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We present a method of formulating the multiband-envelope-function equations for a quantum

structure whose internal interfaces are perpendicular planes. The method can be used for quantum

wells, quantum wires, or quantum dots (one-, two-, or three-dimensional confinement of the elec-

tronic wave function), as well as for periodic repetitions (superlattices) of these elementary struc-

tures. The technique used is expansion of the multiband envelope functions in a Fourier series for

each of the coordinates x, y, and z. Special attention is paid to formulating interface-matching con-

ditions that impose Hermiticity on the resulting systems of equations. This demand leads to the

usual condition that the normal component of the current must be continuous across each internal

interface. The method we have devised is similar to the one used by Altarelli for the quantum-well

problem in that it leads to a secular equation that is solved by diagonalizing an energy-independent

matrix. It diA'ers in that here, the envelope functions are expanded in smooth continuous functions

using the same expansion coefficients in all regions of the structure. Using this method, one can

now calculate the optical absorption, its frequency, and polarization dependence, with the same

amount of detail that has previously been possible on1y for confinement in one dimension, namely,

in the quantum well and one-dimensional superlattice.

I. INTRQDUCTIQN

Recent advances in semiconductor technology have
made it possible to produce structures in which carriers
are confined to one, two, or three dimensions in regions
smaller than their mean free path. Properties of the car-
riers in such systems are probed by mainly using optical
techniques. It is clearly of utmost importance to be able
to calculate the electronic band structure and wave func-
tions in such structures so as to make a comparison with
the experiments.

There already exists extensive literature on how to do
this for systems having one-dimensional confinement
(quantum wells and superlattices). The need to extend
this to higher dimensions is obvious. Three recent papers
have made starts in this direction. In the first, Gershoni
et al. consider a quantum wire of rectangular geometry
in which the confining potential V(x,y) has one value in
the confining region and other values in the outer regions.
They used a one-band effective-mass model to describe
the wave function.

In the second, Citrin and Chang used a multiband-
envelope-function wave function (valence bands only) to
calculate properties of structures much like those studied
by Gershoni et al. They simplified the problem by tak-
ing certain material parameters to be uniform throughout
the entire structure. This bypassed the need for incor-
porating slope discontinuities of the envelope functions at
internal interfaces. There are certainly computational
advantages in doing this in cases where it is a good physi-
cal approximation. However, this approach leaves a gap
in understanding how to proceed when the momentum
matrix elements, for example, change from one region to
the next. [Note: A recent paper by Citrin and Chang

uses the effective-bond-orbital model (EBOM)—a tight-
binding approach in which the parameters are adjusted
so as to reproduce the infinite-medium envelope-function
approach —to overcome some of the shortcomings we
cited with the earlier Citrin and Chang method. The
EBOM method would seem to be a very useful and Aexi-
ble one for problems of the sort being considered here. ]

In the third paper, Sercel and Vahalla also used a
multiband-envelope-function formulation, but they let
the material properties be cylindrically symmetric or
spherically symmetric so as to produce two-dimensional
or three-dimensional confinement. The enormous
simplification this produces leads to analytic solutions
that will undoubtedly be extremely valuable. Still, in
many experimental situations, such as compositional
modulation of the semiconductor properties along one
direction with strain-induced modulation in an orthogo-
nal direction, cylindrical or spherical symmetry is not
useful as a simplifying assumption.

In this paper, we present a method for solving the mul-
tiband envelope functions in a one-, two-, or three-
dimensional checkerboard geometry; that is, where the
materials properties may change discontinuously across
perpendicular planes, with special attention being given
to the problem of matching functions at the boundaries.
The technique used is Fourier-series expansion of the en-
velope functions.

It is convenient to use the quantum wire as the model
for the derivation because the extension to three-
dimensional variation or to one-dimensional variation is
then trivial. Therefore, let us consider a three-
dimensional semiconductor structure, uniform in one
direction but composed of semiconductors whose proper-
ties, e.g. , alloy composition and/or strain, vary in such a
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where m is the effective mass, V is the potential, and
where, for the time being, we have ignored the spin de-
gree of freedom. Gershoni et al. ' expressed the envelope
function as a sum of eigenfunctions of the two-
dimensional Laplacian operator, and thereby converted
Eq. (1.1) into a matrix eigenvalue problem which was
solved numerically. Even though both the mass and the
potentia1 may vary discontinuously from one region of
the structure to another, this technique is valid, provided
that the matrix elements contain terms (integrals over 5
functions actually) that arise when the discontinuous
m (x,y) ' is differentiated.

In studies of optical processes in quantum wells, wires,
and dots (one-, two-, and three-dimensional confinement,
respectively) the one-band effective-mass approximation
is no 1onger adequate. One must instead consider a wave
function of the form

N

f(r)= g F (r)u (r) . (1.2)

The sum goes over the X bands closest to the fundamen-
tal gap. Here, u~(r) is the cell-periodic part of a zone-
center Bloch wave and F (r) is the corresponding en-
velope function. The envelope functions are now
governed by coupled differential equations and by inter-
face continuity conditions (about which more will be said
later). It is still possible to expand each envelope func-
tion as a sum of eigenfunctions of V . For the quantum-
wire case, that expansion can have the form

F (v)= g F, (m, n, p)P (x)g„(y)e'~'. (1.3)

In such a situation, we can insert (1.3) into the coupled
differential equations, make use of the interface boundary
or continuity conditions, and arrive at a matrix eigenval-
ue equation whose general form is

H,.k(m, n;m'n', p )Fk(m', n', p) =E(p)F, (m, n, p) .
k, m', n'

(1.4)

way as to produce two-dimensional confinement of the
electronic wave function. In the effective-mass approxi-
mation, the wave function is expressed as the product of
a slowly varying envelope function F(r) and the cell
periodic part of a zone-center Bloch wave u (r). One has
to solve a Schrodinger-like equation

r

1
V V+ V(x,y) E—F(r)=0,

2 m(x y)

exist many derivations of envelope-function boundary
conditions (several of which are completely unjustified)
and these several lead to more than one interface
prescription. We therefore studied the matching problem
from different points of view. We ultimately found that if
we insisted on boundary conditions which render the en-
ergy E real and the eigensolutions mutually orthogonal,
we were led directly to the matching conditions that a
majority of workers accept; namely, continuity of the
unit-cell average of the normal component of the current.
These are not the same boundary conditions that one ob-
tains by blindly integrating the envelope functions across
the interface unless those equations have first been put
into a form specifically designed to guarantee Hermitici-
ty. Not all workers have realized this and, for that
reason, some of the boundary conditions appearing in the
literature are simply wrong. Although our aim in under-
taking the study had been to manipulate the equations in
a mathematically rigorous way so as to obtain boundary
conditions without relying on the physically well-
motivated condition of current continuity, we failed to
achieve this aim. Instead, we were still forced to go
beyond the mathematics to the physics (namely, the
demand for real energy and orthogonality) in order to es-
tablish boundary conditions. Insofar as we are thereby
led back to the accepted interface condition, our under-
standing of interface matching has really not advanced
past the state that Altarelli described in 1986.

There already exists extensive literature on the
envelope-matching problem and related topics. We have
built on ideas already described in Refs. 7—23. Some of
the cited papers have pointed out problems with earlier
works. That literature is all accessible, and we shall not
review it here.

The contents of the present paper are as follows. In
Sec. II, we study a one-interface, spinless situation. In
Sec. III, we specialize the geometry to the quantum wire,
include spin, and obtain a prescription for constructing
the elements of the matrix H. In Sec. IV, we give a "poor
means derivation" of the results of Secs. II and III. This
derivation is much easier to follow and apply than that of
Secs. II and III but it contains steps whose onIy
justification is that they reproduce results which have
been obtained rigorously in the earlier sections. In the
last section, Sec. V, we give a brief discussion of the ad-
vantages and disadvantages of this approach. The work-
er interested only in practical results can skip directly to
Sec. IV, and from there, easily work out all the needed
formulas.

If the spin degree of freedom is now restored, the indices
j and k will be replaced by jo. and ko. ', respectively,
where o and cr' can separately take on the values I' and
J, , referring to the two components of the electronic spin.

The extension from the one-band efFective-mass situa-
tion to the multiband-envelope-function situation is a
straightforward one, or should have been once the proper
envelope-function interface-boundary continuity condi-
tions had been formulated. However, we encountered
difhculty on this point from the very outset, because there

II. A SIMPLE THREE-DIMENSIONAL CASK

Before going to the full detailed geometry of the
quantum-wire situation treated in Sec. III, we consider
the simplest three-dimensional case illustrated in Fig. 1.
There is an inner region where the three-dimensional po-
tential is that of semiconductor B. This is terminated by
a closed surface S. Beyond this, there is a region where
the potential is that of semiconductor A. That region in
turn is terminated by the closed outer surface So. We
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information beyond that available at the level of the
envelope-function approximation. Similarly, although
there could be a long-range band-bending potential
present, we ignore it also (it is simple to include it ' )

because our aim here is solely to study the discontinuities
at the surface S.

The wave function is expanded in two sets of envelope
functions, each multiplied by its associated zone-center
Bloch wave,

FIG. 1. Geometry used in the simplest three-dimensional sit-
uation where there is an inner region of semiconductor B sur-
rounded by an outer region of semiconductor A.

want to solve the Schrodinger equation

Hl((r)=[P /2m+ V(r) jg(r)=EN(v)

within the entire region bounded by So, subject to bound-
ary conditions applied to P along So. We shall specify
these outer boundary conditions later.

Representing the potential V(r) as

V(r)= V (r), r in A

V(r)= V (r), r in B,
where V and V are the perfect periodic potentials of
crystals A or B is clearly an approximation. It neglects
the change in potential caused by electronic reconstruc-
tion at the interface. However, numerical studies have
shown this potential difference to be small for the situa-
tions of interest here, and we ignore it, both because of
its small size and also because including it would require

P(r)= g FJ (r)u& (r), r in B
j=1

where the Bloch waves are those appropriate to the
infinite crystal A or B. Using such a composite represen-
tation (a functional expansion of one form in one region
and another form in the other), the task of solving the
Schrodinger equation comes down to obtaining equations
for the envelope functions in each region separately, ob-
taining connection formulas to join the solutions in the
two regions, and satisfying the outer boundary condi-
tions. As we mentioned in the Introduction, we have not
succeeded in formulating rigorous continuity-of-slope or
continuity-of-wave-function conditions to be applied at
the surface S. We have found instead that we can satisfy
the boundary conditions that result from requiring Her-
miticity of the equation set. We shall exhibit conditions
that can be applied to the envelope functions F (r) to en-
sure that two solutions are orthogonal to each other and
that their energies are real. This orthogonality and reali-
ty will guarantee Hermiticity.

We first obtain the coupled differential equations that
the envelope functions satisfy in each region separately.
By replacing k„with 1/i (8/Bx„) in the standard deriva-
tion of the k.p equations, we get

7' +E, EF (r)+ . —g gp, k(p) FP(r) QQD—lk(p, v) FP(r)=0, (2.1)

where o.= 3 or 8 and where

(2.2)

Therefore, any component of D (pk, v) that is odd under
interchange of p and v will not contribute to the sum in
(2.1) and it is useful to replace D (pk, v) by its sym-
metrized form

and

p k(p)= u (r)*— uP(r)d r .1

C c l BXp
(2.3)

Bx Bx Bx Bx

Eo is some fixed energy near the middle of the energy
range of interest.

Notice that

D&7 (p, v)~ ,' IDJI, (p, v)+D, „(v—,p, )]

p,„(p)p„k(v)+p, „(v)p„k(p)
m (Eo E„)—(2.4)

We now apply a standard method for demonstrating
orthogonality of two solutions to the equations: Let
F (z) be the solution of (2.1) with energy E =El. Set
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E =E, . Let G~ (z) be the solution at E =E2. Multiply
(2.1) by G (z)*, and sum on j. Then repeat the procedure
for Eq. (2.1) at E =E2 [so that the envelope functions are
Gp(r)], multiply by F (r)*, and sum over j. Take the

complex conjugate of this latter equation set. Subtract
the two equation sets from each other, integrate over re-
gions 3 and 8 separately and add the two integrals. The
result can be arranged as

g f d r[G (r)*V F (r) .F(r—)V G (r)*]
J

+ . g f d r p&&(p) G& (r)" Fk (p')+Fk (r) G (r)*3 ~ o ~ ~ a
EfPl k Q +g J J ()X

J~ kip

f d r D ~(p, v) G (r)* Fk(r) Fk(r) — G (r)
8

J) k, p, v

=(E, E2)g—f d rG (r)*F (v).
J

(2.5)

All the terms on the left-hand side (lhs) can be integrated exactly, in the sense that they can be expressed as integrals
over the surfaces S and So rather than as volume terms over the regions 2 and B. For the first-order term, we have

f p~~(p) G& (r)* FP(r)+Fk(v) G~ (r)* d r= g gp.k. f V'G (v)*FP(v)d r
lfPl .

k A+BJ, k, p ax„ BXpp p 0'= c4, B J, k

g p k f G (r)*F1,(r)n dS .
o.= A, B j,k

(2.6a)

(2.6b)

In (2.6a), the volume integral extends over the interior of the region o. In (2.6b), which follows from (2.6a) via use of
Gauss s theorem, the surface integral is over the surface S bounding region 0.. n is a unit vector, normal to the sur-
face, and directed outward from region o.. Thus, there will be an integral over So, the surface bounding region 2, and
two integrals over the surface S, one because S is the inner surface for region A, the other because S is the outer surface
for region B.

For the second-order terms, we note that

a „a a „,a a a a „ag* af af ag*
ax„ ax, ax„ ax, ax. ax„ ax.

+
ax„ ax, ax„ ax.g + (2.7)

The term in large parentheses on the rhs is antisymmetric
with respect to the interchange p+-+v. Therefore, when
we multiply by D,k (p, v) (which is symmetric with
respect to the interchange p~v) this term drops out,
leaving

using Gauss's theorem now gives

QD „(p,v) f d r g* f f g*—8

P, V

XD (V v) g*a a f fa—
Bxp Bx Bxp Bx

=g D~q(v). f g* f f g* n dS—
V V

L

or, expressing 0 and n in terms of components,

(2.8)f fa—
P~V (2.10)=+D k(p, v) f g* f f g* n„dS . —c3

pqV 0 V V

On the rhs we can write

QDk(p, v) =D,„(v) V,
BXp

(2.9)

~e have thus converted the lhs of Eq. (2.5) into a sum
of surface integrals

g f Q„(r)n„dS,
o=A, B p

where D k(v) is a vector whose pth component is
D~~(p, v). Integrating over the interior of region cr, and where, referring back to (2.5),
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, a . . aQ„(r)=— g G, (r)* F (r) F—, (r) G (r)* + . Qp, k(p)G, (r)*Fk(r)
p j, k

g2
g D i, (p, , v) G& (r)*. Fi, (r) Fi—, (r) Gj (r)*

Bx~
(2.11)

We define vectors SJ (r) and TJ (r) by

S (r) —= VFJ (r)+ —g p kFk (r)+ g D~& VFk (r),
k k

(2.12a)

T (r)=VG (r)+ —g p kGi, (r)+ QD~g. VGk(r) .

(2.12b)

This allows us to write

Q (r)= — g [G~ (r)*SJ(r)—E~ (r)T)(r)*] . (2.13)

We refer to S (r) and T (r) as envelope gradients of
FJ (r) and G (r), respectively.

Equation (2.5) now becomes

(Ei E2 ) g f— d r G) (r)*F (r)

This gives rise to two conditions. The first is that the in-
tegral over the outer surface So vanishes,

f Q"(ro) ndSO=O.
0

(2.16)

The second is that the normal component of A is con-
tinuous across the inner interface, i.e., that for r on the
surface S,

[Q"(r)—Q (r)] n=0 .

= g f Q (r) n dS (2.14)
o

and the condition that the solutions be orthogonal is

g f Q (r).ndS =0 . (2.15)

These boundary continuity conditions must hold for solu-
tions at any energy. Therefore, the solution at E2 must
also satisfy the same condition, namely,

G,"(r)=G (r), on S,
T"(r) n=TJ(r). n .

(2.19c)

(2.19d)

If (2.19) is satisfied, then (2.17) will be true.
In order to demonstrate that the energy E, is real, one

can repeat the derivation just given with Ei, F (r), and
SJ (r) replacing E2, G (r), and T (r), respectively. Equa-
tion (2.14) then can be solved for ImE„which can be
shown to vanish if (2.15) holds true. A somewhat tedious
evaluation of the current J(r) averaged over a unit cell in
region o., and dropping higher-order terms, gives

J = Im g F, (r)*s~ (r)
J

(2.20)

which means that (2.19) also gives continuity of the nor-
mal component of the (cell-averaged) current at the inter-
nal interface.

On comparing (2.20) with the formal expression for the
current in terms of the full wave function

J (r) = 1m[ g(r)*V/(r) ],
m

III. DERIVATION OF THE EXPRESSIONS
FOR THE MATRIX ELEMENTS

one notes that if F (r) plays the role of the wave function
in envelope-function space then S& (r), its envelope gra-
dient, plays the role of the spatial gradient in this same
envelope-function space.

A number of familiar boundary conditions satisfy
(2.16). If the solutions all vanish on the outer surface,
i.e., if

F"(ro)=0, ro on So, (2.18)

or if the surface is one for which periodic boundary con-
ditions can be applied, or if solutions vanish over part of
So and are periodic over other parts, then (2.16) will be
satisfied. In order to satisfy (2.17), we can make each en-
velope function F (r) and each normal component of the
envelope gradient continuous across the surface S

x &&x &x, m=1, 2, . . . , Mz, (3.1a)

We now specialize to the quantum-wire geometry used
by Gershoni et al. The system is uniform in the z direc-
tion, but its properties in the x,y plane are piecewise con-
stant. Boundaries between di6'erent regions in the plane
are straight lines parallel to either the x or to the y axis,
as shown in Fig. 2. A particular region o covers the inte-
rior of the region defined by

F4(r)=F (r), r on S,
S4(r) n=S (r) n, r on S .

(2.19a)

(2.19b)

y„& &y &y„, n =1,2, . . . , && . (3.1b)

Within each region cr, the envelope functions F (r)
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confinement of the wave function will prevent it from
reaching them. Alternatively, these equations describe
the k& state of superlattices in one or two dimensions if
the wave functions do reach the outer boundaries. (There
is a simple way to study the superlattice dispersion, but
we shall defer that until Sec. V.) The periodicity condi-
tion forces us to equate material constants in the regions
adjacent to the outer boundary so that there is no discon-
tinuity across them. We also impose periodic boundary
conditions at 0 and Z, where Z is aribtrary. These
boundary conditions ensure that (2.16) is satisfied.

For the internal interface conditions, we take (2.19a)
and (2.19b). Because the free-electron kinetic energy is
now incorporated into D,k, the definition (2.12a) is now
altered to

0 x, Si (r) —= —g pjkFk (r)+ g Djk VFk (r) .
k k

(3.4)

FIG. 2. Geometry used in the quantum-wire problem. The
system is uniform in the z direction but composed of rectangu-
lar regions where the materials properties are independent of
position within a region but may change discontinuously be-
tween regions.

satisfy the following set of coupled differential equations:

2mimx /X'

(y ) Q I /Pe 2vrinJ'/r

( )
—i/ I /Z 2miPz/z'

p

(3.5a)

(3.5b)

(3.5c)

The system is finite in all three directions. It extends
over O~x &X, O~y & Y, and 0&z &Z. Let

+ V k
—E5.k Fk (r) =0 . (3.2)

These functions are mutually orthonormal and they satis-
fy the outer boundary condition (2.16). We expand the
envelope function as

F (r)= gggF ( mn, p)P (x)it/ (y)E (z)
m n p

The second-order constants D~k now contain a 5Jk 5p
contribution [which gives rise to the (fi /2mo—)V 6/k
term of Eq. (2.1)j, plus terms like (2.4), the Kane parame-
ters for the material. ' The matrix D k(lj„v) is real and
dimensionless. In addition, it is symmetric with respect
to index interchanges j~k and p+ v separately.

When dealing with systems for which spin-orbit cou-
pling in the valence band is important, one has a choice
of whether to use ~x7), ~yl), . . . , ~z1) zone-center
Bloch waves, or instead to use the linear combinations
which diagonalize the spin-orbit interaction at I . In the
present problem, there is no advantage in first diagonaliz-
ing the spin-orbit interaction, and it will be simplest to
use the ~x 1 ), . . . ~z 1 ) basis.

The matrices p k(p) are momentum matrix elements.
They are pure imaginary and Hermitian. We neglect
strain for now. The matrix V& then consists of two
terms,

&jk =E~ ~,k+~,~ . (3.3)

EJ is the band-edge energy and 6 k is the k-independent
part of the spin-orbit coupling.

Equation (3.2) has to be supplemented by outer bound-
ary conditions plus internal interface-matching condi-
tions. For the outer boundary conditions, we take the en-
velope functions to be periodic on the four outer bound-
ary planes parallel to the z axis, with the intention of lo-
cating these planes far enough out that two-dimensional

=QF/(a)8 (r),
where

8 (r)—:iI) (x)g„(y)Ep(z),

a=—(m, n, p) .

(3.6b)

(3.6c)

(3.6d)

Notice that there is no region index o on F (a): We
use the same expansion coefFicients in every region o..
This will automatically satisfy the envelope-function con-
tinuity condition (2.19a) because the expansion functions
8 (r) are themselves continuous. It fails to satisfy the
slope discontinuity condition (2.19b) at the interface be-
cause the functions 8 (r) have gradients that are continu-
ous. This causes no problem, because it is well known
how expansions of the general form (3.4) converge in the
case of functions having a finite number of finite discon-
tinuities or, as is the case here, continuous functions hav-
ing a finite number of slope discontinuities. The only
caution we must observe is not to differentiate the series,
because each derivative worsens or destroys its conver-
gence. Accordingly, we may obtain equations govern-
ing the F (a) by multiplying (3.2) by 8 (r), integrating
over each region o. , and then, before summing over all re-
gions o., applying Gauss's theorem or Green's theorem so
that the derivatives all work on 8 (r)*, not on F (r). It is
this step that introduces spect'fically interface terms into
the matrix elements.

For the first step, integration over a single region o., we
obtain
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gf d r0 (r)* QDJI, (p, v) + —.g p,„(p, ) + V;, E—6,„F„(r)a a x . a

P, V P V p

= g f d'r Fk (r) — QD,k(p, v)

+g f QJ„(r, )n„dS =0 .
p Cr

h——.g p,~(p) + V,„E—5,„0(r)*
l

(3.7)

Here, S is the surface surrounding the region cr, r, is a position on the surface, and n is the outer directed normal to
the surface. The integrand is defined as

g2
&,„(r)= QD, I, (p, v) 0 (r)* FP(r) Fk(r—) 0*(r) + . g0 (r)*p,k(p)Fk(r) . (3.8)

lmo

A part of (3.8) will be continuous across the interface and
a part will be discontinuous. The normal component of
the vector S.(r) given by Eq. (3.4) and Fk (r) are continu-
ous. For that reason, we rewrite (3.8) as

S, = g f ndS. — 0*(r, )S (r, )
C7 2mo

+g U~q (r, )Fk(r, )

k

(3.11)

$2
QJ (r)= — 0 (r)*S (r)+ QFk(r)U k (r),

0 k

(3.9)

where

+ . pjk0 (r)
2m o 2imo

(3.10)

~e now sum (3.6) over all regions cr The su. m over all
the surface terms is

There is no contribution to S from the outer boundary
planes because 0 (r)* and F&(r) are periodic. Each inter-
nal plane is integrated over twice, once as a boundary of
the region o' on its left, and again as boundary of the re-
gion o. on its right. Because of the reversal of n on these
two integrations, one is left with integrating the discon-
tinuity of n.0 over the boundary. The functions 0* are
continuous. The functions F and n-S are continuous
because of our interface conditions (2.19). Thus (3.11)
picks up only the contribution from the interface discon-
tinuity of n-U k.

We now evaluate. Let S ~ be the particular interface
plane separating two adjacent regions o. ' and o.. Let n be
normal to that interface, pointing from o. ' to o.. Then
(3.11) equals the following sum over internal interfaces
only:

f2
g g g f dS Fk(r, )n&[D&a(p, v) D&k(p, v)]

&

—0 (r, )*
o'o k p v V

+ .
" y yy f dSFk(r, )n~[pjk'(p) p~&(p, )]0.(r, )*—.

67, 0 k p

(3.12)

a 1 - a - a
np p

(3.13)

Because of the symmetry D(p, v)=D (v, p), the antisym-
metric part of n„Bx will not contribute, and so we make
the replacement

and we use

0 (r, )*= iKp0 (r, )*,—a
az

E =2~p/Z .

(3.15a)

(3.15b)

in (3.12). At this point, we can now insert

Fk(r) = g g g F (mk', ',np)P (x)P„(y)e, (~)
m' n' p'

(3.14)

The z integral gives 5 . What remains is

S' = g g S,„(m, n;m', n', K~)Fk(m', n', p),
k m', n'

where

(3.16a)



G. A. BARAFF AND D. GERSHONI 43

g2
S&(m, n;m', n', K )= g g dSP .P„,

~
~[Dk(p, v) D—,k(p&v)j —n„—n„ (x)"P„(y)*

+ . X X f, dS4 (xW. (y)lpk(V) p—,~(l )]jn„0 (x)*0.(y)*.
2ltPZ p

(3.16b)

Next, we consider the volume integrals appearing in (3.7). We substitute (3.14) and get

', ',p') f d" y. ( )q„(y)., (.)
o k m' n' p'

XD;k(V v)
&

p)q(p) ~
+ Vjk $~(x)|l'„*(y)e~(z)

imp „' BX„

= g g g gB I, (m, n;m', n', K )FI, (m', n', p), (3.17)
o. k m' n'

where

B &(m, n;m', n', Kz)= f dx dy P' (x)g, (y)
a

22top Bx Bx
+l;I, 4*(x)4.*(y)

l &l p BXp

(3.18a)

and where

a =—iK
Bz

Finally for the term in (3.6) that is proportional to E, we get

g g g QFk(m', n', p')E5,.kg f d rP,„( )xg„(y) E(z)P (x)g„(y)e (z)*=EF,(m, n, p) . .

k m' n' p' CT

(3.18b)

(3.19)

where

=E(K„)F,(m, n,p), (3.20)

Hk(m, n;m', n', K )=+Bk(m, n;m', n', K )

+SI, (m, n;m', n', K ) . (3.21)

The sum of the bulk terms B is over all regions o. . The
interface term 8 k, which arose because of discontinuities
in slope of the envelope functions, is a sum over all inter-
nal interfaces.

IV. AN ALTERNATIVE DERIVATION

We have just given a road map of what has to
be done to calculate the matrix elements
H k (m, n; m ', n ', K ) and an explanation of why it has to
be done that way. The derivation, burdened with multi-
ple subscripts and summations, is difficult to follow. In
this section, we present a derivation that is simpler and
more intuitive. It will involve operations that are heuris-
tic and, apparently, without sufficiently strong

because the integral now extends over the volume on
which the functions are orthogonal. By this means, we
have obtained a matrix eigenvalue equation of the form

g g g H~I, (m, n;m', n', K~ )Fk(m', n', p)
k m' n'

pk( )

Dk(r) Dk, r in o

(4. la)

(4.1b)

The (infinitely) rapid change at the boundaries of each re-
gion o. is not compatible with the assumption (slowly
changing parameters) on which the envelope-function ap-
proximation is based. Third, we will expand the envelope
functions in the Fourier series (3.5) and (3.6) and
differentiate that series, knowing that the resulting first
derivatives converge to the wrong value at the interfaces
and that the second derivatives do not converge there at
all. The equations derived in this way cannot be valid at
the internal interfaces, yet we are going to integrate these
equations across the interfaces and obtain interface-
matching conditions thereby.

The justification for all of this lies in the first step, our
choice of how the materials parameters are placed rela-

justification. First, we will treat the materials parameters

p k and D k as though they were smooth differentiable
functions of position, and then we will place them in

front of, behind, or between partial differential operators
in a way that is seemingly arbitrary. The placements we

will choose do make the Hamiltonian Hermitian, but
there are several different placements we could have
chosen to produce a Hermitian Hamiltonian. Second, we

will let the r dependence in the material parameters be
such that they become piecewise constant:
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tive to the partial differential operators. We make this
choice in such a way that, when the succeeding
(unjustified) operations are carried out, the result will be
equivalent to what we have already obtained using the
correct (but complicated) derivation presented in Secs. II
and III. By this means we offer a prescription for con-
structing the matrix elements H k that is both easy to fol-
low and (from the point of view of the result) is correct.

Specifically, let us consider an eight-band model, in
which the basis states (the zone-center Bloch waves) are

Ix 1' &, ly 1 &, lz 1 & and their time reversed conju-
gates, Is 1 ), x1), ly J, ), z$ ). This basis set is said to be
a Kramers basis (an even number of basis functions with
each function in the second half of the basis being the
time-reverse conjugate of the corresponding function in
the first half. ) In such a basis, the matrix of any time-
reversal-invariant operator H can be written as

H=
6 r

—I G
(4.2a)

or, if the matrix is k dependent, as

G(k) I(k)
—I *(—k) Ci*( —k) (4.2b)

Cx =Cx)+ 62+G„,
where

(4.3a)

where G and T are both square matrices. (In the actual
matrix we will use, I" will turn out to be independent of
k. ) The k.p Hamiltonian used in the usual envelope-
function-equation set is time-reversal invariant. Its ele-
ments therefore have the form (4.2). The matrix Cy can
be written as

E, iPk iPk iPk,
—iPk„E,
—iPk 0

0 0
(4.3b)

—iPk, 0 0 E,

Xk k

Xk„k,Bk k

Bk,k,

Bk k, L'k +M(k +k, )

Bk,k.

Bk.k,

1Vk„k

L'k +M(k +k )

Bk.k„

Xk„k,

Ãk, k,
L'k +M(k +k '

(4.3c)

and

0 0 0 0
0 0 i 0

3 0 —i 0 0
0 0 0 0

(4.3d)

1P —+ —P + P
Bx 2 Bx c)x

a a 1 a a a a

axp ax 2 axp ax ax ax

where

(4.4b)

(4.4c)

The matrix I is Q=A', B, L', M, and%. (4.4d)

0 0 0 0
0 0 0 —1

3 0 0 0
0 1 —) 0

(4.3e)

The parameters P, 3 ', B, L', M, and % are real numbers,
and are defined in Kane's article. 6 is the spin-orbit-
splitting parameter and E, and E, are the band-edge en-
ergies in the absence of spin-orbit coupling.

The operator (4.2) is converted into a diff'erential
operator via the replacement

lkp ~B/Bxp (4.4a)

and all of the parameters are considered as functions of
position. The partials and parameters are then sym-
metrized according to the scheme

The 8 X 8 matrix obtained in this way has elements that
we denote as H.i, (r, V) and the Schrodinger equation to
be solved is

8

H A. (r, V )Fi, (r) =EF (r) .
k=1

(4.5)

We insert the expansion (3.14) and (3.15) here, multiply
by P* (x)g„*(y)E*(z)and integrate over the orthogonality
region implied by (3.5). The result is equations of the
form (3.20) and (3.21). This time, however, the surface
terms arise as integrals over the 5 functions that appear
when the discontinuous parameters 2 ', . . . , % are
differentiated. All of the matrix elements can be evalu-
ated analytically. In the problem formulated in this
manner, there is no need for any numerical integrations.

There are two useful checks on the numerical work in
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setting up the matrix H. The first is that the matrix II ix
Hermitian:

Hk(m, n;m', n', K )=HI, (m', n', m, n, K )* . (4.6)

The second is that the matrix, expressed in a Kramers
basis, has the form appropriate to a time-reversal-
invariant operator. That is, in analogy with (4.2), we will
now have

G(K~ ) I"

—I* G*( —K )
(4.7)

k„=ga„k,' (4.8)

and then substitute (4.8) into (4.3b) and (4.3c). At this
point, one can drop the primes from both k„' and x „' and
simply repeat all of the steps following Eq. (4.3).

The derivation to this point has neglected strain. In
those regions o where strain is present, the 8X8 Hamil-
tonian described by Eqs. (4.2) and (4.3) acquires extra
terms proportional to strain. The extra terms can be ob-
tained by repeating the original derivation given by Pikus
and Bjr usjng Kane's foi maljsm. Thjs has been
cently done by Bahder. His results are in exactly the
right form to be incorporated into (4.2) and (4.3). In par-
ticular, note that Bahder calls attention to the fact that
P~P(1+a) when strain in present, something clearly in-
dicated in the Pikus and Bir derivation but apparently ig-
nored by subsequent workers, probably because c. ((1 in
any practical situation. Optical transitions in a quantum
wire produced in part by strain confinement have recent-
ly been studied by G-ershoni et al.

In (4.7), we have written the matrices as though j, m, and
n were the first index and k, m', and n.

' were the second.
In constructing the Kramers basis, we use the fact that
s L ), ~x l ), ~y l ), and ~z J, ) are the time-reverse conju-

gates of ~s l' ), ~x l ), ~y l ), and ~z 1' ), while
(x)p „(y) is the time-reverse conjugate of

(x )g„(y).
The prescription, as we have described it, assumes that

the x,y, z coordinates for describing the geometry of the
quantum wire refer to axes that coincide with the crystal-
lographic axes of the underlying crystal. If one finds it
convenient to have the quantum-wire geometry defined
with respect to other axes x', y', and z', the functions
used to expand the envelope will be P (x')P„(y')Ez(z').
The easiest procedure to derive the needed equations is to
introduce the corresponding wave-space-propagation
constants by

1k„'~—
l

P

specify the rotation that expresses k in terms of k'

one, two, or three dimensions. That is, the materials' pa-
rameters are constants in regions bounded by planes, but
they may vary discontinuously from one region to the
next. The technique we used was to expand each en-
velope function in plane waves and to insert that expan-
sion into the multiband-envelope-function equations.
Two derivations for the resulting matrix elements were
given. The first was rigorous mathematically. It was
based on the condition that the set of equations for the
wave functions in several regions had to have an overall
Hermitian structure. This imposed boundary matching
conditions which were identical to those obtained via the
more usual approach of demanding continuity of the nor-
mal component of the (unit-cell-averaged) current. The
second derivation was much more heuristic. It made use
of several seemingly arbitrary steps whose ultimate
justification was that they gave a final result identical to
that obtained rigorously.

Although the method has been set up to deal with a
checkerboard geometry, one can approximate many arbi-
trary situations within a checkerboard framework, as Fig.
3 shows. Computationally, the time required to calculate
the individual Hamiltonian matrix elements will be some-
what increased, but the number of plane waves to achieve
convergence will not be aA'ected. It is this latter number
that governs the time needed to solve the eigenvalue
problem. Because the time required to set up the matrix
elements is small compared to that needed for diagonaliz-
ing the matrix, the solution for more complicated
geometries can be obtained without excessive difficulty.

In order to test the method, we have used it to calcu-
late the spectra, wave functions, and optical absorption
for a system with one-dimensional confinement, namely
the quantum well studied by Eppenga, Schuurmans, and
Colak. ' In these calculations, the structure is infinite
and uniform in two dimensions. Using the parameters
given in that paper, we obtain dispersion curves (energy
eigenvalues versus k~~ along the superlattice axis) and op-
tical matrix elements identical to theirs. [There is, how-
ever, an exact factor of 2 discrepancy between their Fig.
2(c) for light polarized in the z direction and our result.

V. SUMMARY AND DISCUSSION

We have shown how to set up the matrix whose eigen-
functions and eigenvalues give the electronic spectrum
and multiband envelope functions in a system whose
structure corresponds to a "checkerboard" geometry in

X) Xp X)p

FIG. 3. Use of the checkerboard geometry to approximate a
quantum wire of irregular cross section.
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very large unit cell, the upper and lower edges should
converge to an energy roughly halfway in between.

The method we have described is machine intensive,
with large matrices to be diagonalized. This is a price
that one may have to pay for dealing realistically with sit-
uations where the spatial variation cannot be reduced to
dependence on a single coordinate. Our formulation, like
that of Ref. 6, can be extended in principle to include the
slowly varying band-bending potentials.

Use of Fourier expansion has two practical advantages
relative to expansion in other sets of functions. The first
is that the functions are orthogonal and complete, which
means that convergence improves in a straightforward
way as more functions are included in the set. The

second is that if a particular plane wave is a member of
the expansion set, then both its first and second deriva-
tives are also included in the expansion set. This is not
automatically true with other sets of orthogonal func-
tions. This is important in treating coupled-equation sets
where both first and second derivatives appear, as they do
in envelope-function calculations where both valence and
conduction bands are included in the set of nearby states.

In summary, our method makes it possible to calculate
directly the optical properties of realisitic semiconductor
nanostructure systems in which the carriers are confined
in one or more dimensions. Quantitative comparison
with experimental results are now possible and will be
presented in a forthcoming publication.
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