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Image potential for an electron near an impenetrable surface
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A self-energy formalism is used to determine the quantal image potential for an electron near an
impenetrable solid surface. The electron is considered to be in a Coulombic potential outside a
repulsive wall. The complete, orthonormal basis set of wave functions for an electron in such a
model potential is employed in the calculation of the image potential.

The polarization induced by a charged particle near a
polarizable medium acts back on the charge and gives
rise to an attractive potential. The classical image poten-
tial is ¥V, =—ZQ?/z for a charge Q at fixed distance z
from a planar surface, where Z =(e,—1)/4(€,+1) and ¢,
is the static dielectric constant of the bulk medium. The
unphysical divergence of V, as z—0 is removed in a
quantum-mechanical treatment. The properties of the in-
teraction potential for an electron near a solid surface are
important to interpretation of experimental results ob-
tained from electron-based surface spectroscopies such as
the low-energy electron diffraction (LEED) and
reflection-electron-energy-loss (REEL) spectroscopy. A
detailed knowledge of the interaction between a charge
and a solid surface is also important for the analysis of
surface states.! ™4

Various approaches’ !° to the quantum-mechanical
calculation of the image potential have been made. The
concept of self-energy in the quantum-mechanical many-
particle theory is well suited for the image-potential prob-
lem. A rigorous approach to the self-energy should em-
ploy the fully screened Coulomb interaction propagator
which contains information about single particle
electron-hole excitations as well as collective electronic
excitations, which in this case are the surface plasmons. !°
Many authors have used the present Hamiltonian to
represent the surface plasmon field because of its analyti-
cal simplicity and the fact that it represents the image po-
tential at large distances from the surface. Quantum
theories in this framework give important dynamical
corrections to the classical image potential due to the
effects of dispersion of surface excitations and recoil due
to the exchange of virtual quanta between the charge and
the surface. We adopt a self-energy formalism’ for deter-
mining the image potential in this connection. This sim-
ple yet powerful approach gives the complex self-energy
for a charged particle near a solid surface with arbitrary
trajectory. The real part of the self-energy gives the im-
age potential while the imaginary part characterizes the
properties of the energy loss of the particle to the solid
medium. Application of this formalism has been made to
the investigations of van der Waals forces between
atoms, !! the energy transfer between a moving atom and
a solid surface,'?> and image-potential-induced surface
states.’
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We begin with the review of this theory. Consider a
charged particle projectile interacting with a many-body
target. The ground-state energy shift due to the interac-
tion of the particle with the target in second-order per-
turbation theory is given by

[ Wopol VWi, > |
AEo= 2 2 F T 66, +id

(1)

where | ¥, @, ) =|¥,)|p, ) is the state wave vector of the
noninteracting system with |¢, ) the state vector of the
charged particle corresponding to the energy E,, |¥;)
that of the many-particle target with energy &, and & is
a positive infinitesimal. For an N-particle target the in-
teraction energy V= 3 V(r—r;), where r is the projec-
tile coordinate and r; is the coordinate of the ith target
particle. It is assumed that the energy shift is related to
the spatially dependent self-energy =((r) through

AE0=f((pOIr)EO(r)(r|<p0)d3r . ()

An expression for 2,(r) is obtained by equating the in-
tegrands of Egs. (1) and (2) and dividing the resulting
equation by |(r|g,)|? yielding

S ()= (rlg, > (¥ V¥, )@, ¥, |VIpo¥y)
otf 2% (rlpg) Eo—E,+6,—6,+id

(3)

A systematic generalization of this formalism to include
higher-order corrections to the self-energy has been
made. 3

In the following we present an application of Eq. (3)
adopting the surface plasmon model for the response
function of the surface and using an electron basis set ob-
tained from the Coulombic potential. This should give a
good first approximation to the real image potential ex-
perienced by an electron near the surface.

It is known’ that the long-range forces experienced by
a charge external to a solid surface and not closer than an
A or so may be considered as due to the interaction be-
tween the charge and the virtual excitation of the surface
modes, i.e., surface plasmon in metals, since the fields due
to bulk electronic excitations extend only a few atomic
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units beyond the surface. In this simple scheme of in-
teraction the dynamical properties of the medium are
codified in the response of the surface-plasmon field.
However, we may also include approximately the effect of
single electronic excitations by employing the so-called
surface-plasmon—pole dispersion relation.® The interac-
tion energy for a system of an electron and the surface ex-
citations can be approximated as

V= 2 aKe—K‘z‘eiK'P(atK+aK) s 4)
3

where k is a vector parallel to the surface and a ’\_K and a,
are creation and annihilation operators, respectively.
The constant a, is given by a’=1e#w? /L *kw,, where
L? is the area of the surface, , is the surface plasmon
frequency, and its dispersionless limit is given by
o;=w,/V2, where w,=(4mnze’/m)'’*> is the bulk
plasmon frequency of an electron gas of density n,.

Assuming translational invariance parallel to the sur-
face, we may take the electron wave functions as prod-
ucts of plane waves along the surface and state vectors
(z|n ) associated with the motion of the electron normal
to the surface:

<r|q)n>=%eﬂ’-p<z\n> , (5)

where (p,z) is the coordinate of the electron. Substitut-
ing Egs. (4) and (5) into Eq. (3) we arrive at

aZe ~**(nle ~*|0)
2 b

€€, T %(ZPO-K—Kz)—ﬁwK-{-iS

X

(6)
where P, is the initial momentum of the electron parallel
to the surface and ¢, is the energy corresponding to |n ).
For simplicity we will consider the case of P,=0 only in
this paper. The case for Py*0 will be discussed else-
where.'* The summation over k in Eq. (6) can be con-
verted into an integration. We extend the summation
over «k to an infinite range of values in the following cal-
culation. Zy(z) is manifestly real for P;=0 since it corre-
sponds to the lowest energy state of the system. When
P70, Im(Z,) describes the damping of the state {r|gp, )
due to interactions with the target.

The orthornormal basis set of wave functions for the
motion of the electron normal to the surface can be gen-
erated from the one-body Schrodinger equation

#v?
(zln)+V(zln)=¢,{z|n) . (7
2m
The potential V' is actually the local self-energy of the
charge given in Eq. (3). Therefore, a self-consistent cal-
culation should be carried out to find both the self-energy
and the wave function of the charged particle. However,
for the purpose of determining the self-energy in a
perturbation-theoretic approach, the classical image po-
tential may be a reasonable first approximation to V. We
then take
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o, z=0. (8)
This model potential is relevant to the case of an electron
outside of a metal surface for which there is an energy
gap that contains the vacuum level in the direction nor-
mal to the surface. Surfaces of Cu(001) and Ag(001) are
examples. The electron does not have enough energy to
penetrate into the bulk, but the image potential seen by
an electron may be strong enough to trap it and thus lead
to electron surface states,' 3 which have been shown to
exist by LEED and inverse photoemission experiments.*

The solutions of Eq. (7) are just the one-dimensional
Coulombic wave functions. For discrete states the
eigenenergy is

me4

€, =— 5 9)
? 32#%n?
and the Coulomb wave function is given by’
(zlny=C,Ze "*F|—n+1,2=2— |, (10)
2na,
where C, =z (4na,) 3/? and F(a,c,z) is the confluent hy-

pergeometric function; a, here is the Bohr radius. The
matrix in Eq. (6) is given by

2
(1/4ay+«k+1/4na,)’
n(1/4ay+k)—1/4a,
n(1/4a,+x)+1/4a,

(nle *?0)=C,C,

n—2

(11)

For the continuum state, we make the following substitu-
tion:
(nle”**|0) __ (Ele"*|0)
Cn CE

under the change n—in, where Cr
=(wk/L)(1—e 2" 'and k =V 2mE /#*, n=1/4ka,.

To evaluate Eq. (6), we need to know the dispersion re-
lation of the surface plasmons. We adopt the surface-
plasmon—pole dispersion relation®

o,=(0?+ak+Br*+k*/4)V? (12)

where a=V'(3/5)vpw, with vy the Fermi velocity. The
coefficient f=0.0026+2.6798/r)-*°, where r, is the one
electron radius. This dispersion relation includes,
schematically, the effects of both plasmon and electron-
hole excitations.

In the numerical calculation the complex confluent hy-
pergeometric function F(a,c,z) is evaluated by matching
two series expansions.!® We have found that for [z| <20
the expansion

_q4@z  alatl)z?
F(a,c,z) 1+c 1!+ clc+1) 2

may be used with good accuracy, while for |z| > 10 the
asymptotic series of F(a,c,z),

(13)
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F(a,c,z)=~r(£)—(—z)_”G(a,a——c+1,—~z) -
I'(c —a)
I'(c) 2- —
2\ z,a—c _ _ -~ e T
I1((1)63 z G(c—a,l—a,z), (14) R .
-3
is appropriate. The two series match very well in the re- 2
gion 10 < |z| <20. Here I'(a) is the gamma function and 2
G (a,b,z) is given by the series —
N
Glabz=1+20 4 alatDbb+1) o s I
1z 2122 N
The series expansions in the two regions have been °©
verified by comparing with the Chebyshev expansion of =3
F(a,c,z),!” with very good agreement. The Chebyshev o 2 a . 8 0

expansion of F(a,c,z) is valid for any value of z. Howev-
er, it is not suitable for our purposes because of the
difficulty of specifying beforehand the parameters of this
representation that depend on the value of a, ¢, and z.
Numerical results obtained from Eq. (6) using Egs.
(10), (11), and (12) are given in Fig. 1. Atomic units are
used in all of the figures. The real part of the self-energy
for r,=2, 4, and 6 is compared with the classical image
potential. The same results are presented in Fig. 2 where
the deviation of the quantum-mechanical results from the
classical image potential is emphasized. At small dis-
tances quantum effects of electron recoil and surface-
plasmon dispersion cause marked deviation of Z,(z) from
V,;. It is interesting to show (Fig. 3) the contributions of
the discrete and the continuum states to the image poten-
tial. The continuum states account for up to one-third of
the total image potential and their contribution changes
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FIG. 1. Results of numerical evaluation of the self-energy for
r=2, 4, and 6 compared with the classical image potential.
The solid, dotted, and dashed lines corresponding to r,=2, 4,
and 6, respectively. The dot-dashed line represents the classical
image potential.

FIG. 2. The function —4z2(z) is plotted here using the same
results shown in Fig. 1. The deviation of the quantum-
mechanical results from the classical image potential is em-
phasized here.

sign when z becomes large. However, this conclusion
should not be taken too seriously here. A finite barrier
surface model would be more reliable for handling the
continuum.

The effect of dispersion of the surface-plasmon energy
with the wave number is shown in Fig. 4. Dispersion is
seen to weaken the image potential by almost 50% at
z=0 for the electronic density r,=2 compared with the
result found neglecting dispersion. This is a considerably
larger effect than reported by other researchers.” Howev-
er, at large distances the two curves representing the re-
sults with and without dispersion approach one another
because in such cases the electron couples effectively only
to the long-wavelength surface modes.
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FIG. 3. Comparison of contributions to the total self-energy
from the discrete and continuum states. The solid line stands
for the total image potential. The dash-dotted line and the dot-
ted line correspond to contributions from the discrete and con-
tinuum states, respectively. We take r, =2 here.



43 IMAGE POTENTIAL FOR AN ELECTRON NEAR AN ... 4005

o
S
o
w0
QS
o
1
s o
0 |
. ©
LA
W
S
o
1
'e)
N
?
0 2 4 6 8 10
z (au.)

FIG. 4. Effects of surface-plasmon dispersion on the self-
energy for r,=2. The solid line shows the result with dispersion
taken into account, the dotted line shows the results obtained
neglecting dispersion, while the dot-dashed line shows V', the
classical image potential.
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FIG. 5. Comparison of the self-energy obtained using a plane
wave basis set (dotted line) and the Coulombic basis set (solid
line) for r,=2. The dot-dashed line shows the classical image
potential. The surface-plasmon-pole dispersion relation was
used in the evaluations.
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FIG. 6. The image potential obtained using dispersionless
surface plasmons for r,=4 (solid line), and ;=6 (dotted line).
The classical image potential is also shown as the dot-dashed
line.
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FIG. 7. Comparison of the second-order expression for the
image potential using the Coulombic basis set, given by the solid
line, with the higher-order image potential obtained using the
plane wave basis set (Ref. 13) for r,==6 (dotted line). The dot-
dashed line stands for the classical image potential. Note that
the results of Ref. 13 are valid only for z >> 1.
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It is interesting to see the dependence of the image po-
tential on the particular basis set employed in the evalua-
tion of Eq. (6). In Fig. 5 the image potential found using
a plane-wave basis set is indicated by the dotted line. The
result obtained using the Coulombic basis set, the solid
line, shows that the image potential is weaker near the
surface and stronger at large distances compared with the
results found wusing plane waves. The surface-
plasmon-pole dispersion relation, Eq. (12), was used in
both calculations. The classical image potential is given
by the dot-dashed line.

The dispersionless curve in Fig. 4 approaches the clas-
sical image potential from below. The same behavior is
displayed for the electronic density parameter r, =4 and
6 as shown in Fig. 6. This agrees generally with our pre-
vious analytical results found using high-order correc-
tions to the image potential.!3 In Ref. 13 we employed a
plane-wave basis set to evaluate the image potential up to
the sixth order in perturbation theory. We showed there
that at large distances the second-order result approaches
the classical image potential and that the effects of high-
order corrections are to strengthen the potential in this
region. We believe that the second-order result found us-
ing the Coulombic basis set should be an improvement
over results carried to the same order as given in Ref. 13.
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In Fig. 7 we give a comparison of the second-order result
using the Coulombic basis set with results obtained using
Eq. (11) of Ref. 13 in sixth-order perturbation theory.
The latter are valid only for large z. Detailed compar-
isons are not appropriate here; the main point is that
both basis sets predicts a strengthening of the image po-
tential compared with ¥ when z >>1.

In summary, we have calculated the image potential
experienced by an electron near a solid surface with an
impenetrable wall using a self-energy formalism. Numer-
ical results and discussions have been presented for an
electron with zero initial momentum parallel to the sur-
face. The dispersion of the surface plasmon is found to
be responsible for the weakening of the image potential
up to 50% at the surface compared with the result found
including recoil but neglecting dispersion for conduction
band densities corresponding to those in real metals.
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