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In order to substantiate the applicability of the coherent-potential approximation (CPA) to
conducting polymers with randomly distributed impurities, the Su-SchriefFer-Heeger model is
generalized by including the eR'ects of the impurities and solved numerically. The lattice con-
Rgurations, electronic levels, and wave functions are determined for each impurity distribution.
The size of lattice dimerization and electronic density of states are determined and averaged
over a large number of impurity distributions, which are selected independently and randomly.
The study is confined to systems with one electron per site that we have studied previously
using the CPA. Two types of impurities as well as three doping mechanisms are considered. It
turns out that the magnitude of lattice dimerization agrees remarkably well with the CPA result
for all impurity types and doping mechanisms under consideration. The density of states shows
a characteristic tail at the edge of a band where the CPA predicts an impurity band at lower
concentrations. Such a tail never occurs in regimes where the CPA does not predict such bands.
Quasilocalization is found in the wave functions of the states at the band edges. It is closely
associated with the characteristic structure of the density of states. The usefulness of the CPA
is thus established for the Peierls system as far as gross qualitative properties are concerned.

I. INTRODUCTION

In a series of papers 6 we have been investigating the
effects of random impurities on the electronic properties
of conjugated polymers. Two types of impurities have
been studied. One is the site-type impurity which lo-

cally varies the site energy of x electrons. The other is
the bond-type impurity which locally changes the elec-
tronic transfer integral. The Su-SchriefFer-Heeger (SSH)
Hamiltonian has been generalized to include the effects
of these impurities.

It is possible to carry out analytical investigations,
using the continuum limit [Takayama —Lin-Liu —Maki
(TLM) model ] of the generalized SSH Hamiltonian.
The one-dimensional lattice of the SSH model is dimer-
ized when there is one electron per site. If the bond
between the 2nth site and the neighboring (2n + 1)th
site is short, we have a long bond between the (2n+ 1)th
site and the (2n+ 2)th site, and vice versa. This pattern
extends over the chain. A site-type impurity at an even-
numbered site gives a different effect on electrons from
a site-type impurity at an odd-numbered site. Similarly,
a bond-type impurity along a short bond gives a differ-
ent effect from an impurity along a long bond. These
differences persist in the continuum limit.

We have been interested in the formation of impurity
bands in the gap, the change in the order parameter, and
a possible vanishing of the energy gap. These properties
have been investigated with the help of the Soven-Taylor

coherent-potential approximation (CPA). It is a method
which is convenient to study such properties and would
give reliable results as far as gross and qualitative infor-
mation are concerned. We have so far confined the study
to a system with uniform order parameter and half-filled
electronic states.

The bond-type impurity effects have been investigated
in Refs. 2 and 4. To simplify the analysis in Ref. 2, the
impurity along a short bond is assumed to give an oppo-
site efFect on the electron transfer to the impurity along
a long bond. When the former enhances the transfer,
the latter deemphasizes it by the same amount, and vice
versa. The enhancement pattern is, therefore, in phase
with the dimerization. We shall later name these impuri-
ties cis-type. It has been found that there is no impurity
band in the energy gap. In Ref. 4, each impurity has been
supposed either to enhance or deemphasize the transfer
with an equal probability. Half of the impurities are in
phase with the dimerization and the other half are out of
phase. Two impurity bands can be formed through the
out-of-phase impurities. This type of disorder would take
place when a bond is shortened or elongated by a pos-
sible local misalignment with neighboring impurity and

p olyacetylene chains.
The site-type impurity problems have been studied in

Refs. 3—5. In Ref. 3 we have investigated the impurity dis-
tribution in which the impurities are at interstitial sites
either always along the long bonds or always along the
short bonds. Each impurity modifies the electronic site
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energy at the two ends of the bond by the same amount.
This would be the case when the impurity is charged, re-
leasing an electron to or accepting it from another chain.
It modifies the site energy strongly. ~ This distribution
simplifies the problem since it eliminates backward scat-
terings of electrons. At low concentrations, an isolated
impurity band is formed above the top of the valence
band or below the bottom of the conduction band accord-
ing to the sign of the impurity strength. At high concen-
trations and large impurity strengths, the order param-
eter and energy gap vanish. In the succeeding paper,
another impurity distribution is studied. Each impurity
is assumed to be located at a lattice site. Half of them
are at the even-numbered sites and the other half at the
odd-numbered sites. They give rise to backward as well

as forward scattering. There are no qualitative changes
from the results of Ref. 3. This indicates that the anal-
ysis, developed in Ref. 3 for the interstitial distribution,
does give the qualitative features of various distributions
of site-type impurities correctly. The situation becomes a
little complex when the doping is compensated with the
same amount of donors as acceptors being introduced.
The former gives rise to attractive potentials to the elec-
trons, while the latter gives repulsive potentials. In Ref.
4 they are assumed to occupy the interstitial sites as in
Ref. 3. At low concentrations we have found two impu-
rity bands, one of them being closer to the valence band
and the other to the conduction band. Even this struc-
ture can be understood with the help of the results in
Ref. 3. Since there are impurities with difI'erent signs,
one impurity band is formed by the impurities with one
sign and the other band is formed by the other impurities
with the other sign.

In general, the impurities would modify the electronic
transfer integral and the site energy at the same time.
It has been pointed out in Ref. 1 that, at low concen-
trations, the formation of impurity bands is suppressed
when the strength of the bond component is larger than
that of the site component. At high concentrations the
energy gap does vanish for strong site components. As
the bond component stabilizes the dimerization, it be-
comes more difBcult to disrupt the energy gap so as to
gain the electronic energy.

These results are very fertile and quite interesting.
There are, however, two problems which we have to
discuss. One of them is the fact that the energy gap
vanishes at higher concentrations and stronger impurity
strengths than the experimentally observed concentra-
tions and strengths, respectively. This problem will be
studied in a separate paper. The other problem is the
question of how reliable the CPA results are, particularly
when applied to low-dimensional systems.

The purpose of this paper is to answer this question
by numerical investigations of the electronic level struc-
ture of the generalized SSH model. The method of the
numerical investigation was developed independently by
Sun, Wu, and Shen, Chao and Wang, and one of the
present authors and Ono for the SSH model without

impurities. The equation for the electronic wave func-
tions is solved depending on the order parameter. The
order parameter is, in turn, determined with the help of
the wave functions. The whole problem is thus solved by
an iteration. The lattice vibrations around solitons and
polarons were investigated by this method, including sys-
tems with electron-electron interactions~s and with site-
type and bond-type impurities. Soliton formation and
pinning were demonstrated and infrared activities of lo-
calized phonons around the soliton were studied. Infor-
mation on the electronic density of states could have been
derived and used in the calculations, but they were not
taken out of the numerical procedures. In the present
study we extract the electronic properties as the density
of states and wave functions in order to see if they can
reproduce the features predicted by the CPA.

Since the impurities are assumed to be distributed ran-
domly, an average over this distribution has to be per-
formed for physical quantities which are numerically ob-
tained for each distribution. We select N, samples which
are determined independently. In each sample, the posi-
tions of the impurities are selected randomly. Such physi-
cal quantities as the dimerization amplitude and the elec-
tronic density of states are averaged over the N, samples.
In the present work, N, is taken to be 100.

We confine the study to systems with one electron per
site in accordance with the previous CPA studies. In
other words, we consider the efI'ects of isoelectronic dis-
order generated by the dopants. In order to obtain max-
imal information from the numerical results with a sys-
tem of finite size, we use a generalized, quasiperiodic,
boundary condition for the electronic wave functions. 5

The wave functions do not have the same value at the
two ends of the system, but diA'er by a constant phase
factor. Our system is effectively regarded as a unit of a
larger system. It can give energy eigenvalues between a
pair of the successive eigenvalues of the original system.
In addition, we can measure the degree of localization
of the wave functions by varying the phase. The eigen-
value does not change if the corresponding wave function
is localized, since in this case it is not affected by the
boundary condition.

In each doping method we choose a typical sample
for which we show lattice configurations, electron den-
sity distributions, and the wave functions near the en-
ergy gap. The averaging procedures are performed to
obtain the order-parameter and density of states, and
they are compared with the CPA results. We find re-
markable agreements when impurity concentrations are
as low as several percent. It suggests the reliability of
the CPA as far as the qualitative features of the physical
quantities are concerned.

Furthermore, we find that the wave functions tend to
localize according to the sign of impurity potentials with
the site-type impurities. In the case of the bond type,
on the other hand, they have large amplitudes in regions
where the order parameter becomes relatively small.

In Sec. II the impurity models are presented within
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the SSH model, and the relations to the TLM model are
explained. The numerical method is briefly summarized.
Section III is devoted to the numerical results for the
systems with site-type impurities. Section IV is for bond-
type impurities. The discussions follow in Sec. V.

The generalized SSH Hamiltonian (2.1) gives an equa-
tion for the electronic wave function

s„P„(n) = —(tp —ny„, )P„(n —1)
—(tp —ny„)P„(n+ 1) + I, ) b, „P„(n),

II. MODEL AND NUMERICAL METHOD

The generalized SSH Hamiltonian is taken to be

{2.5)

where yn = un+~ —un and z„an eigenvalue. The function
y„ is determined by

+ —IIssH + +imp

where the first term is the SSH Hamiltonian

(2 1)

HssH ———) [tp —n(u„+i —u„)](c„+i,c„,+ H. c.)
n, S

r~

+ —) (u~+i —u~) (2 2)

Here e„, is an annihilation operator of an electron at the
nth site with spin s, to the nearest-neighbor transfer inte-
gral of an undimerized chain, u„ the displacement of the
nth CH unit, and I~ the force constant between the ad-

jacent units. The quaritity o.- characterizes the electron-
phonon coupling strength due to the modulation of the
transfer integral. The second term in (2.1) is given by
the impurities. The site-type impurities give

H;p ——I)etc;, , (2.3)
$)S

where the sum with respect to i is taken over all the
impurity sites which are distributed randomly. The pa-
rameter I, is the impurity strength. In the continuum
limit, Eq. (2.3) becomesg

II; ~ = U, ) dz@t(z)b(z —zI+~)(1~ p.,)@,(z)

+P'„(m)P„(m + 1)], (2.6)

where 8/N is a Bloch momentum, p being a quantum
number. It is well known that the wave function can be
written

P„(n) = exp(i8n/N)g„(n), (2.8)
in terms of a periodic function which satisfies

where the prime indicates that the sum is taken over
occupied states. The second term is added to satisfy the
condition P„y„=0.

In order to obtain maximal information from the simu-
lation of a small system, we make use of a kind of Bloch's
theorem for electron states in a periodic lattice. Sup-
pose the computations are to be carried out on a system
of N lattice sites. We regard this as a unit cell of the crys-
tal in Bloch's theorem. Our total system is composed of
many such unit cells. The theorem, then, states that the
electron wave functions satisfy

P„(n + N) = e' P„(n), (2 7)

+U, ) dziI)t(z)b(z —z~ l)(1 —0&)@,(z), @„(n~ N) = Q„(n) . (2.9)

(2.4)
where iI), {z) is the two component operator in the TLM
model, and U, = aI, , a being the lattice constant; x,.+(+)

indicates a position of an impurity at an even-numbered

site, while z, at an odd-numbered site; Pauli matrices
are denoted by cr, (i = 1, 2, 3). When any two adjacent
sites are occupied by the impurities, the continuum limit
cannot be represented by (2.4). At low-impurity concen-
trations, however, effects of such impurity pairs would be
small and can be neglected. The model (2.4) has been
studied in Ref. 5 with the help of the CPA. The quanti-
ties I, and U, have been denoted by 2J and U there.

Substituting (2.8) into (2.5), we get

s„g„(n) = —(tp —ny„ i)e 'e~ @„(n—1)
—(tp —ny„)e' ~ @„(n+1)

+I, ) b, „@„(n), (2.11)

and Eq. (2.6) becomes

Since the lattice displacements u„determine the poten-
tial in the cell, they have to satisfy the ordinary periodic
boundary condition

(2 1o)

I

y„= ——) [e' ) g„'(n+ 1)g„(n) + e ' ~ @„"(n)@&(n+1)]
P)S

I

+ ) ) [e' g„*(m + 1)g„(m) + e '
@„*(m) @„(m+ 1)]

fTk P) S
I I

) Re[e' ~ @„*(n+l)@„(n)]+ . ) ) Re [e' ~ @„'(m+ 1)g„(m)] .

tTl P)s

(2.12)
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IIimp —Ib ) ( 1) (C, Ci+1,s + C.+1 Ci,s)
$)S

(2.13)

When impurities are bond type, we first consider the
model

homogeneous distribution of (2.14) to describe the cis-
polyacetylene, we name the doping with impurities (2.14)
cis-type doping, hereafter.

We next study another model

The impurity along a short bond gives an opposite eAect
to the impurity along a long bond. Its continuum limit
is

C)S

X (Ci sCi+1 s + Ci+1 s i s)

H;, = V& ) dz)I&,'(z) b(z —z, )o.,@,(z),
l)S

(2 14) (2.15)

where Ug ——2aIy, This was studied in Ref. 2, using the
CPA. Since Brazovskii and Kirova used a version of

I

where the quantities (; are random variables which sat-
isfy

1, if there is an impurity at the ith site with the potential
strength (—1)'(+I&,), respectively,

, 0, otherwise .
(2.16)

There are as many (&+l-impurities as (t l-impurities corresponding to donors and acceptors, respectively. Me name
this doping compensated doping. Its continuum limit is

II; p = V&, ) dz@t(z)6(z —z,+l)o&&1),(z) + (—U&) ) dz@t(z)b(z —z, l)o1@,(z),
$&S S&S

which was discussed in Ref. 4 by the CPA. The electron wave functions are determined by

(2.17)

S&s~&s(n) I (~0 ~y)) —1) + Ib ) ~i,~—1( 1) IC ~&s(n 1)

+I—(~o —~ry ) + I» ) ~i,~(—1)"j" &) ("+1) (2 18)

for the cis-type doping and by

(2.19)

for the compensated doping.
To perform numerical computations, we choose N;

sites out of X total sites at random. We thus fix a set
of impurity sites i. An initial set of the bond variables

(y„) is taken to be y„= (—1)"yo. Since the preceding
CPA studies have considered systems with one electron
per site and assumed a uniform order parameter, this
initial set would qualitatively correspond to this assump-
tion, although we take into account small deviations from
this set in the present computations. Then we start itera-
tions. At the kth step, the eigenvalue equation is solved,
using the (k —1)th set of (y„), and the obtained

eigenfunctions are used to get the kth set of (yt l). The
iteration is repeated until the sum P„(y„—y„)(e) (k-r)

becomes suKciently small.

III. SITE-TY PE IM P U RITIES

A. A typical solution

In the numerical studies we use the parameters n =
24.1 eV/A. , Iw = 21 eV/A. , and to —2.5 eV for the sys-

I

tern with N, ~
——N = 100, N, ~ being the total number of

electrons. These give the dimensionless electron-phonon
coupling constant A = 2n2/&rI1 to ——0.20. All the quanti-
ties with the dimension of energy are given in units of to.
The initial value of the lattice displacement is yo

——0.1
A. . This choice should be reasonable since its absolute
value is about 0.08 A. in the impurity-free system.

In this subsection we show a typical solution, when
the impurity strength is I, = 0.4/o and the concentration
c = 0.08. In Fig. 1(a) a set of the smoothed dimerization
amplitude y„= (—1)"(y„—y„~&)/2 is plotted as a func-
tion of n. Positions of impurities are denoted by squares
on the abscissa. The phase in (2.7) is taken as 0 = 0. In
Fig. 1(b), the electron-density distribution is plotted, af-
ter the smoothing procedure p„= (p„&+2p„+&o„+1)/4.
Around each impurity, the dimerization amplitude be-
comes small. It deforms asymmetrically with respect to
the position of the impurity. The electron density de-
creases at the impurity site due to the repulsive impu-
rity potential I, . Its distribution is asymmetric also. It
decreases on one side and increases on the other. The
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FIG. 1. (a) The smoothed dimerization amplitude, y„=
(—1)"(y„—y„+q)/2, and (b) the smoothed electron-density
distribution, p„= (p &+2p„+p„+r)/4, for a typical sample
with site-type impurities. The impurity strength is I, = 0.440,
and the concentration c = 0.08. The phase 8 is zero. Positions
of the impurities are indicated by squares on the abscissa. The
average electron density over the whole sample is unity.

asymmetry is due to the fact that there is a short bond
on one side and a long bond on the other side of the im-
purity. At the short bond, the transfer integral is larger
than to. The larger transfer integral generates a longer
tail of increased electron density. At the long bond, on
the other hand, the transfer integral is smaller. It gener-
ates a shorter tail of the decreased electron density.

The 8 dependence of the electronic eigenvalues g& is
shown in Fig. 2. Figure 2(a) shows the lowest six eigen-
values of the conduction band in the impurity-free sys-
tem. The results at 0 = 0 and 71 correspond to sys-
tems with periodic and antiperiodic boundary conditions,
respectively. The eigenvalues are pairwise degenerate.
When 0 is neither zero nor x, this degeneracy is removed
and the eigenvalues vary monotonously. This shows that
eigenfunctions extend over the system (they are plane
waves). Figures 2(b) and 2(c) show the 0 dependences
of the eigenvalues at the bottom of the conduction band
and the top of the valence band for the doped system dis-
cussed in Fig. 1, respectively. The pairwise degeneracy
in Fig. 2(a) is removed. The 0 dependences are weaker
compared with Fig. 2(a). This means that the wave func-
tions are more or less aA'ected by the disorder potential to
have large amplitudes around particular regions in space.

Figure 3(a) shows the magnitude of four wave func-
tions

~ @&(n) (2 at the top of the valence band and the
bottom of the conduction band. The electronic states
are numbered in the order of magnitude of the eigen-
values. The states of the valence band are numbered in
I ( p ( N/2. Those of the conduction band have the
numbers N/2+ I ( p ( N Figure 3. (a) is for p = 49
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FIG. 2. The energy eigenvalues of the electronic states as
functions of the phase 8. (a) The lowest six eigenvalues of the
conduction band of the impurity-free system. (b) gives the
six eigenvalues at the bottom of the conduction band of the
typical sample shown in Fig. 1. (c) shows the eigenvalues at
the top of the valence band.

FIG. 3. Magnitude of the wave functions ~@„(n)~ for the
typical sample in Fig. 1. (a) is for p = 49 and (b) for p, = 50
(the top of the valence band). (c) is for p = 51 and (d) for
p, = 52 (the bottom of the conduction band).
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and Fig. 3(b) for p = 50, corresponding to valence-band
states with second highest and highest energy, respec-
tively . Figure 3(c) is for p = 51 and Fig. 3(d) for

p = 52, i.e. lowest and next lowest energy conduction-
band states. The wave functions at the top of the va-

lence band have large amplitudes around the impurity
sites, while those at the bottom of the conduction band
prefer to localize in the impurity-free regions. This is be-
cause I, is positive. In general, we find that the states at
the upper edge of a certain band tend to localize around
impurities, while the states at the bottom of the same
band have large amplitudes in the impurity-free regions.

B. Averaged data

1
gV

ps+1 g

1

g
—1

gV
v+~

if p = 1 and N/2+ 1,
if p = N/2 and N,
otherwise,

(3.1)

The typical solution, discussed in the previous subsec-
tion, has to be averaged over various impurity distribu-
tions, that is, over various samples.

The bond variable y„ is averaged over N sites and N,
samples. We take N, = 100. The averaged value is

(~ y„~) = 0.0780 A. This gives the order parameter in the
TLM model K = 2n(~ y„~) = 0.640 eV= 0.256to. In the
CPA investigations the continuum Hamiltonians (2.4),
(2.14), and (2.17) are used. To solve the CPA equations
numerically, we have replaced the continuum system by
a discrete system. The lattice constant of the discrete
system has been taken to be 2a which is the size of the
unit cell of the dimerized system. The strength of the im-

purity potential is defined by J:—V, /2a = I, /2, and is
thus half as large as the strength in the SSH model. This
comes from the fact that in the CPA the lattice unit is
doubled. On the other hand, the impurity concentration
becomes twice as large as that of the SSH model, since it
is the average number of the impurities in the unit cell.
Our typical solution is given for I, = 0.4tp and c = 0.08,
which corresponds to J = 0.2tp and ccpA —0.16 in Ref.
5. The concentration in the CPA analyses will be denoted
by c~pA, hereafter: ccpA —2c. Although the order pa-
rameter has not been explicitly given for this strength in
Ref. 5, its value is L = 0.639 eV = 0.255tp. The cou-
pling constant has been taken to be A = 0.183, which has
led to the order parameter in the impurity-free system

= 0.65 eV. In the present numerical simulation, the
value A = 0.20 is used. Without the impurities it gives

( p„)= 0.0793 A. and reproduces the same Ao —0.65 eV.
We compare the simulation results of a SSH system with
the CPA results of a TLM system, both having the same
Lp but not necessarily the same A. The CPA result is in
a remarkable agreement with the above result, in spite of
the fact that within the CPA a uniform order parameter
is assumed.

Using the energy eigenvalues, we define the inverse
level spacing d„by

where z„' is the pth eigenvalue of the vth sample. The
spacings are associated with the level spacings of valence
and conduction bands separately; the energy gap between
both bands is not included. In Figs. 4(a), 4(b), and 4(c),
we plot N x N, points (s"„,d"„/N) for 1 & p & N and

1 & v & N, , for 0/2n =0, 0.25 and 0.5, respectively.
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FlG. 4. Density of states per site of a system with site-
type impurities. The abscissa is s„and the ordinate d„/N.
The impurity strength is I, = 0.410 and the concentration
c = 0.08. (a) is for 8 = 0, (b) for 8/2ir = 0.25, and (c) is for
8/2z = 0.5. The figure for 8/2s = 0.75 almost coincides with
(b). (d) is the superposition of the four figures. A remnant
of an impurity band is seen at the top of the valence band.
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The data points cluster around the eigenvalues of the
impurity-free system. This clustering implies that finite-
size effects remain. Due to the randomness, each cluster
has a nonvanishing width. When 0 is varied, each clus-
ter moves according to the change in the eigenvalues, as
illustrated in Figs. 2(b) and 2(c). The clusters at the
edges of the valence and conduction bands do not move
to the same amount as those in the middle regions of
both bands. This is due to two eAects: one is that the
inverse level spacing is larger at the edges of bands than
at the band centers. The other is that the disorder effect
tends to localize the wave functions stronger at the band
edges than at the band centers. Superposition of the
four sets of plots for 0/2x = 0, 0.25, 0.5, and 0.75 gives
Fig. 4(d). The result looks continuous. This means that
we have eliminated the finite-size effects and a statisti-
cal average has been performed successfully. Since N,
is large enough, 'we can expect that Fig. 4(d) represents
the density of states per site. A similar data analysis
has been performed in Ref. 17. Above the tops of the
valence and conduction bands, the density of states has
tails in the energy gap and the higher energy region, re-
spectively. These are remnants of the isolated impurity
bands which have been obtained in the CPA analysis at
low concentrations. The number of states in these tails is
very small. If we would have tried to obtain the density
of states by counting the number of states whose energies
are in a given energy interval, we would have missed the
tail structures.

Figure 5(a) shows the detailed plots of Fig. 4(d) close

to the energy gap. Figure 5(b) is the result by the CPA.
The two results agree well, though the CPA analysis has
been made assuming a uniform order parameter.

The same calculation is performed for I, = 1.0/o and
c = 0.03. The density of states is shown in Fig. 6(a),
close to the energy gap. The tail becomes broader and
there may be a fine structure at the top of the valence
band. Figure 6(b) shows the corresponding CPA result
for J = 0.540 and ccpA —0.06. An overall similarity is
evident. Positions of the peaks agree well, However, the
fine structure is not reproduced in the CPA. This is a
well-known limitation of the single-site approximation of
the CPA, which appears for sufficiently strong disorder

p otential. '8

IV. BC)ND-TYPE IMPURITIES

A. C is-type doping

In the cis-type impurity Hamiltonian (2.13), its
strength is taken to be I/, ——0.2to. As shown in the
CPA analysis ' the product I~A is positive for the sta-
ble solution. We thus take a positive yp, tllat is, yo —0.1
A. . The concentration is c = 0.08.

A typical solution with 0 = 0 gives the smoothed
dimerization amplitude in Fig. 7(a). It increases around
each impurity. There are two types of deformation pat-
terns. One of them is short ranged and is associated with
a long bond. The other has a longer tail and is related
to a short bond. This has been discussed already in Ref.
19. Figure 7(b) shows the electron density. It has a ho-

i.0
1.0

(a)

u) Q5-
D
Cl

m Q5-
D

0
—0.6

I I I I I

0
Energy / to

-Q.6
I l I I I

0
Energy / to

0.6

(b)
1.0

u) 0.5—
C)
C3 u) Q5-

O
C3

-Q6
I I I I I

0
Energy / to

0.6
—0.6

I I I

0
Energy / to

0.6

FIG. 5. (a) shows the details of Fig. 4(d) around the en-
ergy gap. In (b) the result of the CPA calculation is shown for
J = 0.2fp and ccpA = 0.].6, corresponding to the parameters
in Fig. 4.

FIG. 6. (a) Density of states per site of a system with
site-type impurities with I, = 1.0tp and c = 0.03. In (b) the
CPA result is shown for J = 0.5tp and ccpA —0.06.
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FIG. 7. (a) The smoothed dimerization amplitude y„and
(b) the smoothed electron-density distribution p„ for a typi-
cal sample with bond-type (cis-type) impurities. The impu-
rity strength is I& ——0.2to, and the concentration c = 0.08.
The phase 8 is zero. Positions of the impurities are indicated
by the squares on the abscissa. The electron-hale symmetry
results in a homogeneous distribution.

mogeneous distribution, since there is the electron-hole
symmetry. Figure 8(a) shows

l @sr(n) l
and Fig. 8(b)

is
l /san(n) l

. They are the two states at the bottom
of the conduction band. The electron-hole symmetry
results in the fact that each of

l Q&(n) l2 for the va-
lence band (p = 1—50) is identical with a corresponding

„(n) l
for the conduction band. We find that the

wave functions near the energy gap have large amplitudes
in the impurity-free regions. Around each impurity, y„
becomes larger. So, the local energy gap around the im-
purity increases. The local energy gap becomes relatively
smaller in the impurity-free regions. Consequently, the
wave functions of the states near the energy gap tend to
have larger amplitudes in the impurity-free regions.

The averaging procedure is performed over the N sites
and N, samples to give (l y„ l) = 0.0902 A. This yields
4 = 0.740 eV = 0.29640 in the TLM model. The CPA
analysis has given 4 = 0.765 eV = 0.306to for I =—
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Ui, /2a = 0.2to and ccp~ = 0.16. The two values agree
well, but the agreement is not so good as with the site-
type impurities. The bond alternation y„ is modulated
in first order with respect to Ib but in second order with
respect to I, . So, the spatial variation of y„, which has
not been taken into account in the CPA, would be more
important in the system with bond-type impurities.

The density of states is shown in Fig. 9(a), after the
superposition of the plots with Oj2z = 0, 0.25, 0.5, and
0.75. It is symmet, ric because of the electron-hole sym-
metry. There are remnants of impurity bands, one at
the bottom of the valence band, the other at the top of
the conduction band, and no remnant in the energy gap.
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C
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0 50 100

o0'
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FIG. 8. Magnitude of the wave functions l@„(n)l for the
typical sample in Fig. 7. (a) is for p = 51 and (b) for p = 52
(the bottom of the conduction band).
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FIG. 9. Density of states per site of a system with bond-
type (cis-type) impurities. The impurity strength is Ii, = 0.2$O

and the concentration c = 0.08. (a) is the superposition of
the four corresponding figures with 8/27r = 0, 0.25, 0.50, and
0.75. Remnants of two impurity bands are seen at the bottom
of the valence band and at the top of the conduction band.
(b) shows details around the energy gap region. In (c) the
CPA result is shown with I = 0.2to and cgpA = 0.16.
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FIG. 10. (a) The smoothed dimerization amplitude y
and (b) the smoothed electron-density distribution p„ for a
typical sample with bond-type impurities and compensated
doping. The impurity strength is Ig = 0.24p and the con-
centration e = 0.08. The phase 8 is zero. Fositions of the
positive impurities are indicated by the squares above the
abscissa, and those of the negative impurities by the square
below it. The homogeneous distribution is the consequence
of the electron-hole symmetry.

A typical sample with 0 = 0 gives the smoothed dimer-
ization amplitude in Fig. 10(a). The locations of positive
and negative impurities are denoted by squares above
and below the abscissa, respectively. Around a positive
impurity, the amplitude increases, while at a negative
impurity, it decreases. We find the two types of the de-
formation patterns again. The pattern in the decrease
around the negative impurities has just the same shape
with that of the increase around positive impurities. Fig.
10(b) shows the electron density. It is distributed homo-
geneously just as in the case of cis-type doping. Figure
ll(a) shows

( @s&(n) [ and Fig. 11(b) ) @s2(n) ~

. They
are the two states at' the bottom of the conduction band.

u) 0.5-0

Figure 9(b) shows the detailed plots of the region close
to the gap. Figure 9(c) is the corresponding CPA result.
The overall agreement is remarkable.

B. Compensated doping
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The compensated doping is represented by the impu-
rity Hamiltonian (2.15). We take the strength It, ——0.2to.
The CPA analysis" has shown that the sign of the order
parameter is irrelevant. We thus take a positive yo (=0.1
A). The impurity concentration is taken to be c = 0.08.
There are as many impurities with Ib as impurities with
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FIG. 11. Magnitude of the wave functions ~vP„(n)~ for the
typical sample in Fig. 10. (a) is for p = 51 and (b) for p = 52
(the bottom of the conduction band).

FIG. 12. Density of states per site of a system with
bond-type impurities and compensated doping. The impu-
rity strength is I» ——0 2tp and the co.ncentration c = 0.08. (a)
is composed of the superposition of four plots for 8/2x = 0,
0.25, 0.50, and 0.75. There are remnants of impurity bands
at the bottom and the top of both bands. (b) shows details
around the energy gap region. In (c) the CPA result is shown
with I = 0.24p and ccpA = 0.16.
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The local energy gap increases around a positive impu-
rity, while it decreases at a negative impurity. So, the
states near the energy gap tend to have large amplitudes
around negative impurities. The wave functions near the
energy gap have a property common with cis-type impu-
rities: they have large amplitudes in regions where the
order parameter is small.

Averaging y„over N sites and N, samples with N,
100, we get (i y„ i) = 0.0756 A and A = 0.620 eV =
0.2484o. The CPA calculation has given A = 0.648 eV =
0.25910 for I = 0.210 and c~pA —0.16. Thus, we confirm
the decrease of the order parameter in the compensated
doping, which has been predicted in Ref. 4.

The density of states is shown in Fig. 12(a). There
are four remnants of impurity bands: two of them in the
energy gap, another at the bottom of the valence band,
and the last at the top of the conduction band. Figure
12(b) is the detailed drawing in the region close to the
energy gap. In Fig. 12(c) we show the CPA result for
comparison. It reproduces the gross structures. In Ref.
4 it has been discussed that two impurity bands in the
energy gap are originated from the negative impurities
when the order parameter is positive. This also agrees
with the above discussion that the wave functions near
the energy gap have large amplitudes around negative
impurities.

V. DISCUSSIONS

We have shown that there are remarkable agreements
between the CPA results in the TI M model and the nu-
rnerical results in the SSH model. The averaged order pa-
rameters agree well with the CPA results. The agreement
is better for a system with site-type than for bond-type
impurities. The effects of the spatial variation of the or-
der parameter would be more apparent in the bond-type
system. We find distinctive features in the density of
states of the valence or the conduction band. In some
cases there is a tail in the energy gap, which we have
related to the presence of an impurity band. In other
cases, there is not such a tail. These tails appear only in
cases where the CPA predicts an isolated impurity band
for low enough concentrations.

Spatial distributions of the wave functions near the en-
ergy gap have properties similar to the ones one would
expect for impurity bands. When a band has a tail,
the wave functions near this edge have large amplitudes
around impurities. The valence band in Fig. 5(a) has
such a tail. Consequently the wave functions $49 and

$50 have large amplitude around the impurities in Figs.
3(a) and 3(b). In Fig. 12(b), both valence and conduc-
tion bands have this tail, and the wave functions @st and

f52 are large at the impurities sites, as shown in Fig. 11.
The functions @50 and @qs have the same structure, since
the particle-hole symmetry holds. If there is no such tail,
the wave functions localize in the impurity-free regions.
There is no tail for the conduction band in Fig. 5(a), and
the wave functions /san and /san are in the impurity-free
regions as shown in Figs. 3(c) and 3(d). The two bands
in Fig. 9(b) do not have a tail, and the wave functions

/san and Qsz are in the impurity-free regions in Figs. 8(a)
and 8(b) as well. There is again particle-hole symme-
try. This is quite reasonable since the impurity bands
originate from the localized states around the impurities.

In the present paper, we have considered the impurity
concentrations of the order of several percent. Accord-
ing to the CPA, the impurity bands in the energy gap
are connected to the conduction and/or valence bands at
this concentration. At lower concentrations, the impu-
rity bands would be isolated. In order to simulate such a
system with a low concentration, we need a large system
to get a large number of eigenstates. Therefore, we have
not performed such a calculation. However, we believe
that the CPA calculations describe the global features of
the density of states in such a low-concentration system
also.

When the impurity concentration becomes higher, we
have a rapidly increasing number of samples in which
solitons and polarons present. The energy-level struc-
ture then becomes much more complicated as well as the
lattice configuration. With solitons and polarons present, ,
the CPA has to be generalized to take into account the
spatial variation of the order parameter. This poses a
very interesting problem.
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