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Band offset in GaAs/Al„Ga, „As multiple quantum wells calculated
with the sp s* tight-binding model
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By incorporating a block-decimation method to the sp's* tight-binding model, we have studied

the evolution of Al„Ga& As electronic band structure as a function of Al composition, including

the compositional correlation eff'ect. Using the experimental data of a GaAs/AlAs multiple quan-

tum well, we obtain the band edges of an Al„Ga, As alloy as functions of x, from which the band

offsets isEr and IsEc as well as the band-offset coefficient Q =EEc/(tsEc+6 Er) are derived for ar-

bitrary Al concentration. The result agrees well with experiment.

I. INTRODUCTIQN

The effective-mass approximation (EMA) has been ex-
tensively used to study the energy-level structures of het-
erostructures, quantum wells, and semiconductor super-
lattices. Two key problems emerge in the case of the
EMA. Because of the spatial dependence of the effective
mass m (z) along the direction perpendicular to the inter-
faces (defined as the z axis), the z component of the
kinetic-energy operator has the general form

—,
' [m (z) ] ih —[m (z) ]~ ih —[m (z) ]

d
dz dz

where 2a+p= —1. It is generally accepted that for
GaAs/Al Ga, As multiple quantum wells (MQW), the
most reasonable choice for the value of f3 is I3= —1.

The second problem is related to the abrupt change of
the potential function across the interface between any
two different materials. Consider the type-I semiconduc-
tor superlattice GaAs/Al„Ga, As as an example. The
variation of the conduction-band minimum (or valence-
band maximum) along the z axis is schematically shown

in Fig. 1 as an array of square-well barriers. The conduc-
tion (or valence) -band offset b,EC (or EEi, ) is important

not only for the device design, but also for theoretical
analysis, because the EMA Schrodinger equation can be
reduced to one dimensional along the z axis with the po-
tential V(z) identical to the square-well barriers given in

Fig. 1. Conventionally, the band-offset coescient is

de6ned as

other practical reasons, the Al concentration of the usual

device materials is either x ~0.38 or x =1.0. Therefore
the direct measurements of the band offsets are quite re-
stricted. In 1980, the C-V measurements at the abrupt
GaAs/Al„Ga, ,As heterojunctions' yielded a
conduction-band offset AE& =0.248 eV for x =0.3. ' The
recent experimental values of EEL on the molecular-
beam-epitaxy-grown AIAs/GaAs [001] (x = 1) samples
are EEV =0.45 —0.56 eV, 0535+0.0125 eV, and

0.560+0.03 eV.
In the EMA the subband structures of a MQW system

vary with the value of Q used in the calculation. Q can
then be determined theoretically by fitting the computed
excitation energies to the optical measurements. %'hile
the first value so obtained is Q-0. 9, the commonly ac-
cepted value now is Q -0.6. Beyond the standard fitting

procedure, there are also theoretical attempts ' to cal-
culate DEC or AEl/. Unfortunately, these theoretical
studies did not lead to a unique conclusion.

Incorporating the measured value of AE l, for
GaAs/AlAs (x =1) to the sp s* tight-binding band cal-
culation, the effect of microstructure order on the band

gap of the Al Ga& „As alloy for various alloy composi-
tion was obtained earlier. In the present paper we im-

Al Ga As
1-X

CB

Q:—EEc /( EEc+EEt, ) = b,EC /b, E

where AE is the difference between the energy gap of the
bulk Al„Ga, As and the energy gap of bulk GaAs.

In Al„Ga& As alloy the conduction-band minimum is

at the I point if the Al composition x ~ 0.38 but at the X
point if x &0.38, while the valence-band maximum is al-

ways at the I point for all values of x. Also for some

VB

GBAs

FIG. 1. A schematic illustration of the one-dimensional

square-well barrier model for a GaAs/Al„Cia, „As MQW.
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prove the calculation of Ref. 23 with a real-space renor-
malization scheme. While the sp s tight-binding model
is outlined in Sec. II, the role of microstructure will be
emphasized. The effective quasi-one-dimensional
Schrodinger equation so derived wi11 be solved analytical-
ly in Sec. III after a one-step block decimation. In Sec.
IV we give the numerical result of the band edges of the
Al Ga& As alloy, from which the band offsets DEC and
AE~ for arbitrary values of x are easily deduced. The
computed band-offset coefticients for various microstruc-
ture orderings will then be compared with available ex-
perimental data. The weak points in the present calcula-
tion and its possible improvement are remarked in the
last section, Sec. V.

II. sp s TIGHT-BINDING MODEL
FOR SEMICONDUCTOR ALLOYS

Using Lowdin orbitals to perform a nearest-neighbor
tight-binding band calculation, one needs to know the
Hamiltonian matrix element h '~& between the ath orbital
on the ith atomic site ~i, a ) and the Pth orbital on the jth
atomic site ~j,p), where either i =j or i is a nearest
neighbor of j. For an Al Ga& As alloy, there are three
different types of atom (Al, Ga, and As) and two different
types of nearest-neighbor pair (Al-As and Ga-As). As-
suming that any matrix element h'~& in the Al Ga& As
alloy has the same value as the corresponding matrix ele-
ment in the pure bulk AlAs or bulk GaAs, we can use the
results of Vogl et al. to derive the energy band struc-
ture. Vogl et a/. have used five Lowdin orbitals sp s to
calculate the energy band structures of pure bulk co-
valent semiconductors. For each semiconductor, the ma-
trix elements h '

&
are determined semiempirically, and are

listed in Ref. 22. In these calculations, each individual
material has its own reference level of zero energy setting
at the top of the valence band, namely, the I ».

On the absolute energy scale, the I „energy Et.(GaAs)
of the pure bulk GaAs is different from the I » energy
Er(A1As) of the pure bulk A1As. The energy difference
c, =Er(GaAs) Er(A1As) is defin—ed as the band a+set
Therefore, if we set Er(A1As) =0 as the absolute zero en-

ergy when we use the matrix elements derived by Vogl
et ah. , all the five diagonal matrix elements h" for the
pure bulk GaAs should be raised by this amount of the
band offset c, where i is either a Ga site or an As site.

In the formulation of Vogl et al. for pure bulk semi-
conductors, each 5 X 5 matrix at any single site i (with
elements h "& ) is already diagonalized in terms of the
Lowdin orbitals. For one such single site, let E&(a, q) be
the energy level of the o.th Lowdin orbital on a q-type
atom in the lth pure bulk semiconductor. The index l has
the value / =1 for pure bulk A1As or l =2 for pure bulk
GaAs, and q can be either a cation (q =c) or an anion
(q =a). Similarly, the elements h'~& of the 5X5 matrix
for an (ij ) nearest-neighbor pair of an anion and a cat-
ion are more precisely specified as VI(a, q;P, r), when the
ith site in the lth pure semiconductor (l = 1 for A1As and
l =2 for GaAs) is a q-type atom and the jth site an r-type
atom. The values of all these matrix elements are listed
in Table I including the band-offset correction.

TABLE I. Matrix element in units of eV for the sp s* tight-
binding band calculation. The subscript l =1 is for AlAs, and
l =2 is for GaAs.

EI(a,p)

E, (s, a)
E,(p, a)
E((s,c)
E, (p, c)
E,(s', a)
EI(s,c)

—7.5273
0.9833

—1.1627
3.5867
7.4833
6.7267

l=2
—8.3431+c

1.0414+ E
—2.6569+ c,

3.6686+ c,

8.5914+c
6.7386+ c

v, (a,p, y, 5)

V, (s,s)
Vj(x, x)
VI (x,y)
Vl(s, a ',p, c)
V&(s, c;p, a)
VI (s,a;p, c)
V&(p, a;s*,c)

—6.6642
1.8789
4.2919
5.1106
5.4965
4.5216
4.9950

l=2
—6.4513

1.9546
5.0779
4.4800
5.7839
4.8422
4.8077

Finally, since the lattice constants of pure GaAs and pure
A1As match well to each other, for a nearest-neighbor
pair, the matrix elements h '

&
can be well approximated

by those values given in Table I with negligible error.
The materials to be studied here have layer structures

along the [001] direction. It is then more convenient to
label the position of an atom by a layer index I and a po-
sition vector R; within the layer. In terms of this nota-
tion, i is expressed as (m, R, ), and h J& becomes
h ti(R, , R, ).

Let
~
m R, , a ) be the ath Lowdin orbital at ( m, R; ).

The eigenfunction of the system can then be written as
C (R, )~mR;, a). The coefficients of linear com-

bination satisfy the eigenvalue equation

g h ti(R, , R, )Cti(R, )=EC (R, ) .
P7, J, I3

Taking the Fourier transformation within the mth layer

C (k)= —g C (RJ)exp(ik. R, ),1

&x,
and define the matrix element

=1H g (k, p) =—g h ti (Ri, R, )exp[i (k R( —
p R, )],

j, l

(5)

When we mix A1As and GaAs to form an alloy, a
heterojunction, or a MQW, each Al atom or Ga atom
still has four nearest-neighbor As atoms, exactly the same
local environment as in pure bulk GaAs and A1As.
Therefore, for i being an Al atom or a Ga atom the ma-
trix elements h'~& have the same values as given in Table
I. However, the nearest neighbor of an As atom can have
p Al atoms and 4 —p Ga atoms located at four different
nearest-neighbor sites. In this case the matrix elements
h "& are approximated as

h "p= —,'[pE, (a, a)+(4—p)E2(a, a)]6 t3 .
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(3) is then reduced to

g H ii(k, p)Cii(p)=EC (k) .
n, P, p

In an Al Ga& As random alloy, h &(R&,R~) is not
invariant with respect to lattice translations parallel to
the interface, and so cannot be written as h & (RI —R ).
When the values of m, n, a, and P are fixed, the matrix
element h &(R&,R ) can take two values: one for the
GaAs bond and the other for the A1As bond. In the limit
of long wavelength (small k), it is reasonable to approxi-
mate h &(R&,R ) by its mean value (h &(R&,R )) aver-
aged over these two possible values. In this case,

H &(k, p)= —ge ' g (h &(R))e'"'
J R

=H (3(k)6k

where R=R& —R, and

(g "(R)&e
R

When the microstructure and the material parameters
of an Al Gai As alloy sample are given, the above cou-
pled equations will be solved with a block-decimation
method. However, one crucial input quantity to (9) is
the mean value (h &(R)). The correct way of taking
the average depends on the microstructure orders in the
sample, which is quite complicated and less understood at
the present.

III. BLOCK DECIMATION
WITH MICROSTRUCTURE ORDERINGS

We will solve (9) for each individual transverse k vec-
tor. To simplify the presentation in the following, we will
omit the k in all k-dependent quantities. Let C' be a
five-component column vector with the a element C
and H™a 5 X 5 matrix with the (a,P) element H "P. Due
to its nearest-neighbor-coupling property, (9) can be
rewritten in the form of a vector equation

(Hnn EI) Cn+Hnn —
1

C,

n —1+Hn, n+1 Cn+1 0 (10)

The eigenvalue equation (6) becomes simply

gH p(k)Cp(k)=E(k)C (k) .
n, P

(9)
where I is a 5 X 5 unit matrix.

The vectors C"+—' can be expressed from (10) as

C"+'= —(H"+'"+' EI) ' (H"—+'"+ .C"+2+Hn+I'" C")

Substituting C"—' into (10), it becomes

'Hnn y H gnl n( H, nfl, nfl EI )
—1.H gl, nEnI '

Cn
g=+

Hn'n ' (Hn 'n ' EI) ' Hn —~'n Cn Hn'n+' (H—n+'n+' EI) ' Hn+—'n+ Cn+ =0 .

Equation (12) has exactly the same form as (10), and so a
renormalization procedure can be established to solve the
eigenvalue problem. This block-decimation method was
introduced earlier to renormalize the Green's-function
equation of motion.

This kind of real-space renormalization has been com-
monly used to study the eigenproperties of disordered
systems. ' The final answer has to be derived numeri-
cally, and the configuration average over a large number
of sizable random samples requires expensive computer
time. Hence, instead of taking the exact configuration
average, one uses the approximation of local averaging
over the renormalized quantities at each step of decima-
tion. The error so introduced drops rapidly when the
spatial region for local average gets larger. '

For the system Al Ga, „As alloy considered in this
paper, the computation procedure is tremendously
simplified because along the [001] direction every second
plane is a pure As plane. Each As atom has four
nearest-neighbor cations (Al or Ga), two at the left and
two at the right side. If we know the probability of these
four cation sites being occupied by the Al and the Ga
atoms in a specific configuration, then the local average
can be made on the renormalized matrices, which are

denoted as

~nn Hnn y H nngl (H nfl, nfl EI )
—1 Hngl, n

g'= + LCA

(13)

pen, 2n(Hnn 1 (Hn 1n 1 EI)—1 Hn 1 n 2) LCA ~

(14)

where LCA means a local configuration average. After
making the LCA, (12) has the simple form

(
grnn EI) Cn+ ~n, n —2 Cn —2+ ~n, n+2 Cn+2 0

(15)

Let us assume that the nth plane is an As plane. Then,
in (15) only the As planes are coupled after one step of
decimation. If the distribution of the Al and the Ga
atoms in each cation plane is completely random (R),
then, all W"" are equivalent and all 8"n — are
equivalent. Consequently, (15) represents an effective
regular tight-binding system consisting of only the anion
planes, which can be solved analytically. Besides the
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trivial R case, we will consider two possible phenomeno-
logical orderings for which (15) can also be solved analyt-
ically. One is the short-range order (SRO) within each in
dividual cation plane, and the other is the long-range or-
der (LRO) along the [001] direction such that the total Al
concentration varies from layer to layer in the form of a
particle-density wave. Both the SRO and the LRO situ-
ation were studied earlier.

From the definitions in (8), (14), and (15), the LCA is
performed over four anion-cation bonds in
(h &(R))e'" with fixed a and /3. For W"" the four
bonds are between one As atom and its four nearest-
neighbor cations: two in the (n —1)th plane and two in
the (n +1)th plane. However, for W"'"— the four bonds
involve two As atoms: one in the nth plane and the other
in the (n+2)th plane, and each As atom has two bonds
with the two nearest-neighbor cation atoms in the
(n+1)th plane. In the following we will analyze the LCA
for the three cases.

A. Random alloy

In an Al Ga, As random alloy, the occupation prob-
ability at any cation site by an Al atom is P(A1) =x, and
by a Ga atom is P(Ga) = 1 —x. For the two cations in the
mth plane which are nearest neighbors to an As atom in
the nth plane, let p be the number of Al atoms. Then
the local configuration probability (LCP) is

[P(Al)] n —1 n+1[P(G )] n —1 n+1

for calculating W"", and is [P(A1)] "+—'[P(Ga)]
for calculating W"'+—.

B. Short-range order

Based on the thermal condition of sample growth,
theoretical analysis suggested the tendency of a phase
segregation between the pure A1As and the pure GaAs.
Here we consider the first situation that the tendency of
phase segregation does not produce a LRO along the
[001] direction, but produces a SRO within each individu
al cation plane. The SRO assumes the form of a pair
correlation between two cations which are next-nearest-
neighbor pair (in the cation sublattice they are nearest-
neighbor pair). For the cation pair in the mth plane, the
correlation function is expressed as

P(K,L ) =P (K )P (L )(1 cr )+5» I P(K— )cr,

where K and L can be either Al or Ga, and o. (1 is
the SRO parameter. We have further assumed the form
o (x) =yx (1—x) with a constant y (4.

In terms of the pair correlation,
P(K„&,L„&)P(K„+&,L„+&) should be the proper LCP
used for calculating W"", while [P(K„+&,L„+,)] for the
calculation of W"'"+ .

C. Long-range order

Next we consider the situation that the tendency of
phase segregation results in a simple LRO in the cation

sublattice along the [001] direction. In the cation sublat-
tice, the average Al concentration in a plane alternates
between two values x +~ and x —~. Therefore the cation
sublattice is further separated into two sublattices: the
(+) sublattice with a planar Al concentration x +r, and
the ( —) sublattice with a planar Al concentration x —r.
Since the Al concentration cannot be negative, we have
~&~,„=xfor x ~0.5, and r~~ „=1—x for x ~0.5.

In each individual cation plane, the spatial distribution
of the Al and the Ga atoms is completely random.
Therefore the occupation probability at any cation site in
the (+ ) sublattice by an Al atom is P+(Al )=x+r, and by
a Ga atom is P+(Ga)=1 —(x+r). For the nth plane
which is occupied by As atoms, let the (n+1)th plane be
in the (+) sublattice. If the number of Al atoms in the
(n+1)th plane is p+, then the LCP for calculating all
W"" has only a single form

P+(Al) +P (Al) P+(Ga) +P (Ga)

On the other hand, as a result of the finer sublattice
structure in the cation sublattice, the LCP for calculating

p~ 2 p~W" "—has two values P+(Al) P+(Ga)—

IV. BAND OFFSET

The characteristic feature of the LCP indicates that
(15) is equivalent to the Schrodinger equation of a one-
dimensional tight-binding Hamiltonian, either without a
sublattice structure (for the random and the SRO cases),
or with a sublattice structure (for the LRO case). Hence
(15) can be solved analytically, using the matrix elements
listed in Table I, and other input parameters such as the
energy difference e=F&(GaAs) E(rAIAs) —between the
two valence-band maxima, the y for the SRO, and the ~
for the LRO. We have used a medium value of @=1.5
and a large value w=w „.The quantitative dependence
of the final result on these parameter values will be dis-
cussed later. The measured value of c is around
0.45 —0.55 eV. ' If we fit the calculated band gap to
the superlattice experimental data, ' the derived value
of c, is about 0.4 eV. In our calculation, we have used
three values c =0.4, 0.5, and 0.6 eV.

Figure 2 shows the calculated band edges for 8=0.4
eV as functions of the Al concentration in an
Al Ga, As alloy. The three microstructure orderings
are marked by R, SRO, and LRO in three panels. Due to
the improved computation method of block decimation,
the present result is different from the one derived ear-
lier.

Knowing the band edges, the band-ofFset coefficient Q
is then readily obtained from (1). At the presence of a
LRO, the band folding caused by the finer sublattice
structure in the cation sublattice makes the I point and
the X point coincide. Consequently, in this case the
relevant band edges for calculating Q are the I, and I &5

when x +0.5, and X& and I &z when x ~0.5. However,
for the cases of random alloy and SRO, what band edges
are relevant to the calculation of Q is not so obvious
when x +0.38. For Al Ga& As with x ~0.38, the
direct band gap is between I &~ and I „but the indirect
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FIG. 3. The band-oA'set coefticient of an Al Ga& „As alloy
with m=0. 4, 0.5, and 0.6 eV. The open circles and the horizon-
tal straight lines (for the random alloy) are derived with the
direct band gap between I » and I,. In the region x ~ 0.38, the
open diamonds are for both the SRO and the random alloy, cal-
culated with the indirect band gap between I » and X&.

FIG. 2. Band edges of an Al Ga& As alloy with v=0.4 eV.
The three possible microstructure orderings in the cation sub-
system are as follows: R for random distribution of the cations,
SRO for short-range order within each cation plane, and LRO
for long-range order between adjacent cation planes. For the
case of LRO the symmetry labels are well defined only at x =0
and 1.

band gap is between I » and X, . While the direct gap
can be measured accurately with x as large as 0.8,
accurate experimental determination of the indirect gap
is not so easy. As we mentioned earlier, in our real-space
renormalization procedure with the local configuration
average, after the first block decimation the effective
Hamiltonian becomes a regular tight-binding type. This
method produces the same symmetry properties as those
obtained by the virtual crystal approximation. Hence, in
our work the optical transition probability between I,~

and X& vanishes. On the other hand, the theoretical cal-
culation of Ting and Chang ' yields a finite probability
for the I,5-to-X, transition even for a random
Al Ga, As alloy with 0 x (1. Consequently, to cal-
culate the Q for the cases of random alloy and SRO, we
will use the band edges I

&
and I » when x +0.38, but

will consider both the (I »~I &) and the (I »~X& ) situ-
ations when x ~ 0.38.

Figure 3 shows the calculated Q for E=0.4, 0.5, and
0.6 eV. If we use the direct band gap between 1"» and
I „then the Q for a random alloy is a constant horizontal
line, and the Q for the SRO is marked by open circles. In
the region x )0.38, if we use the indirect band gap be-
tween I,~ and X„then the Q for a random alloy and the

Q for the SRO are hardly distinguishable, and are
represented by the open diamonds. In the region x )0.5,
these open diamonds almost coincide with the Q of the
LRO case (open squares). While the effect of SRO on Q
is very weak, the effect of LRO on the band offset
coefficient is stronger in the vicinity of x =0.38.

In particular, when v=0. 5 eV, both the random alloy

and the SRO yield a value of Q around 0.66. This result
fits well to the existing experimental observations.

V. REMARKS

Although the present result derived from the block-
decimation method is much improved over the previous
one, the local configuration average (LCA) is performed
on a small cluster. It has been shown in Ref. 31 that
more accurate results can be obtained if we use a larger
cluster for LCA. Hence the present work should be ex-
tended along this direction. Recently, the distribution
probability of various types of clusters in an Al Ga& „As
alloy has been investigated in detail. By incorporating
this valuable information into our block-decimation
scheme, we automatically introduce the correct correla-
tion between atoms in different cation planes, which has
been ignored in the present calculation.

Finally, we should mention that for the case of SRO,
the band-offset coefficient Q is insensitive to the value of
the short-range-order parameter y. The LRO curves in
Fig. 3 are derived with the strongest possible long-range
ordering w=~,„. If the LRO is very weak, we found
that for x (0.38 the Q value deviates only slightly from
the constant Q value for the random alloy. Since the for-
mation of LRO requires the diffusion of cations through
anion planes, judging from the growth condition of the
Al Ga& As sample, it seems that the existence of a
strong LRO is unlikely. If this argument is acceptable,
our calculation shown in Fig. 3 agrees well with experi-
ment.
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