest. The term in q k implicit in (q VkHk) reduces to poco q k~ &r~n, k) ~, so will sum to zero in
+k pairs. The other terms are nonvanishing. So a long-wave perturbation creates a short-wave response in first order
in q.

The long-wave response to a short-wave perturbation in first order is given by the expression
OCC

Qo
' f dr on(r;co)=Qof dkg &n, k~G„k(+co)(q VkHk)G„k(+co)p (co)~n, k)

0 BZ

OCC

'Qo f dk ++& n, ki(q VkHk)G„k(+co)p (co)in, k)
BZ

OCC= —200f dk g &n, k~(q VkHk)G„k(co)G„k( —co)P (co) ~n, k);
BZ

(A13)

again, Eq. (A12) is used. The term in q k reduces to co q k& n, k~P "(co)~n, k), and therefore sums to zero in + pairs.
The other terms survive, so a short-wave perturbation creates a long-wave response to first order in q.

3. Second order in q

It remains only to consider the long-wavelength response to a long-wavelength perturbation. In the previous sections
the zeroth- and first-order terms were seen to vanish. Hence, we may apply only the second-order term in Eq. (A6) to
the general expression Eq. (A4). The result is

OCC

flo 'f dr5n(r;co)=QDAof dkg &n, k~G„k(+co)[(q VkHk)G„k(+co)(q. VkHk)+ —,'(q Vkq VkHk)]G„k(+co)~n, k)
0 BZ

OCC

=Poco Qof dkg &n, k~[(q VkHk)G„k( co)(q VkHk)+ —,'(q Vkq VkHk)]~n, k) .
BZ

(A14)

To understand the static limit, we derive the f-sum rule for crystals in the present context. One may expand the ei-
genvalue c„k+ to second order in q using either perturbation theory or a Taylor expansion, leading to the equation

&n, kl[(q V„H„)G„„(qV„H„)+—,'(q Vkq VkHk)]ln, k) =
—,'q V„(q VkE„k), (A15)

where G„k=(c„k—Hk) ', and the pseudoinverse is intended. Because E„k is periodic in the reciprocal lattice its deriva-

tives have zero value when integrated over a complete Brillouin zone. In the case of a semiconductor or insulator, this

implies
OCC

00f dkg &n, k~[(q VkHk)G„k(q. VkHk)+ —,'(q Vkq VkHk)]~n, k) =0 .
BZ

(A16)

For the metal case, see Ref. 91. Application of Eq. (A16) to Eq. (A14) leads to

OCC

&, 'f dr&n(r;co)=$0~ f)of dkg &n, kl[(q VkHk)[Gnk(+~) Gnk](q VkHk)]In, k)
0 BZ

OCC

=2/000 f dk g n&, k~( qVkHk)G„kG„k(co)G„k( —co)(q VHk)~kkn)
BZ

(A17)
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utilizing the relation

G„k(co)+G„k( —co) —2G„k=2co G„kG„i,(co)G„k( —co) (A'1 8)

which is similar to Eq. (A12). The use of Eq. (A18) eliminates a second-order numerical finite difference in the first line
of Eq. (A17) and makes the static limit manifest. Note that —,(q Vkq. Vi,Hk ) is removed from the problem analytically.

APPENDIX B: TIME-REVERSAL SYMMETRY

In deriving the long-wavelength limit, Eqs. (A7), (Al 1), (A13), and (A17), we chose to define G„k( co) to include all
states —occupied and unoccupied. However, it is an elementary exercise to exploit time-reversal symmetry
[specifically, (r~n, k) = (r~n —k)*, e„i,=e„ i„and the odd parity of (n, k~(q. V„H„)~n,k) ] to show that it is permissi-
ble to exclude all occupied states from the Green's function in these formulas. In our implementation, we exclude the
occupied states from these sums.

Time-reversal symmetry may be used to simplify the main results, Eqs. (A7), (Al 1), (A13), and (A17). Below the ab-
sorption threshold, the case of interest here, the short-wave charge density induced by the long-wave potential, Eq.
(Al 1), becomes

OCC

5n (r; co) = —2igolmQo f d k g ( n, k r ) ( r
~ G„k(co )G„k( —co )( q VkHk )

~
n, k ),

BZ
(B1)

taking Po to be a real quantity. Neither the Coulomb interaction of Eq. (2.5) nor the exchange-correlation term in Eq.
(2.6) introduce any additional phase. Hence, the short-wave potential induced by the long-wave potential is 90 out of
phase. Assuming that P "(~) is purely imaginary, the short-wave charge density induced by the short-wave potential,
described by Eq. (A7) becomes

OCC

5n(r;co)=i Reflof dkg (n, k~r)(r~G„k(+co)[1m' "(co)] n, k) .
BZ „+

(B2)

As Eq. (B2) involves no phase change for the purely imaginary P "(co), the assumption of a purely imaginary P (co)
is internally consistent. The long-wave charge density induced by the short-wave potential, described by Eq. (A13), be-
comes

OCC

Ao
' f dr 5n(r;co)=21mQof dkg (n, k~(q VkHk)G„k(cu)G„i( —co)[1m' "(co)]~n, k) .

0 BZ
(B3)

Similarly, the long-wave charge density induced by the long-wave potential, given in Eq. (A17), becomes

OCC

Qo
' f dr 5n(r;co)=2$OReAO f dk g (n, k~(q VkHi, )G„kG„„(co)G„i( —co)(q.ViHk)~n, k) .

0 BZ
(B4)

Between Eqs. (B3) and (B4) it may be seen that the total
induced long-wave charge is in phase with the long-wave
potential. The Coulomb interaction of Eq. (2.5) does not
change the phase relation. The exchange-correlation
term does not enter the long-wave self-consistency pro-
cedure as it affects the long-wave potential in the second
order in q, whereas (by convention) the zeroth order is
the leading term. The situation is summarized graphical-
ly in Fig. 1.

As argued above, in the absence of absorptions, a po-
tential chosen by convention to be real for long wave-
lengths will be purely imaginary for short waves. The
physical significance of the imaginary part is seen by con-
sidering an external field of the form P'"'(r;co) =Pocosq r.
The electron density induced from Eqs. (B3) and (B4) will
be of the form 5n(r;co)=go[c(co)cosq r+ f (r;co)sinq r],
where c(co) is a real function and f(r;co) is a real func-
tion which is periodic in the lattice whose average value
is zero. For the long-wave response, the charge density is

greatest at the minimum of the potential, whereas the
short-wave response, which is a polarization, is largest
where the potential gradient is largest.

APPENDIX C: TENSOR PROPERTIES

The dielectric function transforms as a symmetric
second-rank tensor as the direction of the electric field (Q
in our longitudinal formulation) is varied. The purpose
of this section is to show that the angular dependence of
the equations of Appendix A, Eqs. (A7), (Al 1), (A13),
and (A17), together with Poisson's equation (2.5) and the
induced exchange-correlation potential, Eq. (2.6), lead to
a dielectric matrix with this transformation property. A
computationally convenient formula for the macroscopic
dielectric matrix is presented.

The short-wave electron density induced by a long-
wave perturbation, Eq. (Al 1), transforms like the vector
q. That is, we may introduce the quantities
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OCC

5n „'"(r; cv ) = —2gpflp f d k g ( n, k
~
r ) ( r

~
G„„(cv)G„„( cv—)x„VkH & n, k )

BZ
(Cl)

in terms of which

5n(r;cv)= g q„5n„(r;cv) .
p

(C2)

The superscript (I) refers to a long-wave source; (s) will refer to a short-wave source. The x„ form a set of three or-
thogonal unit vectors. The solution of the short-wave SCF equations (A7), (2.5), and (2.6) does not have any additional
reference to q; as these equations are linear in 5n(r;cp), both the short-wave SCF electron density and potentials will
transform like a vector under transformations of q. It is convenient (if counterintuitive) to introduce the quantities

"(r;cp), a vector of short-wave scalar potentials (i.e., potentials with zero average) related to the short-wave part of
"(r;cv) by P "(r;cv)= g„q„P„"(r;cv). (Of course, an arbitrarily imposed short-wave potential need have no spe-

cial transformation properties. ) Equation (A7), the angular dependence of the short-wavelength electron density in-
duced from a short-wavelength potential, may be recast as

OCC

5n „"(r;cv)=Apf dkg (n, kjr)(r G„k(+co)P„"(cv) n, k),BZ,+

where the relationship given by Eq. (C2) holds. The total short-wave electron density is given by
5n„(r; cv) =5n „'"(r;cv)+5n "(r;cv). Each P „"(r;cv) is defined by a single 5n„(r;cv) through Poisson's equation (2.5) and
the linearized exchange-correlation interaction of Eq. (2.6).

Consider the induced long-wavelength electron density. This electron density may be induced directly from the
long-wavelength perturbation via Eqs. (A14) or indirectly via the short-wave response [Eqs. (Al 1), (2.5), (2.6), (A7), and
(A13)]. The scheme is summarized in Fig. 1. If induced directly, the interaction is of the form

OCC

5n„",'(cv)=/pep flpf dkg [(n, k~(x„.V&Hk)G„k(+co)(x, .VkH|, )~n, k)+ —,'5, ]
BZ

(C4)

with

IIp ' f dr 5n(r;cv) = & q„q 5n„,(cp)
0

P, V

(C5)

as may be gleaned by inspection of Eq. (A14). [As Eq. (A14) rather than Eq. (A17) is used, the formula applies to metals
and insulators alike. ] If induced indirectly, i.e., via Eq. (A13), the interaction may be seen to be of the form

OCC

2&p f dk g ( n, k~(x„'VkHq )Gnq(cv)G„k( —cv)P, "(cv)~n, k)
n

(C6)

1. Macroscopic dielectric functions

The self-consistent potential may be written as in terms
of the external potential and the induced charge as

"(cv)=P'"'+v g q„q 5n„(cv),
P, V

(C7)

where v =4ne iq is the (isotropic) Coulomb interaction.
(The induced exchange-correlation potential need not be
considered, as it is zeroth order in q, whereas the
Coulomb part is of order —2. ) Equivalently, we may
write

where the relationship given by Eq. (C5) holds. The total
long-wave number density is given by 5n „(cv)

=5n „''(cv)+5n „"(cv). Hence, the long-wave-induced
number density transforms like a second-rank tensor un-
der transformations of q. The tensors of Eqs. (C4) and
(C6) are symmetric: 5n ' '(cv) is manifestly symmetric,
and replacement of P "(cp) in the expression for
5n „(',)(cv) leads to an infinite sum of manifestly symmetric
operators.

gq„q, psc"(cv)= gq„q [p„'",'+v5n„( )c]v, (CS)

where P(cp) = g„q„q,P (cv), for both the SCF and
external potentials, and P„'"'=Pp5„. As the vector q is

arbitrary, it is permissible to write an equation for the re-
duced quantities

,"(cv ) =P „'",'+ v 5n „(cv ) . (C9)

y
scF —y ( + )ny ext

n=0
(C 10)

Note that the short-wave SCF potential transforms with

q like a vector, but the long-wave SCF potential trans-
forms like a symmetric matrix. The symmetries reported
here are identical to those presented by others for the
SCF case and the exact case. '

Switching just for this paragraph to a notation in
which the symbols represent long-wave quantities with
3 X 3 matrices, the long-wave SCF equation may be
solved explicitly as
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Summation of the geometric series leads to an expression
for the inverse dielectric matrix

e '=(I —ufo)

which implies

6'= I Vgp

(Cl 1)

(C12)

These relationships are the matrix generalizations of
those holding for the electron gas in the RPA. In the
present context, the macroscopic gp matrix is most easi-
ly found from the relation

g- IIOn-SCF, ~ eXt
XpY' (C13)

2. Point-group symmetry

We wish to consider only the symmorphic symmetry
operators of the point group of the Hamiltonian. We
define the irreducible analogous of Eqs. (Cl), (C3),
(C4), and (C6) to be 5n „" '(r;co), 5n „" '(r;co),

Computationally, we find 6n "'" " from the external po-
tential as the sum of direct and indirect (i.e., local field)
contributions. The macroscopic dielectric matrix is then
determined immediately from Eq. (C12). We must screen
the induced short-wave charge densities and potentials
numerically, but the long-wave screening is done analyti-
cally. As we have formulated the problem with 3 X 3 ma-
trices, this holds true even in low symmetry crystals for
which D is not parallel to E.

and

5n„(r;co)= g S„'5n ' '(S 'r;co)
Sv

5n„,(co)= y S„„'S,,!5, n IR,sz'(co)
S)M'v'

(C14)

(C15)

for both the short- and long-wave parts of the charge
density.

5n „'„' '(co), and 5n „" '(co), where the domain of in-

tegration is restricted to the reduced Brillouin zone
(RBZ). We use the notation RBZ rather than irreducible
Brillouin zone (IBZ) to emphasize that the nonsym-
morphic symmetry operators are not considered. It is
our opinion that the inclusion of nonsymmorphic ele-
ments in the integrations of terms involving P "(co)
reduces computational efticiency, because apparently a
separate term must be defined for every distinct value of
Sv., where S is any rotation operator associated with the
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