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Rhodium monolayer on gold: A 4d ferromagnet
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Using a scalar-relativistic norm-conserving pseuopotential and a Gaussian-orbital expansion, we
have calculated the magnetic moment of a free-standing Rh(001) monolayer to be 1.56@& and that
of the epitaxial monolayer on Au(001) to be 1.09p~. This is a case of a paramagnetic element form-
ing a ferromagnetic epitaxial monolayer.

In this paper we present the results of an electronic-
structure calculation of an ideal five-layer Au(001) film
with epitaxial Rh monolayers on both sides. We find the
monolayers are ferromagnetic; this is a case of a
paramagnetic element forming a ferromagnetic epitaxial
overlayer. Electron capture spectroscopy has indicated'
that V on Ag(001) is ferromagnetic but theory ' is quite
unequivocal in stating that it is antiferromagnetic and
other experimental techniques ' fail to find any sign of
ferromagnetism. Furthermore, magnetic-susceptibility
measurements of small V clusters indicate surface anti-
ferromagnetism. We recently calculated the magnetiza-
tion of a free-standing Pd monolayer as a function of lat-
tice constant and found that it obtained a maximum
value of 0.40p~ at a =S.467 bohrs, which is identical to
the Ag(001) surface lattice constant (i.e., a =ao/&2).
However, we found that epitaxial monolayers of Pd on
both sides of a five-layer Ag(001) film were paramagnetic,
which is consistent with the magneto-optical Kerr effect
results of Ref. 5. We suggested that this might be due to
a Bow of electrons from the Ag into the Pd since Figs. 3
and 4 of Ref. 8 show a Lowdin projection of the Pd d
density of states (DOS) to have its leading edge well
below the Fermi energy in the epitaxial case but not for
the free-standing paramagnetic monolayer. We suggested
that gold with its similar lattice constant and larger work
function might serve as a substrate on which Pd would be
ferromagnetic. Thus the first thing we looked at here was
a five-layer gold film with paramagnetic Pd rnonolayers
on both sides. We found the Pd d DOS was only negligi-
bly closer to FI; than it was with the Ag substrate and so
abandoned the idea of performing a ferromagnetic calcu-
lation. It is likely that the relative shift of the overlayer s
and d bands due to interacting with the substrate is more
important than the Aow of charge between substrate and
overlayer in determining whether or not a ferromagnetic
free-standing monolayer will remain ferromagnetic as an
epitaxial overlayer.

We will only present results here since our scalar-
relativistic norm-conserving pseudopotential, Gaussian-
orbital-expansion method is described in Ref. 8 as well as
in an earlier publication' in which we found that a free-
standing Mo monolayer was antiferromagnetic for
a & 5. 14 bohrs and paramagnetic for smaller lattice con-
stants.

We first calculated paramagnetic and ferromagnetic
free-standing monolayers of Rh at the Ag lattice constant
in order to have a direct comparison with Pd. The sp and
d Lowdin projected DOS are displayed in Fig. 1. Each
energy level, calculated at 21 points in the irreducible
wedge of the two-dimensional Brillouin zone, was given a
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FIG. 1. The partial densities of states in electrons per atom

per eV for a paramagnetic (top curve) and ferromagnetic (bot-
tom curves) Rh(001) monolayer. The vertical lines are at
E =EF.
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RHODIUM MONOLAYER ON GOLD: A 4d FERROMAGNET

FIG. 4. Contours of constant charge density of half of five-
layer Au(001) film with Rh monolayers adsorbed in units of mil-
lielectrons per cubic bohr. The contours increase by factors of

FIG. 5. Contours of constant spin-density polarization,

p~
—p~, in units of 10 electrons per cubic bohr. The dashed

contours represent negative spin densities.

a tightly packed structure more dense than the unrecon-
structed (111) surface. ' '' [This is consistent with the
(001) work function being the largest. '

] It is not clear
whether a Rh overlayer will cause the Au substrate to
remain ideal or if the Rh overlayer will grow epitaxially
on the reconstructed surface. A denser overlayer will
have less propensity to ferromagnetism but will be less
strongly coupled to the substrate. Nevertheless, since we
have found that Ag(001), which does not reconstruct, '

and ideal Au(001) substrates have nearly identical effects
on the leading edge of the Pd d DOS, we suggest that
anyone seeking to find the first example of 4d fer-
romagnetism experimentally, try Rh on Ag(001). We ex-
pect some reduction of the magnetic moment below the

1.09pz we have calculated due to the spin-orbit interac-
tion. An estimate of the size of this effect can be obtained
from a calculation' for bulk Pd with a 10%%uo lattice ex-
pansion whose scalar relativistic value of 0.225pz was re-
duced to 0. 177@& with the inclusion of the spin-orbit in-
teraction.
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