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A comprehensive physical model for equilibrium and illuminated free semiconductor surfaces in-
teracting with an arbitrary number of monoenergetic surface and bulk defect states is presented.
The position of the surface Fermi energy is shown to be determined by the overall balance of sur-
face charge and surface electric field, and is not merely set by alignment to the energy of the
highest-density surface state. Boundary conditions are derived for nonequilibrium device analysis,
which includes the full electrostatic and recombinative details of the surface states. An approxi-
mate analytical solution is given for the semiconductor transport equations with these boundary
conditions and this model is used to describe illumination effects on the free surface. The solution
can be represented in a graphical form, which allows the most significant contributions to be easily
visualized. Fermi-level pinning on free surfaces is then classified according to the primary contribu-
tions to the charge balance and also according to the sensitivity of the surface potential to charge
perturbations. The occupation factors for the surface states under illumination conditions are de-
rived from the analytic model and are shown to both shift and saturate with increasing illumination
intensity. This allows the origin of free-surface photovoltage, depletion-edge contraction, and band
flattening to be reinterpreted as arising from a change in surface-state occupation rather than from a
quenching of the depletion-region field by free electrons and holes.
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I. INTRODUCTION

Free semiconductor surfaces may be defined as those in
which the potential and carrier densities are not con-
strained to a specific value by the external environment of
the media. From a one-dimensional circuit viewpoint,
the potential of the surface may be considered as “float-
ing” due to the lack of any externally applied fields or
contact metallizations. Free semiconductor surfaces con-
sist ideally of a semiconductor-vacuum interface, or at
minimum a semiconductor-gas interface, the most com-
mon case obviously being air. In practice, the surface
usually consists of an oxide layer that is sufficiently thin
to assume the same potential as that of the semiconduc-
tor surface.

In the analysis of semiconductor devices, free surfaces
pose a particularly subtle problem because the true
boundary conditions associated with a free surface do not
fall into the usual Dirichlet or Neumann type. The
boundary conditions most commonly used to model free
surfaces are simplified minority-carrier surface recom-
bination velocities that merely set the excess carrier den-
sities proportional to the surface recombinative currents.
These do not require the electron and hole surface
current densities to sum to zero and thus violate charge
conservation. In addition, any charge that is bound to
the surface defect levels is generally ignored, thus violat-
ing Gauss’ law. A consequence of this is that these sim-
ple models cannot account for the well-established
phenomenon of surface depletion.

Free semiconductor surfaces are found in numerous
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electronic devices, such as in the interelectrode gaps of
field-effect transistors, in between the electrodes of photo-
conductive elements, and around the periphery of mesa-
isolated structures. Despite their common occurrence,
free surfaces have not been studied in sufficient detail to
produce a general model for either the boundary condi-
tions or the overall behavior that includes the many con-
tributions from bulk and surface defects. Surface states
lying within the energy-band gap play a dominant role in
the electrical behavior of the surface and arise from a
wide range of sources. These include (i) Shockley-Tamm
surface states that are associated with the simple termina-
tion of the periodic crystal lattice,? (ii) surface defect
states that, as proposed by Brattain and Bardeen,® may
act as localized donor or acceptor levels, and (iii) immo-
bile adsorbed ions that can contribute a fixed charge den-
sity to the surface.

A very complete analysis of semiconductor surfaces
was presented by Garrett and Brattain* almost 35 years
ago, which has served well as a general reference for the
spatial shape of the depletion region, surface conductivi-
ty, field effects, and photovoltage effects. The principal
limitations to this analysis have been the restriction to
only shallow and thus fully ionized impurities, the as-
sumption that the surface states lie sufficiently close to
the band edges that they may be described in terms of
quasi-Fermi-potentials, and a unipolar nonequilibrium
analysis that only includes the flow of minority carriers.
Bardeen® originally noted that partial filling of the sur-
face states is necessary to account for Fermi-level pinning
of the surface, such as that experimentally found by Mey-
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erhof.® The Brattain and Bardeen model® was then pro-
posed whereby the surface defect states must be of either
donor or acceptor type to ascribe the proper surface
charge to the partial filling of the states. Despite the
long-standing acceptance of this model, few if any analy-
ses of the semiconductor surface have included the full
Fermi-Dirac equilibrium statistics or nonequilibrium rate
terms and occupation factors that this model implies.
While a continuous distribution of surface states within
the energy band gap is clearly the more general case, the
Brattain-Bardeen model utilizes monoenergetic surface
states, which may be combined in any multiplicity. A
uniform continuous distribution of surface states versus
energy has been used with good success in various models
of the metal-semiconductor interface,’ but the majority of
experimental measurements have indicated that free
semiconductor surface states are localized to a rather
narrow band of energies.g_12 Hence, the monoenergetic
surface-state assumption of Brattain and Bardeen will be
continued here. Van Roosbroeck!'® has analyzed a semi-
infinite semiconductor domain using Green’s functions
for a point-source excitation of electron-hole pair genera-
tion, but this did not include any detailed structure of the
surface states or bulk impurities. Kingston and Neus-
tadter'* have also given calculations of surface potential
and carrier density, but only for the equilibrium case of
fully ionized donor and acceptor states.

This paper presents a generalized model of the free sur-
face that includes the full electronic detail of both surface
and bulk defect states. Particular attention is paid in the
development to practical calculation procedures that can
be utilized in the construction of numerical or analytical
device models. Section II of this paper presents the gen-
eral model for the free surface under both equilibrium
and illumination conditions that is assembled from simple
electrostatics and current flow considerations of the con-
tributing defect states. Some general features of this
model are examined in Sec. III, particularly in regard to
electrostatic limitations to Fermi-level pinning, surface-
state repopulation, and band flattening effects with il-
lumination. Final conclusions are given in Sec. IV.

II. GENERAL MODEL OF THE FREE
SEMICONDUCTOR SURFACE

A. Equilibrium

Consider a semi-infinite semiconductor along the posi-
tive z axis with its surface at z =0 as shown in Fig. 1. In
the following, a subscript of o will indicate equilibrium
values, a subscript of s will indicate a surface quantity, a
d for a donor quantity, an a for an acceptor quantity, and
a b for a bulk quantity existing far enough away from the
surface so as to be unaffected by it (z— o). Within the
bulk regions of the semiconductor where no band bend-
ing from the surface exists, the equilibrium ionization of
donor and acceptor levels is given by standard Fermi-
Dirac occupation factors,
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FIG. 1. Energy-band diagram of the free semiconductor sur-
face.

N, N,

N, = . e 1b
a 1_*_gae(Ea~EFb)/kT 1+Fa (1b)

where g, and g, are the ratios of the filled-
state—to—empty-state degeneracies of the levels and Fj
and F, are defined above for convenience. For nondegen-
erate carrier concentrations, the electron and hole densi-
ties are similarly

(Epy—E/KT_ o (Epy—E,—E,)/kT

n=N_e N e , (2a)
p:NUe(EU—EFb)/kT ’ (2b)

where all energies unless stated otherwise are measured
upwards from the valence-band maximum.

The position of the Fermi energy in the neutral bulk
substrate can be obtained by setting the charge density

p=q(p—n+Nj—N;) 3)

to zero, which yields a transcendental equation of the
form

p(Egy)=0 . @)

Gaylord and Linxwiler'® have shown that a numerical
bisection routine'® provides an efficient method for solv-
ing this system that allows for all ranges of temperature,
both deep and shallow impurity levels, and any range of
semiconductor band gap. Numerical bisection routines
are used for finding all roots to transcendental equations
in this work because of their guaranteed convergence
when the search range brackets the root. Multiple donor
and acceptor levels may be included in this description,
but only a single donor and acceptor are carried through
the equations for simplicity. It must be stressed that it is
necessary to allow for only partial ionization of the im-
purity levels, particularly when the level is near the mid-
dle of the energy band gap. Such deep-lying donor
and/or acceptor levels are necessary for the proper
description of compensated semi-insulating materials
such as GaAs and InP.

A central idea to the physics of free surfaces is that any
band bending within the semiconductor must be support-
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ed by an appropriate surface charge in order to satisfy
Gauss’ law. The most interesting source of such a sur-
face charge is the presence of surface donor or acceptor
levels, which may arise from vacancies, interstitials,
dislocations, surface oxides, surface reconstructions, or
adsorbed ions. For compound semiconductors, the pres-
ence of antisite defects is another origin of surface donor
and acceptor levels that is presently thought to influence
the degree and position of Fermi-level pinning.'"!'? Re-
gardless of their physical origin, the equilibrium ioniza-
tion of surface donors and acceptors is again given by the
Fermi-Dirac occupation factors of

ng
Nji= : , 5
ds 1+gdxe(EFb—Eds+q¢m)/kT (Sa)
N
N, = (5b)
S —E — k >
a 1+gase(Eas FFb qwso)/ T

where 1), is the electrostatic potential evaluated at the
surface. The electrostatic potential is referenced to a
bulk substrate value of (. )=1,=0; thus, ¢,, gives a
direct measure of the amount and polarity of band bend-
ing at the surface. In addition to surface donor and ac-
ceptor states, the surface charge may also be supported
by adsorbed ions whose charge remains fixed. While less
interesting physically, these adatoms may be quite abun-
dant and influential in practice. The total surface-charge
density is then

pso:qut_qNa;"}_qZNfs ’ (6)

where Z is the ionization number of the fixed surface
ions. Gauss’ law requires that the above surface charge
terminate the fluxlines of a surface field intensity of

E,(0=E,, = ™
which is the same electrostatic field as that which estab-
lishes the band bending in the semiconductor. Thus, the
equilibria of the free surface may be described as a
balancing of the surface electric field due to band bending
with that due to the occupation of the surface states and
their associated charge. This assumes that there is no
normal electric field external to the semiconductor.

Solving the equilibrium free surface problem amounts
to finding the surface electric field due to the band bend-
ing and equating it to Eq. (7). Within the region of band
bending, the changing position of the Fermi energy alters
the occupation of the donor and acceptor levels so that
Egs. (1a) and (1b) become

N,;r:ﬁlﬁ , (8a)
1+Fze
_ N,
N, E— (8b)
1+F,e °

where =g /kT. The electron and hole densities may
similarly be referenced to their bulk substrate values to
put Poisson’s equation into the form of
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where n,,=n,() and p,,=p,(). This may be in-
tegrated across the surface band-bending region from
z = oo to z =0 by manipulating it into the form of

oY, W, |_ % p
P Py —fo Cdy, . (10)

ay, /0z

Jy

If the bulk impurities are uniformly distributed, the in-
tegration may be performed exactly to yield

—BY
E2(2)=24 |p,e P —1)+n,, ™ —1)
B
vl Pt F,
Sl =y
N, A F, (11)
S ’

a result originally obtained by Garrett and Brattain,* but
extended here to include the case of partially ionized im-
purities. The above result may be used to find the poten-
tial profile, since it specifies the electric field (the deriva-
tive of the potential) as a closed-form function of the po-
tential. For the present case of the semiconductor resid-
ing on the positive z axis, the sign of the electric field
should be chosen to be the same as that of the potential.
The above result may be used to find the equilibrium
point for a free surface via

Bt =2 (12
where the left-hand side is obtained from Eq. (11) and the
right-hand side from Eq. (6). This yields a transcendental
equation for the equilibrium surface potential ¥, that
may be solved using a numerical bisection routine. Once
1, has been found, all of the other equilibrium variables
may be directly calculated in turn. It is worth mention-
ing that this solution procedure is exact for the case of
steady state to the accuracy of the numerical bisection
routine, and in its most general form allows for any num-
ber of surface and bulk impurity levels, each at possibly
different densities, energies, and degeneracies.

B. Nonequilibrium boundary conditions for device analysis

When a free semiconductor surface is illuminated with
ionizing radiation or otherwise driven away from equilib-
rium, the analytical tool of a constant Fermi energy can
no longer be used to describe the state of the system and
rate and transport equations must be solved instead.
Within the bulk region of the semiconductor, it becomes
necessary to solve the five basic semiconductor device
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equations, shown below in steady-state, one-dimensional
form:

dn

J,,Z=q,unnEz+an—a; , (13a)
JPZquppEz—quég , (13b)
dz
1 dJy,
O=G(z)—*U(n,p)+;7 , (13¢)
1 4Jy
O=G(z)-U(n,p)~;—(—12— , (13d)
%:_%:_%:%m —p—NS+N;7).  (13e)

The electron and hole current densities are J,, and J,,,
the electron and hole mobilities are u, and p,, the elec-
tron and hole diffusivities are D, and D,,, G (2) is the gen-
eration rate of electron-hole pairs arising from the in-
cident illumination, and U (n,p) is the recombination rate
of electron-hole pairs within the bulk regions of the semi-
conductor.

The essential problem for one-dimensional semicon-
ductor device analysis is to solve the above system for the
variables of {n,p,J,,;,J,,,E,} over a fixed domain of
[0,L]. As such, the system is one of five coupled ordi-
nary first-order nonlinear differential equations requiring
exactly five boundary conditions for a unique solution.
Poisson’s equation (13e) is normally solved as an ordinary
second-order differential equation by specifying two
boundary conditions on the electrostatic potential, ¥(0)
and (L), instead of a single condition on the electric field
E,. Obviously, since the potential is referenced to an ar-
bitrary level, the two boundary conditions on 3 merely
set the applied bias across the device [¢¥(0)—(L)] and
the arbitrary reference point of the potential. The
remaining four boundary conditions on the variables of
{n,p,J,;,J,,} normally specify {n(0),p(0),n(L),p(L)}
for a device with electrical contacts at each end of the
domain. This is the traditional case for a voltage-
controlled device for which the current is to be deter-
mined as a function of the applied bias. Current-
controlled devices alternatively specify the current densi-
ties at both contacts and the electric field at one point
within the domain.

The situation of a free semiconductor surface intro-
duces special complications into the analysis of a semi-
conductor domain, whether in one or multiple dimen-
sions. These complications are mathematically that nei-
ther Dirichlet nor Neumann boundary conditions are sa-
tisfactory in describing the free-surface values of
{n,p,J,;,J,,}. Even Poisson’s equation cannot be solved
as a two-point boundary value problem because the sur-
face value of ¥ is unknown prior to the solution.

In solving steady-state, one-dimensional semiconductor
problems, a useful transformation is to define sum and
difference current densities |

V14,0, 0,88, N, (np —n?)
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Jz =an +Jpz 4 (14a)

Jio == Ipz (14b)

from which the total current density J, must be a con-
stant with respect to position z in order for current con-
tinuity to hold. This effectively reduces Egs. (13c) and
(13d) into a single first-order equation and mathematical-
ly reduces the overall system to fourth order. Instead of
needing to find both J,, and J,, as a function of z, one
needs to find only J,, as a function of z and J,, which is a
constant. Because of the unknown constant J,, the num-
ber of required boundary conditions is still five.

This transformation is particularly useful for the
analysis of free semiconductor surfaces, because the obvi-
ous boundary condition that the total normal current
density vanishes at the surface sets the unknown constant
J,(0)=0. For a one-dimensional system, the total
current density must therefore vanish at all parts of the
domain as well, and J,;, =2J,,= —2J,,. Assuming that
the Einstein relations hold, the differential equations
describing a free semiconductor surface may thus be
phrased as the fourth-order system of

dn J iz

& TPEn =5 (15a)

dp Ja.

dz E.p 2¢D, ’ (15b)

il =2qU 2¢9G(z) 15

dz qU (n,p)—29G (z) , (15¢)

d*y dE, pP_4q + _
=——f=_F -9y —p— +

172 dz c E(H p—N;+N, ), (15d)

which requires exactly four boundary conditions for a
unique solution. Assuming that the only free surface is
located at z =0, two boundary conditions may immedi-
ately be imposed upon the neutral bulk substrate as
n(e)=n,, and p(oo )=p,,. Equilibrium conditions deep
into the substrate in turn require that E,(c )=0 and
J4,(0)=0 as a consequence. The two remaining bound-
ary conditions must be obtained from the surface at z =0
itself.

In order to derive the appropriate boundary conditions
for the free surface, it is first necessary to note that
recombination centers and charge traps are two different
effects arising from any one given impurity level, regard-
less of whether it lies within a bulk region or at a surface.
The kinetics and rate equations for an arbitrary midgap
state have been described in detail in the important works
by Shockley and Read!” and Hall.'®* Only the results will
be summarized here.

For a localized state of density N, located at an energy
of E, within the band gap, the steady-state rate of
electron-hole-pair recombination through this state is

U(n,p)=

0,(g.n t+gsn;e )+o,(gp t+g.n;e

(E,—E;)/kT (E;,—E,)/kT  ’

(16)
)
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where o, and o, are the electron and hole capture cross sections, n; is the intrinsic carrier density, E; is the intrinsic
energy, and the mean thermal carrier velocity is given by 1m *pi = 3kT The degeneracy of the locahzed state when

empty of electrons is g, and is g, when filled. In addition, the nonequlhbrlum occupation factor for electrons in the lev-

elis

(E;—E,)/kT
0,8.n to,g.n;e

f= (E,—E,)/kT

0,(g.n tgsne )to,(gmp tg.ne

If equilibrium expressions for the carrier densities are

. _ (Ep—E,)/kT _ —Ep)/kT
substituted, n =n;e ! and p =n;e , then
Eq. (17) reduces to the usual Fermi-Dirac occupation fac-
tor with the degeneracy ratio given by the usual
g =g,/g,. It is important to note that the occupation
factor for these localized states changes from being a
function of the Fermi energy in equilibrium to being a
function of both carrier densities in nonequilibrium. For
bulk recombinative centers (N, in cm 3, Uin cm ™ 3/sec),
the relative fluency of electron and hole capture is ex-
pressed by the low-level minority-carrier lifetimes of

—1—=vtha,,N, , (18a)
n

%ZvlhopN, . (18b)

P
The analogous case for surface recombinative centers is
obtained by replacing N, with N, (in cm~2) and replac-
ing n and p with their surface values n; and p, to yield a
pair recombination rate of U, (in cm ™~ ?/sec). The relative
fluency of electron and hole capture is then usually ex-
pressed in terms of low-level minority-carrier surface
recombination velocities of

Sy =00, Ny, (19a)
5, =00, Ny (19b)

It should be noted that while minority-carrier lifetimes
and surface recombination velocities can be used ap-
propriately for characterization of a given level, the use
of linearized minority-carrier recombinative rates invari-
ably violates conservation of particle number when used
analytically. In steady state the rate of electron recom-
bination must equal the rate for holes; thus, it is neces-
sary to use the general form of U and U, above rather
than a linearized rate that depends upon only one carrier
species.

One feature that is commonly neglected in numerical
and analytical solutions of the semiconductor device
equations is that the charge on a given type of localized
state changes along with the electron and hole densities
that determine its occupancy. If the density of the local-
ized states is small in comparison to n and p, then this is
certainly justified. However, for the case of a free surface
and other situations where deep-level charges play a
dominant role, such as in semi-insulating wide-band-gap
materials, the change in the localized state occupancy
must be included in any nonequilibrium model. For the
case of a free semiconductor surface it is therefore neces-
sary to formulate the surface-charge density as

(E,—E,)/kT

. (17)
)
—

p(ns’ps):qus[ fds Ng,Ds ] qNasfas(ns’ps)_*_qZNfs ’

(20)

where each donor and acceptor occupancy factor be-
comes a function of the surface electron and hole density.
As in the case of equilibrium, this surface charge must

terminate the fluxlines of the surface electric field in or-
der to satisfy Gauss’ law. This leads to the nonequilibri-
um boundary condition of

B (0)=PsoPs) 21)

€

The remaining boundary condition on the surface is that
the electron and hole flux densities incident upon the sur-
face equal the rate of surface recombination,

J4,(0)

2q

Equations (21) and (22) are the general nonequilibrium
boundary conditions for modeling any free semiconduc-
tor surface. In equilibrium, both sides of Eq. (22) vanish
while the right-hand side of Eq. (21) becomes dependent
upon the single variable of the Fermi energy. These
boundary conditions do not lend themselves well to either
analytical or numerical procedures, because they are of
neither Dirichlet nor Neumann type. However, their use
is necessary if the full physics of the surface is to be
represented.

=U,(ng,p;) . (22)

C. Approximate analytical model

The solution of the free semiconductor surface problem
consists of solving Egs. (15a)—(15d) with the boundary
conditions of n( o )=n,,, p(w)=p,, Eq. (21), and Eq.
(22). This system is too nonlinear and too closely coupled
to provide any simple analytical solutions. However,
some accurate approximate solutions can be obtained by
assuming spatial profiles for several of the variables.
Some exact analytical manipulations make these assump-
tions and restrictions more obvious.

Integral forms of Egs. (15a)-(15¢c) may be readily ob-
tained as

n(z)=n, eﬁt[z(z)_eﬁdz(z) f‘”sz e ~BWE) gyt
(23a)

p(z)=p,.e /3¢(2>—e*/3¢<z> f"" sz(z B gy
(23b)
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Ja(z)
2q
Equations (23a) and (23b) are obtained through the
use of an integrating factor expiBf(z)Ez(z’ )dz'
=exp +B[¢Y(z)—1¥(0)] and referencing the electrostatic
potential to the bulk substrate, ¥, =¥( o )=0.
Evaluating Eq. (23c) at z =0 allows the conservation of
charge requirement to be easily interpreted,

J G2z’ — [ “Un,pz’ . (230)

z

f”G(z')dz'=_sz(0) + [TUn,pyz’ (24)
0 2q 0 P
The left-hand side gives the electron-hole-pair generation
per unit surface area resulting from the incident photon
flux, while the two right-hand-side terms balance this
against electron-hole-pair recombination at the surface
and within the bulk, respectively. From this it is clear
that the surface recombination J,,(0)/2q and the total
bulk recombination must both have minimum values of O
and maximum values equal to the total generation within
the semiconductor, the left-hand side of Eq. (24). The to-
tal generation within the semiconductor can be readily
evaluated from the absorptive properties of the semicon-
ductor. When the semiconductor region occupies the
positive z axis, J;,(0)/2g must be a non-negative quantity
with a net flux of electrons and holes being absorbed at
the surface but never created. Deeper into the semicon-
ductor, z >0, J,,(z)/2g may take on either sign, since
both carriers may flow toward the surface to recombine
there, or flow further into the substrate as a result of
diffusion. Several different cases are illustrated in Fig. 2.
The integrals of Egs. (23a)-(23c) may be immediately
evaluated if the spatial dependence of the potential and
the bulk recombinative rate are known. The spatial

A Jaz(2)
& — 2q —— 6 = 0.0 (Al recombination at surface)
(04
------- 6 = 0.5
1.0 (All recombination in bulk)
0 F
alp, > 1

FIG. 2. Difference current density as a function of position
into the semiconductor. Positive values correspond to a flow of
both electrons and holes toward the surface; negative values
correspond to a flow of both carriers further into the substrate.
Only when the ambipolar diffusion length is greater than the ab-
sorption depth, L,, >1/a, do carriers diffuse further into the
substrate. When the surface recombination is present along
with Ly, > 1/a, a stagnation point .S occurs as shown.
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dependence of the generation rate is presumed to be a
known functional input. While these spatial profiles may
not be well known for the general case, a large number of
interesting surface problems involve the situation of sur-
face depletion. Here, a well-defined layer adjacent to the
surface becomes evacuated of electrons and holes in com-
parison to the carrier densities deeper into the substrate.
When the carrier densities of this surface layer are small
in comparison to the density of ionized impurities, the
bulk space-charge density is approximately constant over
the extent of the surface layer. This allows the electric
field to be approximated as asymptotically linear with po-
sition z and the potential profile as asymptotically para-
bolic.

Following this line of thought, the surface layer is pos-
tulated to exist over a range of [0,d], where d is termed
the depletion depth. The potential profile is then approx-
imated as

k(z—d)* for 05<z<d,
¥2)= 1, ford<z< o ,

(25)
and the associated electric field profile is
—2k(z—d) for0=z=d,
E.(2)= {o for d <z < oo . (26)
The surface values of the potential and field are
Y, =9%(0)=kd*, 27
E, =E,(0)=2kd , (28)

and the value of k is set by the space-charge density of
the surface layer,

c for the n-type case, E, <0,9, <0,

k=
9N,
+~i? for the p-type case, E, >0,¥,>0 .

(29)

Thus, the surface electric field and surface potential can
be represented by two parameters: d, which gives the ex-
tent of the surface depletion, and k, which gives the po-
larity and spatial rate of the band bending. It can be
shown that the above approximations to the electrostatic
potential are correct to within one k7T /g when the impur-
ity densities of the surface layer are constant with posi-
tion.* This potential approximation is valid for the case
of simple depletion and weak inversion of the surface.
Strong inversion or accumulation at the surface addi-
tionally introduce a significant free-carrier contribution
to the space-charge density. Band bending at the surface
makes this contribution exponentially largest at z =0;
therefore, surface inversion or accumulation charges are
usually described as a sheet charge density (cm ~2). Sur-
face electron and hole sheet densities may be defined as

nss=f0dn(z)dz , (30a)
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d
P = fop(z)dz , (30b)
where the upper integration limit is chosen somewhat ar-
bitrarily to be the depth of the depletion region in order
to keep the integrals convergent for small to zero
amounts of surface band bending. For the parabolic po-
tential profile of Eq. (25), these sheet densities may be in-
tegrated approximately to yield
1 — ¢ ~2Bkd?

nss:ns 2l3kd ’ (31&)

which applies only for & >0, E,, >0, ¢, >0, and

l_ezﬁkdz

—2pBkd

which applies only for k <0, E,; <0, and 3, <0. Because
these accumulation or inversion charge densities exist
mainly at the surface itself, they cause little change in the
parabolic potential profile assumed deeper into the band-
bending region. Thus, they may be either considered as a
direct contribution to the surface-charge density or as a
correction term on the surface electric field.

The known characteristics of a uniform space-charge
region may also be used to approximate the spatial
dependence of the bulk recombinative rate. Sah, Noyce,
and Shockley'® have shown that the bulk recombinative
rate is very nearly constant over the full extent of such a
depletion region. Additionally, standard junction theory
gives the recombinative rate as decaying exponentially
within the quasineutral portion of the substrate, z <d,
with a decay length equal to the ambipolar diffusion
length of the carriers. In this context, the ambipolar
diffusion length is defined via

1 _ 1 n 1
Lpe Dy,

Pss =P ) (31b)

(32)
D,,

From these features, the bulk recombinative rate may be

approximated as of the form

U, for0=z=d,

Db o d<z<ow , 33

U(z)=
Uie

where U, is the unknown constant. The various approxi-
mated profiles are illustrated in Fig. 3.

The optical generation rate of electron-hole pairs is
taken to be a simple exponential decay into the semicon-
ductor, set by the absorption coefficient «,

G(z)=Ge . (34)

The difference current density may now be found by sim-
ply integrating Egs. (33) and (34) as per Eq. (23c).
Evaluating this at the surface, which thereby yields the
surface recombination rate, gives

sz(o) _ Gs

2q a

—(Lp, +d)U, . (35)

Thus, the unknown constant of U, may be expressed in
terms of G, and J,,(0)/2q. This is once more a simple

statement that generated carriers must either recombine
at the surface or in the bulk. It is convenient to define a

parameter
Gs . sz(O)
o=-2 29 = 29 (36)
s
a .

which gives the fraction of the total recombination that
occurs within the bulk regions of the semiconductor.
Clearly, 0<© < 1. The limiting case of zero bulk recom-
bination corresponds to © =0, and the case of zero sur-
face recombination corresponds to ©=1. The difference
current density may then be written as

J4,(2) G
T = | = |[e"“—OF,(2)], (37)
2q a
where
Ly, +d—z
—— fi <z=<d,
L, +d or 0=z

Fi2)=1 [ e (38)
_ba T e g <7< oo .
Ly, +d

This difference current density may then be substituted
into Egs. (23a) and (23b) along with the potential profile
of Eq. (25). The integrations are straightforward and lead
to surface electron and hole densities of
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0 | - 7
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FIG. 3. Assumed profiles for the electrostatic potential, elec-
tric field, and bulk recombinative rate. The electrostatic poten-
tial is parabolic about its vertex at d when the space-charge den-
sity is uniform with position.
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n,=n(0)=ePkd’ P =5 |5 [[Fa(—kd) = OFy(—kd)] | , (39a)
— 2 1 Gs
pe=p(0)=e P py, — - [Fak,d)—=OF;(kd)] | , (39b)
p
where
— d _az Bk(z'—d)? " i —az' g,
Fykd)= [‘e™e dz'+ [ Temdz
eb’kdz 3 N )
——————(1—e % "2PKd%) for k >0,
a+2Bkd
Iée_"‘d-i- ) 172 (40)
2 —7;3k e %\ for k<0,
d ’_ [
F3(k,d)=f0 F(z')ePk =4’ gz 4 fd F\(z")dz’
e[j‘kdz 3 2
1—e "2Pk%) for k >0
Ly, i 2pka e ) for
=|—"— | |Lp, + o 4
Ly, +d Da Bk, 1 a 172 o en (41)
2 | —Bk

Using the above approximations for the spatial depen-
dence of the potential and the bulk recombinative rate al-
lows the surface electron and hole densities to be ex-
pressed as explicit functions of the surface electric field
and the surface recombination rate. These are the same
two variables that are involved in the general surface
boundary conditions. Thus, the illuminated free-surface
problem can be reduced to two simultaneous transcen-
dental equations in the unknowns of {E,(0),J,,(0)/2q}.
But since the surface recombination rate is upper bound-
ed by the total generation within the semiconductor, it is
more convenient (and numerically stable) to consider the
two unknown variables as { E,(0),0}:

(42a)

z

E (0)=%ps[nS(EZ(O),G),pS(EZ(O),G)] ,

s

G
- (1=6)=U,[n,(E,(0),0),p,(E,(0),0)] .

(42b)

The functional dependence of p, and U, upon s and p; is
given by Egs. (20) and (16), respectively, and n; and p,
themselves are calculated according to Eqgs. (39a) and
(39b). With E,(0) and © determined from the above sys-
tem of equations, all of the remaining variables may be
found in turn as well as the spatial profiles for
{n(z),p(z),J,,(z)/2q}.

If the bulk defect capture cross sections for electrons
and holes are significantly greater than those for the sur-
face defects, then bulk recombination will dominate and
produce the limiting case of ©=1. The solution then
reduces to merely solving Eq. (42a) alone with this choice
of ©. Similarly, any other particular choice of ©
simplifies the problem to a single transcendental equation
for E,(0), which can again be efficiently found using a nu-
merical bisection routine. Some care must be exercised
when approaching the limiting case of dominant surface

M
recombination where © —0. If bulk recombination is

specifically precluded, then U (n,p)=0, which requires
J4,(2)/2q to be strictly positive for all z, i.e., both carrier
species must be moving toward the surface in order to
recombine there and there can be no diffusion of the car-
riers deeper into the substrate than the point to which
they were originally generated. Mathematically, the car-
rier bulk lifetime and diffusion length become infinite.
From Egs. (23a) and (23b) the surface electron and hole
densities must then be reduced below their values associ-
ated with band bending alone in order to produce a
sufficient gradient that will cause all of the generated car-
riers to eventually reach the surface. Choosing ©=0
often results in the unphysical result of negative surface
carrier densities, a consequence of the fact that the com-
plete absence of bulk recombination is in itself a nonreal-
izable physical situation.

Because © may become very small in comparison to
unity (but never zero) for certain physical values of bulk
and surface capture cross sections, it is generally best to
solve both Egs. (42a) and (42b) simultaneously. Numeri-
cally, this can be accomplished by embedding a bisection
routine for E,(0) inside another bisection routine for ©.
While this will not guarantee convergence to the root for
an arbitrary mathematical problem, it has nevertheless
been found to produce convergent and physically mean-
ingful results for all cases that have been tried in the
above surface problem.

III. PROPERTIES OF THE FREE SURFACE
A. Equilibrium
1. Charge balance

The balance of charge at the semiconductor surface is
expressed by the solution to Eq. (12) under the conditions
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of equilibrium. The model of Brattain and Bardeen uses
the behavior of surface states as donor and acceptor lev-
els to allow the degree of ionization to vary as a function
of surface band bending, which then provides the needed
degree of freedom to account for pinning of the Fermi
level.? In practice, a large number of surface defects may
be present with different energy levels, degeneracies, and
surface concentrations, and the solution to Eq. (12) be-
comes rather involved. Shockley originally introduced a
graphical method to determine the Fermi-level position
in an arbitrary semiconductor, which also involves the
problem of partial ionization of many impurity levels.?’
This graphical method, sometimes referred to as a
“Shockley plot,” provides an easy means of visualizing
the contributions of each charge source to the ultimate
position of the Fermi level and is an alternative way of
solving Eq. (4). The same idea used in the Shockley plot
is extended here to visualize the contributions to the equi-
librium band bending of a free surface.

Because the ionization of surface donor or acceptor
levels follows simple Fermi-Dirac occupation factors,
they are most easily plotted on a semilogarithmic scale
versus the position of the Fermi energy. The value of the
Fermi energy at the surface is set by the position of the
Fermi energy in the bulk substrate and the amount of
band bending, ¥,. Hence, the solution of Eq. (12) in-
volves finding the value of the surface potential ¥, which
balances the surface charge against the field caused by
the bulk impurities within the depletion region. The
original idea of the Shockley plot was to sum all of the
positive contributions to the charge density and equate
them to the sum of the negative contributions, with each
sum taking place on a logarithmic scale. The crossing of
the two lines as a function of Fermi energy then deter-
mines the charge neutrality point. The same method may
be applied to the case of Eq. (12) except that the contribu-
tion of the electric field may be either positive or nega-
tive, depending upon the direction of the band bending.
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FIG. 4. Surface Shockley plot for n-type GaAs at equilibri-
um. Fermi level and surface potential are set by surface
acceptor-field pinning. This pinning is relatively weak because
the N,; and €E,; /q curves cross at a very shallow angle, making
the solution point very susceptible to changes in the bulk
space-charge density.
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To account for this, Eq. (12) may be rewritten as
N ——;-Ezs (if E,, <0)=N_j +§ E, (fE, >0),
(43)

where both sides contain the sum of strictly positive
quantities and an implicit sum over a possible multiplici-
ty of surface donors and acceptors is assumed. For the
case of equilibrium, the surface electric field E,, may be
obtained exactly from Eq. (11), whose first two terms in-
clude the possible contributions from surface inversion or
accumulation charges. A representative graphical solu-
tion of Eq. (43) is shown in Fig. 4 for the case of an n-
type GaAs substrate whose surface is Fermi level pinned
by a dominant midgap surface acceptor level. The sur-
face states are taken to be the two proposed by Spicer,
et al.:'"'2 a dominant acceptor state located at
E, =0.75 eV above the valance-band edge with an as-
sumed density of N,,=10'> cm~2 and a secondary donor
state located at E; =0.50 eV above the valence-band
edge with an assumed density of N, =10 cm ™2

2. Fermi-level pinning

The previous graphical solution provides an improved
means for visualizing Fermi-level pinning on free semi-
conductor surfaces. It must be clearly pointed out that
this precludes any electrostatic effects introduced by the
presence of a metallization in contact with the surface,
and is therefore not applicable to the case of Fermi-level
pinning in metal-semiconductor junctions.

First it should be noted that the knee of the ionized
surface donor curve, i.e., the point of 50% ionization, is
centered over the potential value of ¢, =E, —Ep,, and
the knee of the ionized surface acceptor curve is centered
over the potential value of ¢, =E,  —Ep,. The intersec-
tion of the positive and negative contributions to the sur-
face Shockley plot will generally occur in between the
knees of the ionized surface donor and acceptor curves
when E > E,;.. When the surface impurity levels are ad-
ditionally near to midgap, an n-type substrate will pro-
duce a large value of Ep, that will in turn force the solu-
tion toward a negative value of i, and deplete the surface
of free electrons. Similarly, a p-type substrate will pro-
duce a comparatively small value of Ep, that will force
the solution toward a positive value of ¢, and deplete the
surface of free holes.

From this one important feature of Fermi-level pinning
can be observed. If the surface donor energy is smaller
than that of the surface acceptor, then the Fermi energy
will be pinned in between the two levels, regardless of the
relative densities of the two surface impurity levels. If
the surface donor energy is larger than that of the surface
acceptor, then the Fermi energy will tend to be pinned to
the energy level of the impurity with the higher surface
density. Since the surface impurities tend to be partially
ionized, the position of the pinned Fermi level will be
slightly above a dominant surface donor energy, or slight-
ly below a dominant surface acceptor energy. Regardless
of the energy ordering of the surface impurity levels, the
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position of the pinned Fermi energy is set by overall
charge balance; not merely alignment to the impurity lev-
el with the greatest surface density.

For n- and p-type substrates where the bulk Fermi en-
ergy is significantly different from the energy of the sur-
face impurity levels, the solution point on the surface
Shockley plot involves either an intersection of the ion-
ized surface donor curve with the negative surface elec-
tric field curve or an intersection of the ionized surface
acceptor curve with the positive surface electric-field
curve. These two cases can be termed ‘“‘surface donor-
field pinning” for the p-type case and ‘“‘surface acceptor-
field pinning” for the n-type case. Semi-insulating, com-
pensated, or intrinsic substrates offer a much different sit-
uation, since the position of the bulk Fermi level corre-
sponds closely to the position of midgap surface impurity
levels. The surface Shockley plot for semi-insulating
GaAs with the same set of surface impurity parameters is
shown in Fig. 5. Since the bulk Fermi-level position lies
close to the level of midgap surface impurity states, very
little equilibrium band bending is exhibited. In the case
of Fig. 5, the position of the Fermi level may again be
classified as surface acceptor-field pinning. However, the
much closer proximity of the ionized surface donor curve
allows the possibility of ‘‘surface donor-acceptor pin-
ning” if the surface densities of the two impurities both
exceed the corresponding value of the surface electric-
field curve. Surface donor-acceptor pinning represents a
much stronger binding of the Fermi level to a particular
surface energy, because the equilibrium position is set
essentially by charge neutrality at the surface, with virtu-
ally no contributing influence from the surface electric
field of the bulk. Surface donor and acceptor densities
need to only exceed the level of €E,, /q, which is on the
order of 10'? cm ™2, and which corresponds to an atomic
surface coverage of only 0.0007, to achieve surface
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FIG. 5. Surface Shockley plot for semi-insulating GaAs at
equilibrium. Surface potential is set by surface acceptor-field
pinning and is again relatively weak. Reduced ionized impurity
densities in semi-insulating GaAs produce smaller €E,, /q values
and the intersection of the N and N, curves can easily exceed
this, producing surface donor-acceptor pinning, which is then
independent of the bulk space charge and classified as strong
pinning.

donor-acceptor pinning.

Because any modulation of the depletion region charge
will alter the position of surface-donor-field-pinned or
surface-acceptor-field-pinned Fermi levels, these may be
referred to as “weak” Fermi-level pinning. The only
mechanism whereby surface-donor-acceptor-pinned Fer-
mi levels may be altered is through a change in the ion-
ization fractions, which entails a severe change in the
surface-state occupation factors. Thus, surface donor-
acceptor pinning may be regarded as ‘“‘strong” Fermi-
level pinning. Large changes in the electron and hole
surface densities may be obtained by illumination of the
free surface, and sufficiently strong illumination may
cause repositioning of the Fermi level in both weak and
strongly pinned systems, as will be discussed next.

B. Illumination

Under conditions of illumination, the steady-state
alignment of the free surface is obtained as a solution to
Egs. (42a) and (42b). For a prescribed fraction of the gen-
erated carriers recombining within the bulk region of the
semiconductor O, the solution is obtained from Eq. (42a)
alone, which manifests the same general features as the
equilibrium case of Eq. (12) when a multiplicity of defect
levels is involved. A graphical solution can again be ob-
tained, but the critical occupation factors for the surface
states must be obtained from the surface carrier densities,
rather than from an equilibrium Fermi level.

1. Nonequilibrium surface-state occupation

In the general nonequilibrium case, Egs. (39a) and
(39b) can be compacted into the form of

B,

n,=e ‘(ny,+n;v,G), (44a)
p=e oy +ny,G)) (44b)
where

__ 1 _ e

Vu= an,D, [OF;(—k,d)—F,(—k,d)], (45a)
1

=——[OF,(k,d)—F,(k . 45b

Y an,D, [OF;(k,d) ,(k,d)] (45b)

The Fermi potential in the equilibrium substrate is given
by ¢, =(Ep, —E;)/q such that

- ,B%
Ry, —Nn;€ N

e P

(46a)

Dho =N, (46b)

Substituting these expressions for the surface electron
and hole densities into Eq. (17) yields a general electron
occupation factor of

fe 1

N b
(E,—E))/KT —Bb,+4;)

47)
1+ g—fMe

8e

where
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—By.+é,) (E.—E,)/kT (E.—E)/kT —
€ Blys*ay) B Ee +o,y7,Ge " ' e W"-i—an
M= —B(Y,+¢,) (E,—E,)/kT ~Bs . (48)
o,e s Tl T 4o vy, Ge TP +o0,

When there is no illumination present, G, =0, the factor
M becomes unity and the occupation factor f reduces to
the usual Fermi-Dirac function.

It is important to note that the factor M saturates with
increasing illumination intensity,

9pYp (E,—E\)/KT Bld,—1,)
—e e ,
GS—>OO O,YVn

(49)

which is then independent of G,. In the limit of strong il-
lumination, the occupation factor thus becomes indepen-
dent of the energy of the defect state relative to the band
gap
_ 1
f= v . (50)
L+ 0,8,D,[OF;(k,d)—F,(k,d)]e

0,8.D,[OF(—k,d)—F,( —k,d)]e""

Furthermore, F,(k,d)=F,(—k,d) when d <<1/a and
Fi(k,d)=F;(—k,d) when d <<Lp,, both of which are
made more accurate when the depletion region contracts
as a result of illumination. An important result is that the
occupation factor under conditions of saturating il-
lumination depends only upon the surface potential and
the ratio of the capture cross sections, the degeneracy ra-
tio, and the ratio of the electron and hole diffusivities,

f= L . 51)

14 Ze8sPn 260,
anger

This is equivalent to the knee of the ionized surface
donor and acceptor curves being shifted by an amount
In(M) /B in potential to a point at

1
2Bln

Upngn

(52)
0,8.D,

U=

2. Depletion-region contraction and photovoltage

In terms of application towards semiconductor device
modeling, the most influential features of an illuminated
free surface are the photoinduced changes in surface po-
tential and surface depletion depth. These can be calcu-
lated directly by the procedures outlined in Sec. II, but it
is again useful to examine the behavior by means of a
Shockley plot. This can be constructed by modifying the
equilibrium case. The first change is to replace the equi-
librium occupation factors by the nonequilibrium result
of Eq. (47). This effectively shifts the ionized donor and
acceptor curves horizontally by a potential of In(M)/B,
saturating with increasing illumination at the point given
by Eq. (52).

For the nonequilibrium case, Eq. (11) can no longer be
used to evaluate the surface electric field, and the approx-
imate analytical solution must be used instead. Without

r

corrections for possible surface inversion or accumulation
charges, the surface electric field is simply

E,.=2V'kd, . (53)

The surface inversion or accumulation charges may in-
stead be added directly to the surface-charge density via

th +pss_~§Ezs (if Ezs <0)

=N +n,+ §E (f E,>0), (54)

where
sinh(BY,)
s =Npo ————-B#} (55a)
BV ki,
only for k >0, and
sinh( — )
Pss =Pbro — (55b)
" BVkY,

only for k <0. The resulting Shockley plots are shown in
Figs. 6 and 7 for n-type and semi-insulating GaAs, which
are exposed to a saturating level of illumination. As is
commonly noted in experiments, the surface potential
and the surface depletion depth are both observed to de-
crease in magnitude with the application of illumination.
The shift in the surface potential from the dark to the il-
luminated case is the developed photovoltage of the free
surface.
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FIG. 6. Surface Shockley plot for n-type GaAs under strong
illumination. The shift in the €E,, /g curve from equilibrium is
negligible, but the ionized surface donors and acceptors are
significantly altered, saturating at the locations shown. The
shift in the solution point changes the surface potential by the
indicated amount of induced photovoltage.
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FIG. 7. Surface Shockley plot for semi-insulating GaAs un-
der strong illumination. The induced photovoltage is less than
in the n-type case, but the final solution point is nearly identical,
since in both cases the surface potential under strong illumina-
tion is set by surface donor-accepting pinning, which is indepen-
dent of the bulk charge density.

3. Band flattening origins

Girtner?! was the first to include the effects of optical
generation within the depletion region of a metal-
semiconductor junction. In this analysis, the developed
photovoltage is derived as the amount of forward bias
needed to produce a dark forward current that just can-
cels the photocurrent under open-circuit conditions.
Here, the metal contact establishes the necessary surface
charge on the semiconductor to support (or reduce) the
band bending. In fact it is the presence of the metal con-
tact that produces the exponential current-voltage
characteristics that ultimately yield the logarithmic
dependence of the photovoltage upon the incident light
flux. The essential point here is that it is completely in-
valid to model the free semiconductor surface as an
open-circuited Schottky barrier because of the lack of the
metal contact, without which the barrier does not exist.
To impose a solution based upon the boundary conditions
of a metal-semiconductor junction fully ignores the actu-
al (and different) boundary conditions of the free surface.
It is similarly improper to consider the band flattening
and induced photovoltage as arising from photodiffusion
or Dember?>~2* effects, as these are also based upon the
boundary conditions of a metal-semiconductor junction.

Under sufficiently intense illumination, the photogen-
erated electron and hole density will become large
enough to screen the space charge of the ionized bulk im-
purities. This means is often cited as the cause of
depletion-edge contraction and induced photovoltage on
free surfaces. However, the radiation intensity required
to achieve this quenching of the depletion region field is
between 2 and 3 decades higher than the radiation levels
which substantially reduce the depth of the depletion re-
gion, as determined by rf surface conductivity measure-
ments.”> The present derivation and model easily show
that the cause of band flattening, depletion-edge contrac-
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tion, and induced photovoltage all lie with a change in
the occupation factors of the surface states. In nonequili-
brium, the occupation factors are a function of the sur-
face electron and hole concentrations, which are very sus-
ceptible to alteration by incident light. In fact, the
change in the surface carrier concentrations is the
greatest for any point within the domain of the semicon-
ductor, and this is also where the surface states them-
selves are located. The level of incident illumination re-
quired to alter the surface electron and hole densities
and, subsequently, the occupation factors of the surface
states is 2—4 decades smaller than the level required to
quench the depletion region field via bulk photogenerated
carriers. Hence, the origin of these band flattening effects
should be reinterpreted as arising from changes in the
nonequilibrium occupancy of the surface states rather
than from merely a high density of photogenerated car-
riers in general.

IV. CONCLUSIONS

The physical alignment of the Fermi energy in equilib-
rium free semiconductor surfaces can be easily obtained
through numerical bisection routines, which admit the
full range of temperature, semiconductor band gap,
Fermi-Dirac statistics, impurity location and density, and
surface-state density, energy, and degeneracy. These pro-
cedures are particularly well suited to when a multiplicity
of defect states is involved, either in the bulk or at the
surface. The consideration of partial ionization of the de-
fect states is essential to allow for charge balance at the
surface, as well as to accurately represent the case of
wide-band-gap materials that are dominated by deep-
level bulk states.

Free semiconductor surfaces cannot be represented by
boundary conditions that mimic metal-semiconductor
junctions or other open-circuit device conditions. In-
stead, the two key boundary conditions of charge balance
and surface recombination must replace the more usual
specification of carrier densities or terminal currents.
While these boundary conditions are difficult to treat
both numerically and analytically, their use is required if
the full physics of the free surface is to be represented.

A simple approximate analytical model has been
presented that allows the equilibrium solution techniques
to be extended to the case of incident illumination on the
free surface. This model reduces identically to the equi-
librium case when illumination is absent, and allows the
photoinduced changes in the surface potential, surface
field, carrier densities, current densities, and surface-state
occupation factors to all be readily obtained from a two-
variable bisection routine. The influence of surface
versus bulk recombination is also developed within this
model, and even though the case of zero bulk recomina-
tion becomes unphysical, the actual fraction of recom-
bination occurring within the bulk becomes only a
second-order effect in the overall model.

A graphical approach has been developed to show the
relative contributions to the charge balance of the sur-
face. Fermi-level pinning can be classified according to
the origin of the dominant contributions. Weak Fermi-
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level pinning occurs when the electric field of the de-
pletion region balances against a single dominant surface
donor or surface acceptor. The pinning of the surface is
weak in this case because the solution point is very sus-
ceptible to small changes in the surface electric field,
which could be induced by any small change in the
depletion-region space charge. Alternatively, strong pin-
ning of the Fermi level occurs when the solution point is
set by the balance between a surface donor and a surface
acceptor. The pinning in this case is strong because the
solution is set essentially by neutrality of the surface and
is independent of the surface electric field produced by
the ionized bulk impurity states. This case of strong
Fermi-level pinning can easily occur when the surface
donor and acceptor densities exceed levels of around 10'?
cm ™2, which represents a relatively small atomic surface
coverage.

Finally, an important result is that the occupation fac-
tors of the surface states are strongly influenced by in-
cident illumination, and the curves of occupation factor
versus surface potential shift and saturate with increasing
light intensity. Under strong illumination, the occupa-
tion factors become dependent only upon the surface po-
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tential and the ratios of carrier capture cross sections, de-
generacies, and carrier diffusivities. The shift in the oc-
cupation factors is such as to force the surface potential
more toward zero, i.e., to flatten the bands, as the il-
lumination level is increased. A consequence of this is
that the flattening of the bands on free semiconductor
surfaces should be reinterpreted in terms of changes in
the occupancy of the surface states, rather than from an
overall increase in electron and hole densities, which
would quench the depletion-region electric field. The re-
quired change in the surface-state occupancy occurs
several decades lower in illumination intensity than the
field-quenching mechanism.
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