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Calculations of the dimensional dependence of the critical state in disk-shaped superconductors
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We present numerical calculations of the field distribution and the moment of disk-shaped super-
conductors in the critical state, extending earlier work of Daeumling and Larbalestier. In particu-
lar, using the Kim model for the dependence of critical current density on field, we show that a con-
ventional model ignoring Aux-line curvature predicts a nonlinear dependence of zero-field remanent
moment on radius, while accounting for the curvature numerically leads to an almost linear depen-
dence on radius, with a slope reduced from that of the Bean formula. We find an approximate
analytical formula for this reduced slope.

I. INTRODUCTION

In this paper we present numerical calculations of the
magnetic field distribution and magnetic moment of a
disk-shaped superconductor in the critical state. ' This
is of special interest in the context of high-temperature
superconductivity where most magnetic data have been
taken on platelet-shaped crystals or thin films with ap-
plied fields perpendicular to the plane. The large demag-
netizing effects complicate the interpretation of this
configuration, but it is important to understand this case
since alignment problems and signal strength problems
make the in-plane measurements dificult, and since in
any case the materials are so anisotropic.

A conventional approach ' to treat shape effects is to
use the demagnetizing factor X defined in terms of an el-
lipsoida1 approximation to the sample shape and to
correct the applied field H, by the demagnetizing field
—XM, where M is the magnetization. However a num-
ber of authors ' have recently pointed out that in the
critical state of a superconductor, in which current is uni-
formly distributed in the bulk, this is wrong not only
quantitatively but qualitatively. In particular, Daeum-
ling and Larbalestier performed numerical calculations
on a disk of radius R and thickness D & (8, which
showed that for a uniform bulk circumferential current
density J„ the field distribution and hence the vortex
lines within the superconductor become severely curved,
even though the conventional Bean formula' for the
remanent magnetization M„(in mks units with
B =@OH+@0M)

M =J-R
rem c

remains unchanged. However when the current density
depends on field, for example, using the Kim form

J, (H) =a/(H +Ho),
where a and Ho are constants, then Daeumling and Lar-
balestier suggested that the moment would depend on
field and radius in a more complicated way. They calcu-

lated one example of the field dependence M„(H).
Here we focus on the radius dependence of the

remanent moment (H, =O). Since Eq. (I) has been so
widely used to determine critical current densities of films
and crystals of high temperature superconductors, it is
clearly important to test its validity by studying the ra-
dius dependence experimentally. The results so far in the
literature are ambiguous, with reports of both non-
linear ' and linear ' ' behaviors. In particular, the
data of Oh et ah. , ' evaluated from their hysteresis loops
even at H, =0, show good linearity over a wide range of
sizes for a patterned Y-Ba-Cu-0 film. Yeshurun et al.
observe linearity only over a more modest range in pat-
terned thin Y-Ba-Cu-0 and Bi-Sr-Ca-Cu-0 crystals.
Since nonlinearity can arise from granularity or weak
links, we presume that this more rarely observed linear
behavior characterizes the most homogeneous material,
though clearly further experimental work is required in
this area.

The 1inear results have been interpreted as support for
the Bean model and for bulk (rather than edge) current
Row in nongranular crystals and films of the high-
temperature superconductors. However, at remanence
they actually pose something of a contradiction when in-
terpreted in a conventional model which assumes straight
vortices lying perpendicular to the disk plane. For this
case we will show in Sec. II that M(R) should be non
linear whenever —as is in fact the case ' ' —J, depends
on field. The resolution to this contradiction is to consid-
er curvature of the vortices, that is, both radial and axial
components of magnetic field and Aux in the supercon-
ductor. This complex geometry requires numerical elec-
tromagnetic calculations extending those of Frankel and
Daeumling and Larbalestier; we describe the calcula-
tions and results in Sec. III. Finally, in Sec. IV we inter-
pret the results and derive an approximate formula which
gives physical insight into this complex behavior and
which should be useful for estimating the suppression of
the slope dM„ /dR below the Bean value in Eq. (I).
Here we consider only an isotropic field-dependence of
J, ; the effects of critical current anisotropy are a topic for
further work.
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II. CONVENTIONAL MODEL

We calculate here the dependence of moment on radius
for a conventional critical state model with a field-
dependent critical current density of the Kim form, Eq.
(2). By "conventional model" we mean here a model in
which the vortices are assumed to stand vertical, perpen-
dicular to the plane of the disk. Now Maxwell's equation

(3)

&2 ho—

o 8

full calculation

dh, /dr model

low-x extrapolation ..

x/3.

in general has two terms dH, /dr and dH„/dz with a cir-
cumferential current J, but for vertical vortices,
H„=dH„/dz =0; so Eq. (3) reduces to dH, /dr =J. We
emphasize this point because in fact this approximation is
grossly wrong for the disk-shaped geometry, as has been
pointed out by Daeumling and Larbalestier, and the op-
posite limit will be discussed in Sec. IV. Nevertheless we
proceed here with this approximation since it underlies so
much conventional thinking about this problem and since
it will provide an interesting contrast to the correct
answer.

To perform the calculation we integrate Eq. (3) with
the field-dependent J, of Eq. (2):

0
0 20

o/ho

40

FIG. 1. Normalized magnetization as a function of a normal-
ized radius of a disk with circumferential critical supercurrents.
The current is assumed to depend on field according to the Kim
form, Eq. (2) [normalized parameters in Eqs. (5)—(8)]. Circles
represent full electromagnetic calculations with ho = 1, the solid
line represents Eq. {9), and the dotted line represents Eq. {1)
{Bean model). The reduced slope of the circles as compared to
the Bean model is described by the "slope reduction factor" of
Fig. 4.

H, (r, R)=QHo+2a(R r) Ho —. — (4)

Next we set B equal to poH inside the material, assuming
the equilibrium M to be negligibly small. This is
equivalent to assuming that H„ is small compared to the
other fields in the problem, like Ho in Eq. (2), or the self-
fields. Finally we integrate B over the volume of the disk
and divide by volume to get the magnetization of the
disk.

To write the result we use a normalization which we
will apply throughout the article. We normalize dis-
tances to the disk thickness D and fields to the natural
field units implied by Eq. (2), namely, t/aD. It is further
convenient to define a second normalization for radius in
terms of ho. We use lower-case letters for normalized
quantities. Thus we define

ro—=R/D, (5)

ho =Ho/(aD)
M

(aD)'i

x =—Ra/Ho =ro/ho

With this notation we write the result for the normal-
ized dependence of remanent magnetization m on radius

m =ho[2(1+2x) —15x —10x —2]/15x . (9)
Equation (9), plotted as the solid line in Fig. 1, is clearly
nonlinear with radius. This nonlinearity comes from the
self-fields H(r) which build up from the edge into the
center of the disk, causing J,(H) to drop. It is obvious
that if R is small enough, these self-fields will be small
compared to Ho, and so J, will be essentially constant.
In this limit Eq. (9) should, and does, reduce to the usual
Bean formula Eq. (1), which is just m =box /3 in the nor-
malized units, and which is shown as a dotted line, extra-

polated from the x —+0 limit.
Typical experiments ' ' on thin films and crystals of

Y-Ba-Cu-O at low temperature should be well into the
nonlinear region, as the following estimate shows. At low
temperatures, these materials have J, of order 2X10'
A/m for crystals and more for films, and field depen-
dences which can be fit to Eq. (2), giving values of order
poHo=0. 5 T and boa=10' AT/m . The radius beyond
which the self-field becomes comparable to Ho is Ho/J,
or about 25 pm, significantly smaller than the lateral di-
mension of most samples.

Thus the question becomes, cou1d linearity of remanent
moment with radius be observed in these samples at all?
The answer comes from treating the full problem, and in
particular from recognizing that the fields do not lie just
perpendicular to the disk but are curved, generating a
dominant gradient in dH„/dz rather than in dH, /dr, as
we shall see in the next section.

III. NUMERICAL CALCULATIONS

We describe here the calculation of the field and
current distributions in a sup erconducting disk in a
remanent critical state with bulk current Aow. We as-
sume thickness large compared to the penetration depth
and are thus ignoring additional local energies arising
from vortex bending or from London surface super-
currents. In cylindrical coordinates, the radial and axial
magnetic field components at some point r and z, generat-
ed by a ring of radius a, centered at the origin and carry-
ing a current I, are given by'
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I z
H„(a, r, z) =

2~r [(a+r} +z ]'
—K(k)+ E(k)

(a —r) +z
(10)

2 2 2

H, (a, r, z)+ E(k)+ E(k)
2~ [(a+r) +z ]' (a —r) +z

where k =4ar[(a+r) +z ]
' and where E and E are

complete elliptic integrals of the first and second kind.
The magnetic field at any point generated by assumed az-
imuthal (circumferential) current distribution in a disk
can be found by integrating these equations over the
volume of the disk. Since we assume H„ to be negligible,
we take this field within the sample to be the spatially
averaged local magnetic induction carried by the vor-
tices.

To integrate Eqs. (10) and (11) we have used a method
similar to Romberg's integral method, ' but instead of
using an extended trapezoid rule we have used an extend-
ed midpoint rule. There were two reasons for this choice.
Unlike other methods used in numerical integration, both
the extended trapezoid rule and the extended midpoint
rule have an error series that is completely even with step
size. ' This causes the error to fall off rapidly with suc-
cessive refinements in the evaluation of the integral. But
unlike the trapezoid rule, the midpoint rule does not re-
quire the integral to be evaluated at the end points of the
subinterval. This helped to avoid divergence in the in-
tegrals when a =r, and z was small. As in the Romberg
method, the first refinements to the evaluation of the in-
tegral were made by decreasing the step size, reevaluating
the integral, and combining the new value with the previ-
ous value in a way which decreases the error. Since this
is a double integral over r and z, the integral over r had to
be evaluated to the desired accuracy for each subinterval
of z. Therefore, as the step size in z was decreased to im-
prove the accuracy of the integral over z, the number of
integrals over r which had to be evaluated also increased.
To reduce the amount of computer time needed to
achieve the desired accuracy, the reduction in step size
was combined with an extrapolation technique. The eval-
uation from each reduction in step size was stored. These
values were used to construct an interpolating polynorni-
al using Neville's algorithm' ' and the evaluation for
the integral with zero step size was extrapolated. If the
estimated error in this evaluation was not within an ac-
ceptable limit the step size was decreased, the integral
was reevaluated using the extended midpoint rule, the in-
terpolating polynomial was updated, and a new evalua-
tion for zero step size was extrapolated.

Using this procedure we calculated the values of H„
and H, at a number of points within the disk. For the
case of constant current density, we recovered the results
reported by Daeumling and Larbalestier. We then in-
vestigated the case of isotropic but field-dependent
current density using the Kim form, Eq. (2). Since the
field strength depends on the current density, which in
turn depends on the field strength, these equations were
solved iteratively. Furthermore, since the field strength
at any point depends on the current density throughout

the entire disk it was necessary to solve for the fields at
every point in the disk simultaneously. To do this we
started with either a current density chosen from experi-
ence or a constant current density. We chose a grid of
points within the volume of the disk, and using the initial
current density we integrated Eqs. (10) and (11) for each
point on the grid. The current density throughout the
disk was then calculated from the fields using Eq. (2) and
used to calculate the new values of the fields. This pro-
cedure was continued until a self-consistent solution was
reached for each point, simultaneously. In the course of
integrating H„and H, it was necessary to determine the
values of the current density at points which were not on
the grid. Since it was necessary to interpolate in two di-
mensions, thus potentially adding a significant amount of
error, and since the current density often changed rapid-
ly, we used an interpolating polynomial to find the
current density at a specific point. Again employing
Neville's algorithm we used 3 to 5 points to interpolate
the values of the current density at a series of 3 to 5
values of z, for a specific r. We then interpolated between
these values to find the current density at the desired
point.

Several factors affected convergence. In addition to
the usual problems, including divergence, oscillations,
and chaotic behavior, that one can encounter when solv-
ing an iterative problem, there were the added problems
caused by the nature of the equations. H„and H, are
both dependent on J, which in turn depends on both H,
and H, . This makes H, and H, indirectly dependent on
each other. Because of this interdependency any error in
either H„or H, affected the evaluation of both in the next
iteration. At any point in the calculation H„ for in-
stance, may be converging. However, the error in H„
even though it is decreasing, may cause the error in H, to
increase. Eventually the error in H, will affect H„and
cause it to move away from its correct solution. For this
reason it was necessary to closely monitor the progress of
the calculation to make sure it was actually moving to-
ward a solution. Another serious complication was the
propagation of these errors. This comes from the fact
that H, and H, at any point are calculated by integrating
Eqs. (10) and (11) over the volume of the disk. Therefore
an error in the field strength at any point will cause an er-
ror in the calculation of the fields at every point. Because
of this the degree of accuracy to which we held the in-
tegration had a strong affect on convergence. Increasing
the amount of error allowed in the integration greatly in-
creased the problems of getting the calculation to con-
verge, while decreasing the amount of error allowed
greatly increased the time necessary to complete an itera-
tion. We found that a good compromise was to hold the
error in the integration to within 10 . Another factor
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which affected the convergence was the number of points
within the disk at which the fields were calculated. In-
creasing the number of points obviously increased the
amount of time required to complete each iteration, but
decreasing the number of points often increased the num-
ber of iterations necessary to reach convergence. There
are several possible reasons for this, the most obvious be-
ing that the current density often changed less rapidly
from point to point as these points were moved closer.
With a smoother change interpolation between points
was more accurate leading to a more accurate integrand
from Eqs. (10) and (11), which in turn lead to a more ac-
curate evaluation of H„and H, at every point. We were
not able to find a specific number of points which opti-
mized efFiciency. For each new set of parameters it was
necessary to start with a guess and based on experience
increase or decrease the number of points according to
how the calculation was progressing. We generally used
between 2000 and 7000 points. To accelerate conver-
gence we also used several techniques including the
weighted averaging of data from previous iterations, the
selective averaging of data within an iteration, and the
smoothing of data over a carefully chosen number of
points.

As a final word on convergence, we briefly point out
that there is nothing in the equations which guarantees a
unique mathematical solution. All we can demand with
our iterative method is a current density which repro-
duces itself via Eqs. (2), (10), and (11). While we believe
there is only one physically correct solution, there may be
multiple current densities which satisfy the purely
mathematical requirement. To increase the likelihood
that we had arrived at a correct solution we repeated the
calculation using a different current density or a greater
number of points.

An example is shown in Fig. 2(a), where the radial field
at the surface and the axial field at the midplane are
shown as a function of normalized radial position r for
the case ho =Ho/&aD =—0.5, and for two different
values of radius ro —=R/D =5 and 15. There remains a
small amount of scatter in the curve of H, for R /D=15
even though the solution was stable. We found that the
larger values of R /D required the calculation of a greater
number of points to get a smooth curve. In the calcula-
tion for this curve we used 6480 points. Our experience
with the calculations at smaller radii showed that increas-
ing the number of points smoothed out the curve without
significant shifts in its position. Since the calculation al-
ready involved considerable computer time, we did not
increase the number of points any further in the
8 /D=15 case of Fig. 2 because it was not likely to pro-
duce significantly new information.

The results are qualitatively similar to those of
Daeumling and Larbalestier for the simple case of con-
stant J„and also to those of Frankel, who used the Kim
form for J, but showed results only for the axial field at
the surface. The most remarkable feature of Fig. 2 is in
fact the size of the radial field at the surface. Since by
symmetry the radial field is zero at the midplane and
changes sign at the bottom surface, the values of H, in
Fig. 2(a) indicate a large gradient dH„/dz through the
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FIG. 2. The radial (H„} and axial (H, ) fields with a field

dependent current density J=a/(Ho+H), for ho =0.5 [normal-
ized units, ho =H /(aoD)'~ ]. The dashed lines show data for a
disk with ro =R /D =5, the plus signs show data for a disk with
7 o

= 15. (a} Shows the radial dependence of these fields, from
the center of the disk to the edge. H, was calculated in the
center plane of the disk, H, was calculated at the surface. (b}
Shows the axial dependence of the fields from the bottom to the

top of the disk, at a position of one-half the maximum radius of
the disk.

thickness of the disk, which is only weakly dependent on
radius except at the very center and outer edge, and
which does not depend strongly on the outside radius R.
This is confirmed in Fig. 2(b), which shows both the radi-
al and axial fields through the thickness of the disk, at a
radial position of one-half the full radius of the disk.

Figure 2(b) also shows that the axial field is roughly
constant through the thickness of the film, while Fig. 2(a)
exhibits a gradient of H, along the radius. The strength
of this gradient can be estimated from the tangent to the
H, (r) curve at the middle of the figure. It is reduced
from the vertical gradient by a ratio of order D/R, just as
in the case of constant J, .

Further insight comes from the contour plot of the
critical current density distribution through a cross sec-
tion of the disk, shown in Fig. 3. This calculation is for
the case of the Kim form for J,(H) with ho=0. 5 and
R/D=5. The J, contours run in steps of 0.05 from 0.6
near the center of the disk (r=0 in the figure) up to 2 at a
peak in the midplane near the outer edge (the critical
current density is normalized by V a/D ). The reason for
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FIG. 3. Contour plot of current distribution in a cross sec-
tion of one-half of a disk, for the case of a Kim field-dependent
critical current density with ho =0.5. In this plot r =0
represents the center of the disk, r/D=5 the outside edge. The
contours, in units of &a/D, run in steps of 0.05 from 0.6 at the
center to almost 2 at the peak near the outside edge. The peak
in current density is related to the zero crossing in both H, and

H„at the midplane near the outer edge, as shown in Fig. 2.

the peak is that at this point, both H, and H„are zero, as
shown in Fig. 2, and so J, in Eq. (2) has a maximum.
Some irregularity in the contours comes in part from the
coarseness of the grid used in making this plot.

The similarities of the above results with previous cal-
culations ' dictate similar conclusions: the dominant
gradient which sustains the critical current density ac-
cording to Maxwell's equation (3) is not dH, /dr, as con-
ventionally assumed, but is dH„/dz, and it dominates in
proportion to the ration R /D, which can be very large in
a film or a crystal platelet. This means that the vortex
lines are strongly curved and the critical state gradient is
predominantly through the thickness of the disk. The
main difference from the case of constant J, is in the ab-
solute value of the gradient. Rather than dH„/dz equal-
ing J„we find it to be reduced in our case well below the
low-field limit J,—+o./Ho, evidently because of self-fields
which exceed Ho and therefore lower J, in Eq. 2.

Finally, the magnetization was calculated by integrat-
ing the magnetic moment ~a I of a current loop over the
entire volume of the disk, and dividing by the volume.
For a particular a and z we calculated I from an interpo-
lated value of H, after the final iteration. In these calcu-
lations we explored a range of values of normalized ra-
dius ro ——R /D =2 to 200, and normalized field
A o =Ho /&nD from 0.1 to 2.

Results are shown in Fig. l for the case ho =1 and are
compared to the predictions of the "conventional" or
"dH, /dr" model of Sec. II. The calculated magnetiza-
tions, represented by the circles, lie substantially above
the earlier model and form a rather straight line as a
function of radius. Clearly the line cannot extrapolate
precisely through the origin, because in the limit of small
radius, where the limit of a thin cylinder is approached,
the conventional model becomes valid and the slope ap-
proaches Eq. (1), which in the normalized units of the

FIG. 4. A magnetization-vs-radius slope reduction factor
(circles from calculated slopes as in Fig. 1) as a function of the
normalized Kim parameter ho=HO/(aD)' . The solid line
represents Eq. (13), the normalized current density calculated
from Maxwell's equation using only the dH, /dz term.

figure is just x/3. Nevertheless this is only a small
correction. The straight-line slopes determined from two
nonzero data points from the numerical calculations for
different values of ho are summarized as circles in Fig. 4.

IV. DISCUSSION

The discovery that the calculated magnetization de-
pends approximately linearly on radius is the main result
of this paper. This is to be contrasted to the conventional
model with a field-dependent current density, where the
magnetization depends on radius in a much more non-
linear way. The underlying reason for the new result is
that the critical state gradient develops predominantly
through the thickness rather than along the radius of the
disk. These observations may help explain those experi-
mental results ' ' where radius linearity is found along
with a strongly field-dependent J, .

There remains the question of what determines the
linear slope, which lies below that predicted in the simple
Bean formula of Eq. (1) [we are assuming here that J, o is
taken to be the low-field limit of Eq. (2), namely, a/Ho].
It would be desirable to have an analytical formula to
permit extracting the critical current density from mea-
surements of the remanent moment without an elaborate
numerical calculation. The similarity of Fig. 2 to the ear-
lier calculation of Daeumling and Larbalestier suggests a
simple interpretation of our results and an approach to
the problem of deriving an analytical formula. The key
notion is that since the critical state gradient is oriented
predominantly through the thickness of the disk, and
since the thickness is small, one can average the current
through the thickness of the disk, and that this averaged
current, uniform along most of the radius, is sufhcient to
determine the main features of the field distribution. Fig-
ure 3 shows that except for the current density peak near
the outer edge, the distribution is sufficiently uniform to
make this a reasonable starting approximation.

To perform this calculation we ignore the dH, /dr term
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J, ,„=2&a/D (+ho+ I —ho), (12)

with ho =Ho/VaD as before. Since this averaged
current density is roughly uniform with radius, the mag-
netization becomes just Eq. (1), but with J, replaced by
J„„.With J, o—=a/Ho we can derive the slope reduction
factor

of Maxwell's equation (3) (this is the opposite limit to that
in Sec. II), which should be accurate to order D/R ac-
cording to our calculations. Thus we can integrate for
the thickness dependence of the radial field H„obtaining
an equation exactly like Eq. (4), with (R r) r—eplaced by z
measured from the surface. Inserting this result into the
Kim form Eq. (2) for the field-dependent current density
and integrating over thickness, we obtain the averaged
current density

above a characteristic value ho ——1, which corresponds to
the condition HO= J, OD. The interpretation is that as
soon as HD is larger than the self-fields J, OD generated by
Maxwell's equation and the critical state through the
thickness of the disk, the current density of Eq. (3) be-
comes field independent, and so the reduction factor of
Eq. (13) approaches 1. The formula is valid only in the
regime x ) 1 in Fig. 1, where x is the normahzed radius
of Eq. (8). This is equivalent to the condition J, OR )Ho.

In summary, Eq. (13) should give a simple correction
for future determinations of critical current density from
the Bean model and the zero-field remanent moment.
Further calculations are clearly of interest to study the
applied field dependence of the remanent moment and
also the anisotropy in the critical currents, both of which
have been ignored here. These are planned to be ad-
dressed in future work.

J, ,„/J, O=2ho(+ho+I —ho) . (13)
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