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Exciton states in coupled double quantum wells in a static electric field

M. M. Dignam and J. E. Sipe
Department of Physics and Ontario Laser and Lightwave Research Centre, University of Toronto,

Toronto, Ontario, Canada M5S 1'3 7
(Received 27 June 1990; revised manuscript received 10 September 1990)

We calculate variationally the four lowest energy levels and oscillator strengths of 1s excitons in a
coupled-double-quantum-well structure in an applied static electric field. We demonstrate the im-
portance of employing a variational wave function, which allows for single-particle-state mixing,
and which treats the in-plane radial dependence of the exciton states in a more sophisticated
manner than the commonly used single exponential. We accomplish this by expanding the eigen-
states in a basis consisting of exciton wave functions rather than the commonly used basis of free
electron and hole wave functions. These basis wave functions are the ground states of the excitonic
Hamiltonians where the electron is primarily confined to one layer and the hole to another—
possibly the same —layer. We apply this method to symmetric coupled wells as well as to an asym-
metric structure in which the electron and hole in the ground state are localized in separate layers
even in the absence of an applied electric field. From an analysis of our results, we arrive at a gen-
eral approach to qualitatively understand and classify the excitonic properties of these structures.

I. INTRODUCTION

The investigation of excitons in quantum wells, cou-
pled double quantum wells, and superlattices has been an
area of intense study for the past decade. Particular at-
tention has been paid to the effect of a static electric field
applied parallel to the structure growth axis. The interest
in these structures is due both to their importance in un-
derstanding the fundamental processes in quantum struc-
tures and to their applications in electro-optic de-
vices. ' Although there has been a considerable
amount of experimental work done on the exciton states
in these structures, ' almost all the theoretical work
done to date has concentrated on quantum wells, " with
only a few calculations made for the more complicated
coupled-double-well' ' ' or superlattice' ' struc-
tures.

In the case of the single quantum well, it has been
found that an accurate variational wave function for the
exciton ground state can be written as the product of
three functions: a function depending only on the radial
(in-plane) distance between the electron and hole, the
single-particle electron ground-state wave function, and
the single-particle hole ground-state wave function. " It
is generally found that the inclusion of the excited
single-particle states in the variational wave function
leads to a negligible improvement in the results because,
except in the case of very narrow or very wide well
widths, the energy separation of these levels from the
single-particle ground state is very large ( —100 meV) rel-
ative to the Coulomb energy ( —10 meV). In a superlat-
tice (SL) or a coupled-double-quantum-well (CDQW)
structure, this energy separation can be much less, and so
mixing via electron-hole Coulomb interaction can be-
come important. Although this mixing has always been
taken into account in SL exciton calculations, ' ' where

the levels form a continuum, its importance has not al-
ways been fully recognized in the case of a CDQW, ' ''
even though in wide barrier structures the level separa-
tion can be much less than 1 meV.

Perhaps even more importantly, it has not been gen-
erally recognized that the excitons in CDQW's (and SL's)
have a true three-dimensional character, and hence one
cannot accurately approximate their wave functions as a
separable product, in the way that one can for exciton
wave functions in a single quantum well. A common ap-
proach has been to write the CDQW (or SL) exciton wave
function as a product of a sum of single-particle electron
wave functions with a sum of single-particle hole wave
functions, and to multiply these by a single exponential of
radial dependence. ' ' ' We find that this can lead to a
serious underestimation of the binding energies in
CDQW's, particularly tohen a static electric field is ap
plied. In fact, the calculation of Galbraith and Duggan'
predicts the existence of a blue shift of the ground state
for small applied electric fields —a shift that, in light of
our calculations, appears to be the artifact of an
insufficiently Aexible variational wave function.

Finally, many of the calculational methods that have
been used to date' '' ' ' calculate only the excitonic
ground state in CDQW and SL structures. However, in
the presence of an applied static electric field, the states
of excited along-axis motion have profound effects on the
absorption spectra, both in superlattices (Stark
ladder) and CDQW's. Even in the absence of an elec-
tric field, the oscillator strength of the higher states can
be non-negligible. ' It is therefore clear that if one is to
understand the experimentally obtained spectra, it is
essential that the method of calculation describe some of
the excited states as well as the ground state.

In a previous publication we presented the results of a
calculation of exciton states in a superlattice in an applied
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electric field which exhibited good agreement with the
experimentally obtained Stark ladder spectrum. In this
paper we adapt this approach to the case of a CDQW
structure in an applied static electric field. In essence, we
solve for the 1s -xciton states by diagonalizing the Hamil-
tonian in a restricted basis of "two-well" 1s exciton wave
functions, rather than the more commonly used basis of
single-particle eigenstates. Such an approach captures
the essential three-dimensional characteristics of the
wave function, takes the coupling of the single-particle
states into account, and leads naturally to the calculation
of the first four 1s-like exciton states. In addition, the
method is relatively simple in concept and implementa-
tion. From our results and via a comparison with the re-
sults of others, we feel that this work captures most of
the important qualitative and quantitative features of ex-
citon states in CDQW's.

In Sec. II of this paper we present our method of calcu-
lation for exciton states in CDQW structures in the pres-
ence of an applied static electric field. In Sec. III we
present the results and discussion for different
GaAs/Ga, „Al As symmetric structures as a function
of barrier width in the absence of an applied electric field,
and compare our results with the theoretical results of
previous authors. In Sec. IV we present our results for
the electric field dependence of the energies and absorp-
tion strengths for the four lowest 1s exciton states in
several symmetric structures; we compare our results
with the experimental data of Chen et al'. , and find good
agreement. In Sec. V we present the results for an asym-
metric two-well structure in which the excitonic ground
state exhibits a large dipole moment even before an elec-
tric field is applied. Finally, in Sec. VI we summarize our
results and comment on their importance in understand-
ing these structures.

+ V2(z, —sz )+ V& (zh —
s& )

+ V2(zh —s2 )+eFz, (2.1)

II. THEORY
The Hamiltonian for the exciton envelope function in a

CDQW with the growth axis in the z direction may be
written'

H (z„zh, r) =Ho(z„z&, r)+ V& (z, —s
&

)

V; (z)= '
—

U, if ~z (L;/2,
0 otherwise.

(2.3)

Here, o = [ e, h ), denoting an electron or a hole, L, is the
width of the ith well (i = j1,2)), and U,

'
(v; ) is the

conduction- (valence-) band discontinuity between the
barrier material and the material in the ith well (see Fig.
1). We have taken the origin for both the electron and
hole coordinates to be the center of the barrier, while
s, = —(Lz+L, )/2 and s2=(L&+Lz)/2 give the coordi-
nates of the centers of the two wells, where Lb is the bar-
rier width. The positions of the electron and hole are
specified by their z coordinates z, and z&, respectively
(z—:z, —zh), by the projection r of the distance between
them onto the xy (transverse) plane, and by the x and y
coordinates of their center of mass. The last two vari-
ables, as well as the momentum of the center of mass of
the exciton, describe the free motion of the exciton in the
plane; the corresponding part of the Hamiltonian is se-
parable from the part appearing in Eq. (2.2). The layer-
dependent transverse electron-hole reduced effective mass
is denoted by p, (z„zh), and the layer-dependent effective
masses of the electron and hole in the z direction are
denoted by m,*,(z, ) and m&*, (zh), respectively. Finally, F
is the applied static electric field and e is an average static
dielectric constant of the structure.

In choosing the above Hamiltonian, we have ignored
valence-band mixing and band nonparabolicity, but have
taken into account the differences in the effective masses
in the two materials. In light of previous work' ' we
feel that the effects of these neglected factors can be
largely incorporated by an appropriate choice of effective
masses. Further, they are not particularly important for
achieving an understanding of the essential features of
the 1s excitons of these structures. Admittedly, they
change the calculated energies and absorption strengths
by relatively small but non-negligible amounts, ' ' and
will account for small anticrossings between the light-
and heavy-hole exciton levels as a function of the electric
field strength. The approach of this paper could be gen-
eralized to allow for a Hamiltonian more accurate than
that of Eq. (2.1), which would take these factors into ac-

Ho(z„z~, r) =— 1 0 (3

2p(z„zh ) r r)r Br

a'a 1 a
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1

2 Bzg mh* (zh ) Bzh

where Ho contains the kinetic and Coulomb energy
terms,
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and where V,'(z) [V~ (z)j is the potential for the ith well
for the electron (hole):

0
FIG-. 1. The conduction- and valence-band edges as a func-

tion of z for the general coupled-double-well structure. In all
sections other than Sec. V, we take L, =L ~ and v l

= U 2 .
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count.
We employ a variational approach to find the energies

and oscillator strengths in a CDQW. Our variational ap-
proach differs from those used by others' ' ' in two
important respects. First, we use a basis set that is ap-
propriate for determining not only the ground 1s exciton
state, but the excited 1s exciton states as well. This is im-
portant, especially for the problem of a CDQW in a static
electric field, since the excited states can have much
larger oscillator strengths than the ground state, and are
thus the experimentally accessible states. Second, we use
a basis set that is flexible enough to treat separately the r
dependence of the physically distinct parts of the exciton
wave function, namely the parts in which the electron
and hole are in the same well and the parts in which they
are in diferent wells. We find below that this is crucial in
constructing wave functions to accurately estimate bind-
ing energies, because the Coulomb interaction is
effectively much larger when the electron and hole are in
the same well than when they are in different wells.

It is primarily the identification of such a basis, which
is simple to construct and easy to employ in realistic cal-
culations, that distinguishes our method from those of
previous workers. The basis set consists of the ground
states of the electric-field-dependent two-well Hamiltoni-
ans,

2 2

Q„(z„z„,r)= g g b;,"(b; (z„zh, .r),
i=1 j=1

(2.10)

where n is the quantum number of the state, and the basis
expansion coefficients b,' are variational parameters. The
condition that the expectation value of the energy be sta-
tionary leads to the prescription that H should be diago-
nalized in the nonorthogonal basis P,~(z„zi, , r). That is,

and

z+L;/2 if z (s; —L; /2

C, (z)= s, if (z —s, (&L, /2 (2.9)

z —L; /2 if z )s; +L; /2.

The term b, ,
' (b, ) describes the CDQW band offset poten-

tial with the ith (jth) well for the electron (hole) removed.
It also includes the effect of the electric field outside the
ith (jth) well (see Fig. 2). These b terms lead to a cou-
pling between the eigenstates of the &; .

We denote the electric-field-dependent ground states of
the two-well Hamiltonians by P,"(z„z&,r), where from the
form of &;. we see that the electron (hole) in the state
P,&(z„zh, r) is localized in the ith (jth) well. We approxi-
mate the eigenstates of the full Hamiltonian as a linear
combination of these four states,

&,, =Ho(z„zi„r)+ U (z, —s, )+ U,"(zi, —s ),
where

(2.4)

and

U, (z —s, )= V, (z —s, ) —q FQ, (z —s;)

—L, /2 if z & —L;/2,
Q, (z)= z if )z) &L;/2,

(2.5)

(2.6)

0 I OtRl
Potential

L, /2 if z )L;/2,

and q, = —(e( and qh
= [e(. In the absence of an electric

field, these are just the excitonic Hamiltonians in which
the electron sees the potential due to only one of the
quantum wells (the ith) and in which the hole sees the po-
tential due to another single well (the jth) that may or
may not be associated with the same layer. In the pres-
ence of an electric field, the second term on the right-
hand side of Eq. (2.5) takes into account the essential as-
pects of the quantum confined Stark effect (QCSE) for
a particle in a single well (see Fig. 2). In including the
overall bias setup across the well, as well as the variation
of the potential within, this term describes the part of the
potential due to the presence of the electric field in the
well. The ground states of gj," thus refiect the presence
of this field, which is a matter of importance in Sec. IV.

We now note that for any of the four sets of pairs (ij),
we may write the total Hamiltonian [Eq. (2.1)] as
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5, = V, (z —s, )+ V~ (z —s2)

—VP(z —s, ) qFC; (z ), —

(2.7)

(2.8)

FIG. 2. The splitting of the total hole potential into the sum
of the electric-field-dependent well, U, (zz —s, ), found in the
two-well Hamiltonians &;I and the coupling term 61. A similar
splitting of the electron portion of the potential is used.
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we determine the b;". by solving the generalized eigenval-
ue equation

where E„ is the energy of the nth state and, in a manner
similar to that of single-particle tight-binding calcula-
tions, the Hamiltonian matrix elements may be written
as

(2.13)

where A. is a variational parameter (dependent on i and j)
and

Ae~' if z & L /2—
f; (z)= Be r'cos(kz) if ~z~ &L /2

Ce " if z &I. /2,

(2.14)

where y is the variational parameter (dependent on i and
j) that allows the single-particle-like states to adjust due
to the presence of the applied electric field and the
Coulomb attraction of the particle to its partner. The
coefficients A, B, and C are determined by requiring that
f;, (r,z„zz) is normalized and is continuous at layer inter-
faces. In order to reduce the number of parameters that
need to be variationally determined, we set the value of
the parameter k to be that found for the lowest eigenstate
of a single particle in a finite well in the absence of an
electric field. The remaining two parameters p and r are
determined via the continuity of [I/m', (z)](B/Bz)f J(z)
at the interfaces between the given well layer and the ad-
jacent barrier layers. Since f, (z) is small at the rem"ain-
ing interfaces, we make the approximation that its
derivative is continuous there; this simplifies the calcula-
tion substantially. When there is no applied electric field,
we find that the improvement in the energy by having
nonzero y's is very small unless the wells are wide (~ 100
A), very narrow (S 10 A), or very shallow. ' We note
that because we are not finding the exact ground states of
the &;J Eq. (2.12) is no longer exact unless (ij)=(lm)
However, we proceed by continuing to use Eq. (2.12) with

(2.15)

thereby removing the problem of calculating the difficult
Coulomb integrals between different states. We have pre-

where E;~. is the ground-state exciton energy of ~,". "fhe
state of lowest energy that we find is obviously our best
estimate of the ground state in this basis. Since the
higher-energy states are othorgonal to the lowest-energy
state and to each other, they are thus the variationally
determined excited states.

To implement this procedure we require the ground
states of the &;.. Since even they cannot be found
analytically, we approximate them by variational solu-
tions of the form

' 1/2

P;.(z„zz, r)= —
A, e "f (z, —s;)f;"(zI, —s ),

viously discussed the validity of this approximation. '

Before proceeding, we note that in the presence of a
nonzero F there is, strictly speaking, no ground state for
H, and the states form a continuum. Thus, for the
single-particle states many authors have addressed this
problem in the CDQW by using a resonant tunneling
method. Now for single-particle states in single quan-
tum wells, the variational wave functions [Eq. (2.14)]
yield essentially identical results to the resonant tunnel-
ing method for the field strengths considered here. The
inclusion of excitonic effects in the resonant tunneling
method would be prohibitively complicated, as there
would be a strong Coulombic mixing between the single-
particle states. We therefore proceed with Eq. (2.13) as
our basis, where the Coulombic coupling can be accurate-
ly taken into account.

Finally, the oscillator strength per unit area for the
state g„ is given by'

(2.16)

where p„ is the momentum matrix element between the
bulk conduction- and valence-band Bloch states at the
band extrema, mo is the free-electron mass, g' is the elec-
tric field polarization vector, and the electron-hole over-
lap F„(0)is given by

F„(0)=Jdw tP„(z, =w, z& =w, r =0) . (2.17)

III. SYMMETRIC COUPLED WELLS WITH I' =0

The problem of determining the exciton states in a
symmetric CDQW has recently been tackled by a number
of authors, ' ' ' several of whom have considered the
effects of an applied electric field. ' ' ' To illustrate the
advantages and disadvantages of our method, we first dis-
cuss the results in the absence of an applied electric field.

In Fig. 3 we present our results for the energies of all
four lowest 1s exciton states relative to the band gap of
the well material as a function of barrier width, Lb, for a
well width of 0.6ao, where ao=A' e/(pe ) is the exciton

I I

Q.M 0.50
I.b &'a.)

FIG. 3. The energies of the four lowest 1s exciton states, rela-
tive to the well band gap energy, as a function of barrier width
for the structure of KM with L, =L2=0.6ao. The quantum
number n of the states is in parentheses beside each curve.
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Bohr radius and Ry=A /2pao is the exciton Rydberg in
the well material. For comparison purposes, we use the
parameters of Kamizato and Matsuura' (hereafter re-
ferred to as KM), which correspond roughly to those of a
GaAs/Gao7A103As structure. It will be convenient in
the following discussion to divide the range of barrier
widths into three regimes: narrow, with Lb 0. 13ao; in-
termediate, with 0.13ao Lb ~0.5ao, and wide, with
Lb ~0.5ao.

In the approximation that the Coulomb attraction be-
tween the electron and the hole is neglected (nonin-
teracting-particle picture), one can separately label the
electron and hole states as either symmetric (+) or an-
tisymmetric (

—
) under inversion. The noninteracting

electron-hole pair states are then products of hole (h+ or
h ) and electron (e+ or e ) single-particle states. These
noninteracting pair states are nondegenerate for all bar-
rier thicknesses. We find that this is also the case when
the Coulomb attraction is taken into account (exciton
states). Thus, due to the inversion symmetry of Hamil-
tonian, the exciton states must be either symmetric or an-
tisymmetric under the operation (z„zh) —+( —z„—zh).
This tells us that for the symmetric states (positive pari-
ty), b» =-b22 and b, & =b2&, while for the antisymmetric
states (negative pa ty) 611 b22 and 612 = b2] ' As is
expected from examining the symmetry of the pair states
in the noninteracting limit, the first and fourth exciton
states in order of increasing energy are symmetric, while
the second and third are antisymmetric. To simplify no-
tation we will denote the states (in this order) by
n =

I + 1, —1, —2, +2 I, where the sign before each index
denotes the parity of the state. For narrow barriers, these
roughly correspond, respectively, to the noninteracting
pair states: I(h+e+ ), (h e+ ), (h+e ), (h e ) I, al-
though, as we shall show, no such precise assignment is
possible due to the strong Coulombic coupling between
the single-particle states. In the absence of an applied
electric field, the only accessible states are those with
overall positive parity, n = + 1, +2.

For wide barriers, the energy difference between sym-
metric states and their antisymmetric partners becomes
neg igible and so we find E+1 E—1 and E+2 E—2
However, there is a sizeable difference between E+, and
E+.2 in these structures, a difference that would not be
found in the results of calculations that neglect the sub-
band coupling induced by the interaction. ' ' The
source of the difference is easily ascertained by plotting
the ratios of the form 6;"/bl" for the four states (see Fig.
4). Consider first the state n =+1.We see that the ratio
~b& /b2» ~

is essentially zero for Lb 0.5ao, indicating
Isee Eq. (2.10)] a very high probability that the electron
and hole are in the same layer (intrawell state). Con-
versely, for the states n =+2 it is instead the ratio
~b» /b&~ ~

that is essentially zero in this range of barrier
thicknesses, indicating the very high probability that the
electron and hole are in different layers (interwell state).
This difference in the nature of the two states will lead to
very different binding energies, as is evidenced in the sep-
aration in energy of the ~n~ =2 levels from the ~n

~

=1 lev-
els. Because the binding energy of the interwell states

1.0

~ 0.8

0.6

'g 0.4

o 0

I

b+ I/b+1
—&vs/'&i~

I I

O.M 0.50
Lb (a.)

FIG. 4. The two-well ground-state coefficient ratios for the
four exciton states as a function of barrier width for the struc-
ture of KM with L

&
=L2 =0.6ao.

2.0

~~ 0.8—

0.6—

~ 0.4 -'.

„0.8— (+8)

0.85 0.50
L. (.) 0.75

FIG. 5. The oscillator strengths per unit area as a function of
barrier width for the two symmetric exciton states for the struc-
ture of KM with L& =L2 =0.6ao. The quantum number n of
the states is in parentheses beside each curve.

tends to zero as Lb ~~, this separation increases with
Lb to reach a maximum value equal to the ground-state
binding energy. The difference in the nature of the states
also shows up in the oscillator strengths, which are plot-
ted in Fig. 5. At large barrier widths the oscillator
strength is much greater for the n =+ 1 state than the
n =+2 state, refiecting the fact that in the former the
electron and hole are much more likely to be found at the
same position than in the latter.

This large difference is in contrast to the roughly equal
oscillator strengths one would obtain from a calculation
that neglected subband coupling. Thus, the Coulomb in-
teraction is crucial in establishing the nature of the exci-
ton states in the limit of large barrier widths, Lb, because
it causes the electron and hole motion to correlate such
that in the ground excition state they are always in the
same well. Therefore, in the limit Lb~ ~, the indepen-
dent particle picture and nomenclature for the transitions
are qualitatively physically unrealistic. In our example of
a well width of 0.6ao, this occurs for L~ ~ 0.5ao. Quanti-
tatively, from Figs. 4 and 5 we see that the predictions of
that picture can be expected to be in significant error for
even smaller Lb. Thus, we find that the qualitative be-
havior of excitons in a CDQW cannot be described
without subband coupling (cf. the conclusion of KM); the
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coupling can change the very nature of the states.
The situation for structures with intermediate barrier

widths is somewhat more subtle and complicated as the
states are no longer strongly intrawell or interwell in
character. In order to illustrate the nature of the ground
state in this regime, in Fig. 6 we present our results for
the ground-state binding energy as a function of barrier
width, for the structure described above, with a fixed well
width of 0.6ap. The binding energies are given by
E~ =E&„,—E„where E&„, is the noninteracting
ground-state energy calculated using the standard
transfer-matrix approach. To see the effects of subband
coupling, we compare our results with those found using
a single-subband variational wave function. We choose
for comparison the wave function employed in the first
part of KM,

qrKM( )
—().r +Pz )' ~e(z )~h(z ) (3.1)

~ ~

0.4 0.8 1.8 1.6 8.0
L. (.)

FIG. 6. Binding energy as a function of barrier thickness for
the structure of KM with L& =L2 =0.6ap. The solid line is our
result. The other two lines are the results of KM with (dotted)
and without (dashed) coupling to their excited states.

where y) (z) gz(z)] is the symmetric ground state (an-
tisymmetric excited state) of the cr particle in the double-
well structure, and A, and P are variational parameters.
The results for the binding energy using this wave func-
tion are presented in Fig. 6 (dashed line). Comparison
shows that our method yields larger binding energies for
the ground state than that of Eq. (3.1) for the range of
barrier thicknesses, 0.lap &Lb &1.8ap. As can be seen,
for some values of I.b in the intermediate barrier regime,
our binding energies are greater by as much as 0.45 Ry
(=2 meV for GaAs).

In the same figure„we also present as a dotted line the
results obtained by coupling the 4; from different sub-
bands (ij) of Eq. (3.1) as calculated by Kamizato and
Matsuura near the end of KM. We shall refer to this as
the KM subband-coupling method. As can be seen, the
results of this calculation are in good agreement with
ours for Lb ~0. lap. We have seen already that the quali-
tative nature of the states in the wide barrier regime can
be changed drastically when coupling between the
different subbands is accounted for. Since the KM
subband-coupling method and our method yield similar
results, we compare our wave function [Eq. (2.14)] with
the wave function of Eq. (3.1) to study the importance

and nature of the subband coupling in the intermediate
barrier regime.

Solely for the sake of simplifying the discussion, we
make a tight-binding approximation for the single-
particle wave functions and write

y) (z)=f, (z —si)+f2 (z —s2) . (3.2)

Then the ground-state wave function of Eq. (3.1) is writ-
ten as

( —)r+/3 z) , [(fef h +f~eh )

+(f if ~+f2f i )] (3.3)

where f; is the single-particle eigenstate for a particle in
the ith well [Eq. (2.14) with y =0]. Using the same nota-
tion and setting the variational parameters y to zero, our
wave function can be written:

z„z, , r)=b +„"(ff",+f9-',")e

+g+n(f ef h+f e~h )
d" (3.4)

where A,,Wkd and n )0. Now consider Eqs. (3.3) and
(3.4), and neglect for the moment the effect of the ex-
ponential factors; also ignore for now the differences be-
tween the electron and hole effective masses and poten-
tials, so that f,' and f," can be thought of as identical.
Note that the wave function (3.3) is analogous to the
two-particle wave function that one would write down for
a diatomic molecule in a simple molecular-orbital pic-
ture. ' The functions f) and f2 play the role of atomic
orbitals, and y, that of the ground-state molecular orbital
constructed from them [Eq. (3.2)]; both particles are then
put in the same molecular orbital [see Eq. (3.1)] to form
the ground-state wave function. This then contains equal
amplitudes of configurations in which the two particles
are at the same site (f if", ,f&f2), and configurations in
which they are at different sites (f if z,fzf ", ). In a two-
electron problem such as a diatomic molecule, these
would be referred to as "ionic" and "covalent" config-
urations, respectively. Here, since we have particles of
opposite charge —an electron and a hole —in a corre-
sponding notation, the configurations would be referred
to as "nonpolar" and "polar. " The more usual notation
for these, of course, describes them, respectively, as "in-
trawell" and "interwell" configurations.

Now, in the other simple model for a diatomic mole-
cule, due to Heitler and London, ' only the covalent
configuration is kept; in may cases this leads to a better
estimate of the ground-state energy than including the
ionic configuration with equal amplitude, as is done in
the simple molecular-orbital picture. Certainly, in the
limit that the atoms are separated by a large distance, the
contributions to the true wave function from the ionic
configurations in negligible. In general, though, it is
better to variationally determine the amplitudes of the
ionic and covalent configurations, rather than arbitrarily
setting them equal (molecular orbital), or neglecting one
completely (Heitler and London ').

In our case of an electron and hole, which attract rath-
er than repel, it is the nonpolar, intrawell configuration
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that increasingly dominates the ground state for larger
well separation (barrier thickness), as discussed above.
But for intermediate barrier thicknesses it is clear, by
analogy with the diatomic molecule problem, that it is
better to variationally determine the amplitudes of the in-
terwell and intrawell configurations [Eq. (3.4)] than to ar-
bitrarily set them identical [Eq. (3.3)]. This largely ex-
plains why we obtain larger binding energies (solid line,
Fig. 6) than those found using (3.1) (dashed line) at all but
the smallest barrier thicknesses (Lb ~ 0. 17ao). Nonethe-
less, the analogy with simple models for the physics of di-
atomic molecules is not complete because of the exponen-
tial factors in Eqs. (3.3) and (3.4). In particular, for very
wide barriers, the results found using Eq. (3.1) improve
greatly because the exponential factor associated with the
electron-hole separation in the z direction [the f3 term in
the exponential in Eq. (3.3)] elfectively removes the in-
terwell configurations. At these large separations, the
wave function (3.1) used by KM becomes similar to ours.

We now turn to consider the nature of the radial
dependence of the states in the intermediate barrier re-
gime. In a paper by Galbraith and Duggan' (hereafter
referred to as GD), the problem of finding the ground-
state energy in the intermediate barrier regime was tack-
led by employing a variational wave function of the form

2 2

(z„zb, r)=e ~" g a, y', (z, ) g c,y (zh),
i =1 j=i

(3.5)

where A, and the a; and c; are variational parameters.
This is considerably simpler than the wave function we
employ [Eq. (2.10), or (3.4) if the y's are set to zero], par-
ticularly because only one exponential factor is involved.
Although the wave function (3.5) does allow for the cou-
pling between single-particle states, it suffers from two
serious fiaws. The first is that it yields states of incorrect
symmetry (see the discussion on symmetry at the begin-
ning of this section) for large values of Lb. More impor-
tantly, it treats the radial behavior in a way that does not
account for the three-dimensional nature of the state.

This can be understood by imagining the g, of Eq.
(3.5) expanded in a single-well basis as in Eq. (3.2). Then
both intrawell and interwell terms will appear in Eq. (3.5)
with the same exponential factor. But because the
Coulomb interaction is much larger when evaluated over
an intrawell term than over an interwell term, we except
a much faster radial decay in the former than in the
latter. Indeed, this behavior is given by our wave func-
tions, as demonstrated in Fig. 7, where we show ( r ) as a
function of Lb. For the states of large interwell character
(n =+2 for large Lb), (r ) is much larger than those of
large intrawell character (n =+1 for large Lb). The
source of this difference is the difference between A,, and

Since this variational degree of freedom is not
present in the wave function of GD, that approach,
which has also been commonly used in superlattice calcu-
lations, ' ' is only reasonable when the wave function is
either primarily of pure interwell or intrawell type. This
will not be the case in small barrier structures or when an
electric field is applied, as we shall show in the next sec-
tion.

2.0

0.8 I I

0.85 0.50
L,b (a.)

0.75

FIG. 7. The expectation value of the in-plane electron-hole
separation, (r ), as a function of Lb for the four states for the
structure of KM with L& =L& =0.6ao. The quantum number n

of the states is in parentheses beside each curve with the solid
lines corresponding to the symmetric states and the dashed lines
to the antisymmetric ones.

We now consider the narrow barrier regime
Lb ~0.13ao. For these thicknesses, our binding energy
becomes much smaller than that of the KM subband-
coupling method (Fig. 6). This can be traced to the
breakdown of the tight-binding approximation used in
our calculation, by comparing the results of single-
particle tight-binding calculations with those of more ex-
act treatments. For this structure with Lb =0.13ao, the
energy calculated via the tight-binding (TB) method is
lower than the exact result for a noninteracting electron-
hole pair by AETB-—0.06 Ry. This deficiency is due to
the fact that the tight-binding method cannot completely
capture the tendency of the e1ectron to lower its kinetic
energy by delocalizing. This, then, sets a lower limit on
the barrier thicknesses that can be treated by our ap-
proach. No such problem is encountered in the methods
that use the noninteracting electron-hole pair states as
the basis. ' ' However, one need not perform such a cal-
culation to see what the lower limit on Lb is for our
method; this limit can easily be ascertained by examining
single-particle behavior alone.

We now present a brief comparison of the our method
with the KM subband-coupling method. We note that
because of the approximation we have made in calculat-
ing our matrix elements [Eq. (2.15)], our calculation is
not strictly variational. However, it appears that our
method gives a slightly more accurate ground-state bind-
ing energy for 0.17ao ~ Lb 1.2ao than the configuration
mixing method of KM. In the small barrier regime
(Lb ~0. 13ao), the method of KM is clearly superior as
our method breaks down. This will also be the case in
any CDQW where a tight-binding method is insufficient.
When tight binding is sufficient, however, we feel that our
method is both physically and computationally the
simpler approach, for all the states. Physically, we see
from Fig. 4 that down to about Lb ——0.25ao, the exciton
eigenstates are still primarily interwell or intrawell in na-
ture. Since our basis states are either interwell or in-
trawell states [see Eqs. (2.13) and (2.14)], it is physically
more clear to begin with them rather than with the +," of
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KM, which in the range of intermediate barrier
thicknesses are neither primarily interwell nor intrawell.
Computationally, our method is the much simpler ap-
proach. Except in the cases where L, ))ao, without seri-
ous error the variational y's in our wave function can be
set to zero, leaving only one variational parameter to be
calculated for each basis state; there are two essential
variational parameters for each of the basis states of KM.
Even neglecting this fact, the evaluation of the Hamil-
tonian matrix elements for the wave functions of KM are
much more involved than ours because our basis states
are of a far simpler functional form and we can use the
simplification of the tight-binding approximation [Eqs.
(2.12) and (2.15)j.

Finally, we close this section by mentioning that a vari-
ational wave function that should be better than any of
the above when there is no applied electric field and the
wells are not too shallow or wide [such that the y's in Eq.
(2.13) can be set to zeroj is

» = [ ~ (XiX'+X2X')+& (XiX'+X2X")j

+ [C(X',Xhi —Xul)+D(X;Xl-X~hi) )e

(3.6)

where we have omitted the explicit dependence of g; on
z for simplicity. It is easy to show from symmetry argu-
ments that B =D =0 for the symmetric states, and
3 =C=—0 for the antisymmetric states, unless a static
electric field is applied. This wave function allows the
simultaneous calculation of the four lowest 1s exciton
states, takes the kinetic energy into account properly, and
treats the states in the proper quasi-three-dimensional
manner for all barrier thicknesses. It is computationally
much more involved than our method, but still consider-
ably simpler than the subband-couplng method of KM.
Generalization of this wave function to the case of a su-
perlattice leads to the concept of the exciton Wannier
function, which we have discussed in previous pa-
pers. ' ' What we have done here and in those papers is
develop an approximation to these functions that simp-
lifies the calculation enormously. Without these
simplifications the method becomes even more complicat-
ed when we apply a static electric field, as the wave func-
tion of Eq. (3.6) then requires the inclusion of all four
terms with a separate exponential factor for each. We
feel that this method would only then be worth the effort
for very narrow barrier structures. We finally point out
that of all the methods mentioned above, only our
method can be reasonably generalized for application in
superlattices is, zo, 2i as the basis and number of variation-
al parameters needed for the other methods would be far
too large to be practical.

IV. EI.KCTRIC FIELD DEPENDENCE

In the preceding section we defined narrow, intermedi-
ate, and wide barrier regimes for the particular CDQW
parameters we were considering. Based on the physics
that was revealed in analyzing our results and comparing
them to the results of others, we now redefine those re-

gimes more generally, in agreement with our earlier
definitions but in a way that will apply to any CDQW.

By the narmm barrier regime we refer to barriers so
narrow that a tight-binding approach cannot satisfactori-
ly describe the single-particle states in the CDQW. In
this regime, our method is inadequate. For slightly thick-
er barriers, we expect in general the exciton states to all
have (in the absence of a static electric field) non-
negligible intrawell and interwell character. This we
refer to as the intermediate ba~rier regime. Finally, for
wide enough barriers, the exciton states are essentially ex-
clusively interwell or intrawell in character. This we
refer to as the wide barrier regime. The boundary be-
tween the intermediate and wide barrier regim. es can be
determined by examining the energy separation between
the single-particle symmetric and antisymmetric states;
when the barrier width is wide enough such that these en-
ergy differences become small relative to the Coulomb in-
teraction energy, strong intermixing of single-particle
states will occur, indicating that one has moved from the
intermediate to the wide barrier regime.

Our method is applicable throughout the wide and in-
termediate barrier regimes, although for extremely wide
wells (Lb )&ao) it would be necessary to choose more
general basis functions than the P;. of Eq. (2.13). The
crucial point is that the approach does not become inac-
curate, as does that of GD, if the states have significant
interwell and intrawell character; nor does it become ex-
cessively complicated, as does that of KM, if the states
have exclusively interwell or intrawell character. Thus it
is an ideal approach for calculating the exciton states in a
CDQW in the presence of a static electric field, where the
whole range of excitonic character can be accessed. We
begin the examination of these systems in this section by
presenting some results for the electric field dependence
of the lowest four 1s exciton levels for three different
symmetric CDQW structures. Despite the extreme
changes in the nature of the states as the electric field
strength is increased, for lack of a better labeling system
we label the states by their F =0 quantum numbers, n
(see the discussion at the start of Sec. III) recognizing the
fact that for FWO the states are far from being eigenstates
of parity.

For comparison, we first present the results for the
structure of GD, i.e., L, =L,2=Lb=50 A, a structure
that is comfortably in the wide barrier regime. For our
calculation, we use all of the physical parameters given in
GD, and for the overall band offset (not given in GD) we
use U, + U& =488 meV, a value that is in the middle of the
generally accepted range for that value of x (see, e.g. ,
Refs. 22, 23, 25, and 32). In Fig. 8 we present the energy
levels along with the results of GD for the state that
evolves from the E =0 ground state. It is clear that the
blue shift predicted in GD is not found using our method.
By examining in some detail the difference in the behav-
ior of the two wave functions, the source of this discrep-
ancy can be understood. From the plots of (z, )„and
(z& )„as a function of F (Fig. 9), we find that over the
range of F for which the energy of GD is blue shifted, our
ground-state wave function has an interwell expansion
coefficient that is a sizable fraction of the large intrawell
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FIG. 8. Exciton energies as a function of electric field for the
four exciton states of the Ga-Al-As system of GD for which
L, =L2=L„=50 A. The solid lines are our results and the
dashed line is the result of GD for the lowest state, which shows
a blue shift according to their calculations. The energy curve
for the result of GD has been set so that F =0 energy matches
ours since no value for this quantity was given in GD. The
quantum number n of the states is in parentheses beside each
curve.

coefficient (
~
b &z' Ib zz'

~

=0.22 for F =2.0 kV/cm). Ex-
amining the expectation value of r as a function of F (Fig.
10), we see that the radial separation for the interwell
states is approximately twice that of the intrawell states.
Thus the wave function of GD, which forces the radial
behavior of the two portions of the wave function to be
the same, is not able to account for the three-dimensional
nature of the state in the manner of our wave function.
As a result, it underestimates seriously the binding ener-
gy. It should be pointed out that, since there is strictly
speaking no ground state once an electric field is applied,
finding a lower energy for the n =+1 state does not
necessarily indicate a better estimation of the energy.
Thus one should be careful in trying to draw too much
from the comparison, particularly when the field is large.
However, even the examination of the repulsion of the
exciton energy levels (Fig. 8) leads one to the conclusion
that there should be no blue shift in the n = + 1 level.

This demonstrates how careful one must be when try-
ing to draw general conclusions from the results of a vari-
ational calculation in these multiwell structures. It is
essential that the wave functions are Aexible enough to al-
low for subtle changes in the radial behavior as a given
system parameter is changed. It appears that the single
exponential product states commonly used in CDQW's
[Eq. (3.5)j and superlattices are not sufficiently complicat-
ed to capture these features.

We now examine the nature of all of the exciton states
as a function of field strength. From Fig. 9 we see that
for F =0 all of the states have zero dipole moment. Once
a field is applied, the symmetric states mix almost im-
mediately with their nearly degenerate antisymmetric
partners, yielding two states of primarily interwell char-
acter (n =+2) and two of primarily intrawell character
(n =+1). When the field strength becomes larger, there
is a strong interaction between the n = —2 and the
n =+1 states in the field range 1~10 kV/cm. The elec-
trons in these two states change places; the result is that
the two states exchange character in a way that is similar
to that which occurs in the exciton Stark ladder, ' ' al-
though here there are only four states instead of an

a 30
A,

0

h,
& —30

V —60 I I I I

0 8 4 8 8 10
Electric Field (kV/crn)

FIG. 9. The expectation values (z, )„(solid lines) and (z„)„
(dashed lines), of the electron and hole coordinates along the
growth direction as a function of electric field for (a) the
n = + 1, +2 exciton states and (b) the n = —1, —2 exciton states
of the Ga-Al-As system of GD for which L& =L2=Lg =50 A.
The particular expectation value is given parentheses beside
each curve. Note that all of the expectation values go to zero
when F~0.

Z40
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, (—),
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FIG. 10. The expectation value of the in-plane electron-hole
separation, (r ), as a function of electric field for the four states
of the Ga-Al-As system of GD for which L&:L2=Li, :50 A.
The quantum number n of the states is in parentheses beside
each curve.



BLE g ANTUM DWELLSEXCITON STATES IN COUPLED DOU

f Chen et al. 5 calculation wPec —240 meV, vh
=

0 0665 (0.085)Al As) of iii
* =0.094

GaAs, (Gao. 7 o
l5 I l65), n34 (p.43), ~ hhll

t t;c dielec«icp 2()6 (o.2 )

t d value « i.
), in»II

erally acceP
Th transvers~

and the gene12.5 a
f GaA a

'
1 tion to the

he ban g
b 'ned by using

parame-

aP o
'n their re as are obtalne

Luttinger p .
tive masses

asses via the
=64 A and

1 effective m
of L

&

—
2
=

itudin
- r thicknesses

ent with the
~e use laye

close agreem '
nd

h h areinvey
L =64 A

14 A, 1C

L, —
2stimates o

~

iven in
erimental e»

e»foi-mation
en's pap '

'
the relation

d are in good
electri~

f the parame
e1d using

ters use arat all o
ted va uess except fo

e note tha
rally accep

hat higher
ement w the gene

which is somew a
hat we

ree
f 0.136 for ~lh~

out howeve~, t
e value o .

d ~e poi t '
h modeling

ex ecte
ue w en m

an generally
to use this same vand it necess~~y

2&

ood 0

tt'ce Stark lad
is enerall

consid«ing
me (gETB =

specia y
11 b rrier regim

lines at h g

eing
of the — a

11 uantum co
t ehe curvature 0

11 single-we q
The only

the essentia y
ounted for

field, due
ably well acco

t is for the
reaso

ex eriment »
sta~k effec ~

f theory from e p
a deviationectric fields —a

serious e

that has appear
' r ca

f field is simi-
in at presen .

function o
L I 50A

' ldff
dat F=
e expec sg . l4) A

fth + t t
hhi h fi 1d thtinues to ig

the almos
as contrast-,hi .. ,curving o then =

43

peak srent radi-s ow the very diffe
awell and interwe s an

ld
mhh =

h th
fF A b

havior c a
eseen, t e

(O. ln of the electron ane dial separation o ron an

r t

1 of thva ue
in the interwe

and n=F 10 kV/, an
es (n =

ters.
kV/cm, n = — o

ator strenga ths of the Lb=e illa
t on of field

we presen
for this samv

'
ates as a func io

state (n =
ickly lose most o= +2) very quic yited state (n =

ransform into in e
g

g
two interme

'

e trans orm
sta . w

hole bot o
P1C

) left (ght ( i or
d 1 w level

ei e

p
d thstates an f
ld, i
strengths fo s a ld

lectric fie s,
r the four s a lde oscillator s r
f field strengd 'ndately in ep

er the ed If h

then the su
increasing edecrease with in

that it is no e

hile the other sta esan 10 kV/cm, w i egreater than, i e

ture that is inth lt or a struc u
sth GAthe interme diate barrier

Chen et a . ,system of
of I.b=

1 2

or the enere presen
y-

the experimenalong with t e

1640

j 0.8
+ 1600

@ 2560

(+8)
15 ZO5 1O

e el d (kV/crrt)Electric Fiel

I

90 180
end (kv/em)

60
Electric Fiel

150

as a function ofh „per unit area as a
-Al-Asof the 6e ec

'
r the four sta e

uantum num e
theses beside each c rve t e

=+2 t t s e
iven in paren

arl zero).strength for then =

the heavy-hole (solid
shed lines) excit

'
ht-hole (das e

mmetric Ga-
lines) and lig

1 d
la-

electric fie
(Ref. 5). The lines

The quantum a-h
L)b 'd h

enote t e e
curve, w

t e i

gis given e
'

state.e th heavy- (light- odenotes the nt e



4094 M. M. DIGNAM AND J. E. SIPE 43

ed to the seemingly linear behavior in the wide barrier
structure.

A calculation of the excitonic spectrum for the above
structure was recently performed by Lee et al. ' Their
method, however, utilizes several approximations more
extreme than the ones we adopt here. First, they do not
allow for mixing between the different single-particle
states. For wider barrier structures, this would lead to
poor results, even the absence of an electric field. Second,
and of more concern with respect to the structure being
discussed, their basis states are constructed from the
field-dependent eigenstates of a double-well system placed
in the center of an infinite potential well. Thus, when an
electric field is applied, the derived eigenstates have an
appreciable probability of being found outside of the
double-well region (Fig. 6 of that paper). Although these
may be good approximations to the exact single-particle
states, it seems very likely that the electron-hole attrac-
tion would mix these single-particle states rather strongly
with many of the other eigenstates —particularly the
ones that have energies close to these —to remove the
long oscillating tails and thereby decrease the electron-
hole separation. This apparent problem with the method
is seen clearly in Figs. 7(d) and 11(b) of that paper, where
the 12II state pulls away from the 21II state, in disagree-
ment with the data and with what we find.

Finally, in order to demonstrate the effects of the
electron-hole interaction on the energy levels and to
demonstrate the accuracy of our wave function, we
present in Fig. 13 the results of the shooting-method cal-
culation of Bloss for the noninteracting electron-hole

0
transition energies for the system with Lb = 18 A,
L ]

=L 2
=70 A. In the same figure we also present our

exciton results for the same system, using the parameters
of Bloss with e= 12.5 and the in-plane masses determined
using the relationships between the hole masses and the
Luttinger parameters. We note that, like the last struc-
ture, this CDQW is on the border between the narrow
and intermediate barrier regimes, with AETB =0.6 meV.
To aid in the comparison, we have shifted the results of
Bloss up by 7.26 me V so that the F=O ground-state ener-
gies match. This difference in the energies is due to the
exciton binding energy, which is found in our calculation
but not in that of Bloss. Because all of the eight states at
F =0 have roughly equal intrawell and interwell charac-
ter, the binding energies for all the states are approxi-
mately equal and so Bloss' values after the energy shift for
the F =0 energies agree rather well with ours. However,
even in this system where the barrier is so narrow (and
hence the binding energies are relatively low), the devia-
tion of the two sets of curves as a function of F is non-
negligible (=3 meV). At large fields the energies of the
light- and heavy-hole + 1 and +2 states are higher in our
calculation then in Bloss's because the states have be-
come more interwell in character and hence the binding
energy has decreased from its F =0 value. For the other
states, our energies are generally lower than those of
Bloss at fields up to 70 kV/cm because the states have be-
come more intrawell-like at higher electric field strengths
and hence their binding energies have decreased relative
to those at F =0. At still higher fields our states become

80

0 80 40 60 80
Electric Field (kV/cm)

100

FIG. 13. Energy of the heavy- and light-hole transitions as a
function of electric field for the structure of Bloss (Ref. 32) with

0 0
L =70 A and LI, =18 A. The solid lines are our exciton results
while the dashed lines are the results of the single-particle calcu-
lation of Bloss, where we have shifted up the latter set of curves
by the F =0 heavy-hole exciton ground-state binding energy
(=7.26 meV) to allow a more-direct comparison of the subtle
effects of the exciton binding. The quantum label of each state
is given beside the curve, where nH (nL) denotes the nth heavy-
(light-) hole exciton state. The discontinuities in some of the en-

ergy lines for the results of Bloss are the result of coupling be-
tween the antisymmetric single-particle heavy-hole state with a
higher heavy-hole state. This effect is not taken into account in
our calculation.

V. AN ASYMMETRIC TWO-WELL STRUCTURE

In this section, we present the results for a structure in
which there is a sizable separation of the electron and
hole (and hence a sizeable permanent dipole moment) for
the ground state even in the absence of an applied electric
field. The structure is of the form shown in Fig. 1: that

higher in energy than those of Bloss; this is due to the de-
crease in binding energy as the quantum confined Stark
effect begins to separate the electron and hole in these in-
trawell states.

Because for F=O the states are neither interwell nor
intrawell states, these deviations in the field behavior of
the exciton energy levels from the noninteracting transi-
tion energies are only about half the F =0 ground-state
binding energy. They would be much larger for a system
with larger barriers (LI, & 35 A) where at F =0 the
ground state is primarily intrawell while at large F it is
primarily interwell. For example, from Fig. 3 it is ap-
parent that the difference between an interwell and an in-
trawell state binding energy is approximately 1.5 Ry (=7
meV) for a CDQW with Li, =0.25ac (=35 A) and
L =0.6ao (=80 A). Hence a calculation that ignores
the Coulomb interaction for this system could not repro-
duce the excitonic results with a simple rigid shift to
match the F=O energies; if this were done, some of the
high field levels would be off by as much as 7 meV.
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is, U' ) u and L& &L2. The charge separation arises be-
cause the hole, being heavy, finds it energetically favor-
able to reside primarily in the lower potential of the first
layer, even though that layer is narrow. The electron, on
the other hand, has a confinement energy in the first well
that is so large it essentially counteracts the lower poten-
tial of that well. As a result, the electron has a reason-
ably high probability of being found in the second well.
The structure that we examine has layer thicknesses of
L

&
=40 A L2 =55 A Lg =35 A' band offsets of U, =300

meV, U, =271 meV, vI,
' = 148 meV, Uh

= 133 meV;
eit'ective masses in the wells (barriers) of m,*=0.0665
(0.084), mh*, =0.34 (0.476), and mz*~~ =0. 19; and a dielec-
tric constant of e= 12.4. This corresponds to a
GaAs/Cxa& Al As system where x =0.35 in the three
barrier regions, x =0.0 in the first well layer, and
x =0.04 in the second well layer.

The energy of the four exciton states as a function of
field strength is given in Fig. 14. For lack of a better la-
beling system for this complicated system, we label the
states in order of increasing energy by n =1,2, 3,4. As
can be seen, the ground state (solid line) has a permanent
dipole moment at F=0. The expectation values (z, )
and ( zz ) of the electron and hole in the ground state are
shown in Fig. 15. For F =0, the hole is essentially in the
center of the first (left) well while the expectation value of
the position of the electron is somewhat right of center.
This system is similar to the "asymmetric" well proposed
by previous authors for intersubband transitions, but we
find that for our structure the addition of the barrier
enhances the electron-hole separation in the ground state,
and hence results in an enhanced Stark shift at low elec-
tric field strengths. Thus, although this structure is well
out of the narrow barrier regime, even in zero field, the
states have both a strong interwell and intrawell charac-
ter. The oscillation of the electron position of the ground
state as a function of electric field is a strictly excitonic
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FIO. 15. The mean values (z, ) and (zl, ) of the electron and
hole positions in the growth direction as functions of the elec-
tric field for the ground state (n = 1) of the structure of Fig. 14.

VI. SUMMARY

effect. For I' = —20 kV/cm, the electron is primarily in
the second well while the hole is primarily in the first. As
the field is made less negative, the hole is stationary while
the electron moves toward the second well. This is due
both to the lining up of the two single-well electron ener-
gy levels and to the Coulomb attraction of the hole. This
continues with the increase of the field until, when
F=2.5 kV/cm, it becomes energetically favorable for the
hole to move into the second well. This change in hole
location is enough to pull the electron, via the Coulomb
attraction, back into the second well. At a slightly higher
field of F=5 kV/cm, the potential due to the tilting of
the wells overcomes the Coulomb attraction and the elec-
tron gradually moves into the first well. The effect of this
oscillation on the oscillator strengths of the four states is
seen in Fig. 16. Thus the effect of the Coulomb interac-
tion is to considerably modify the dipole moment and to
enhance the oscillator strength of the ground state for
field strengths in the range —10 kV/cm (I' & 20 kV/cm.
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%e have developed a method of calculation of the exci-
ton states in coupled-double-quantum-well structures in
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FIG. 14. The energy, relative to the band gap of CxaAs, as a
function of electric field for the four states of the novel Ga-Al-

0 0
As structure with layer thicknesses Ll =40 A, L2=55 A, and

0

Lb =35 A. As can be seen, the ground state of the structure has
a finite dipole moment even when I' =0. The number in
parentheses beside each curve labels the quantum number of the
state.
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80

FIG. 16. The oscillator strength per unit area for the four ex-
citon states for the same structure as in Fig. 14 as a function of
the electric field. The number in parentheses beside each curve
labels the quantum number of the state.
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static electric fields that appears to be accurate for
GaAs/Ga, Al As structures with well widths, L, ~ao,
and barrier widths that are not so narrow that the single-
particle tight-binding approximation breaks down
(Lb ) 15 A). We have demonstrated the importance of al-
lowing for both coupling of the single-particle states and
the diA'erences in the radial behavior of the intrawell and
interwell potions of the excitonic wave functions. From
the comparison of our results with the results found using
other types of wave functions, we feel that the most ap-
propriate basis for exciton wave functions in multiwell

structures is made up of excitonic wave functions rather
than single-particle eigenstates. Finally, we have present-
ed the results for a system that displays some very in-
teresting excitonic behavior in the presence of a static
electric field.
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