
PHYSICAL REVIEW 8 VOLUME 43, NUMBER 5 15 FEBRUARY 1991-I

Self-consistent electronic structure of 3d-transition-metal impurities
in aluminum using the recursion method

Prabhakar P. Singh
Department ofMaterials Science and Mineral Engineering, Uniuersity of California, Berkeley, California 94720

(Received 1 March 1990; revised manuscript received 13 August 1990)

For developing an accurate first-principles technique for describing the electronic structure of
systems without perfect periodicity, we have performed self-consistent electronic-structure calcula-
tions for dilute alloys of 3d-transition-metal impurities in aluminum using the recursion method
with the tight-binding linear muon-tin orbitals (TB-LMTO) Hamiltonian. Using the self-consistent
potential at the impurity site, we investigate the changes in the local density of states and the charge
transfer between the impurity and the neighboring host atoms. The results are in good agreement
with the more accurate Green's-function —LMTO [Phys. Rev. B 33, 5307 119861] results, thereby
confirming the accuracy of the present approach.

I. INTRODUCTION

The need for an accurate and reliable method for
describing the electronic structure of systems without
perfect translational symmetry has become of paramount
importance due to recent developments in solid-state
technology where the effects of surfaces, defects, and im-
purities can no longer be ignored. In many cases, a local
description rather than a "Bloch-like" description of the
electronic structure is more appropriate and at times it is
the only possible description. Very often periodicity is
restored by using the supercell methods. One of the
disadvantages of the supercell method is that it may re-
sult in artificial interference between the different super-
cells, thereby distorting the description of the real sys-
tem.

With the aim of developing a reliable and accurate
first-principles technique for describing the electronic
structure based on a local description, we have used the
tight-binding linear muffin-tin orbital (TB-LMTO) Hamil-
tonian' in the recursion method to study, self-
consistently, 3d-transition-metal impurities in aluminum.
The use of the TB-LMTO Hamiltonian affords a direct
comparison of the recursion results with the results of the
more accurate Green's-function —LMTO method, ' lead-
ing to a better understanding of the limitations and the
approximations of the present approach.

The problem of impurities in metals has now been
studied for more than 35 years. Since Friedel's explana-
tion of the changes in the transport properties of alloys
using the virtual-bound-state model ' there have been a
number of other models for describing the electronic
structure of alloys. The approaches which have been fol-
lowed include the Anderson impurity model, the local-
ized interaction of Wolff and the localized spin-
fluctuation model. "

The introduction of an impurity atom can change the

host lattice by perturbing the electronic charge distribu-
tion as well as the positions of the neighboring host
atoms. To simplify the problem we assume that at the
neighboring host atoms the potentials as well as the posi-
tions are not perturbed. The perturbation of neighboring
atom potentials can be taken into account but it requires
a substantial computational effort. The effect of lattice
relaxation can be incorporated by defining a new effective
nuclear charge' but we do not follow this procedure.
Starting with these approximations we express the full
Hamiltonian of the perturbed crystal in terms of the TB-
LMTO Hamiltonian and then a self-consistent calcula-
tion of the electronic structure of the impurity in a clus-
ter is carried out using the recursion method. We call
this approach the Green's-function recursion method and
use it to study, self-consistently, the electronic structure
of 3d-transition-metal impurities in aluminum. Our re-
sults are in agreement with the results of the Green's-
function —LMTO method ' as well as with the calcula-
tions of Deutz, Dederichs, and Zeller. '

The paper is organized as follows: In Sec. II we de-
scribe the self-consistent Green's-function recursion
method using the TB-LMTO approach. The approxima-
tions due to the recursion and due to the use of an ap-
proximate Hamiltonian are discussed in Sec. III. Section
IV contains the results for 3d impurities in aluminum.
Finally, ways to improve our results are indicated in Sec.
V.

II. RECURSION IN THE TB-I.MTO METHOD

The solution of the alloy problem is essentially a two-
step process. First we solve the problem of the perfect
crystal and obtain the electronic structure of the host
solid. Then we replace one of the host atoms by an im-.
purity and try to obtain the electronic structure of the
perturbed crystal or alloy. We can express the solution,
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at least formally, in terms of the Green's function of the
perturbed crystal. An approach based on solving directly
for the Green's function of the perturbed crystal can be
developed using the recursion method.

A. Electronic structure of the host solid

A number of methods can be used for describing the
electronic structure of the host solid. Some of the
methods in use are the (i) linear combination of atomic
orbitals, (ii) orthogonalized-plane-wave method, ' (iii)
pseudopotential method, ' (iv) Korringa-Kohn-Rostoker
method, '

(v) augmented-plane-wave method, ' (vi) linear
augmented-plane-wave method, ' and (vii) LMTO
method. ' '

The LMTO method of Andersen has been successfully
applied to describe the electronic structure of elemental
metals, metallic compounds, ' molecules, microclus-
ters, amorphous materials, ' and others. The relative
ease and efficiency in implementing the LMTO method,
coupled with the physical transparency with which it de-
scribes the electronic structure, make it very useful. The
method has been described in many papers and reviews
by Andersen and co-workers. ' ' '

A unique advantage of using the LMTO method is the
exact transformation of the long-ranged LMTO Hamil-
tonian into a first-principles tight-binding Hamiltonian,
which can then be used to investigate the local properties
of systems without perfect translationa1 symmetry. The
LMTO approach can also be used to compare the accura-
cy of k-space methods with that of R-space methods. %'e
use the LMTO method for calculating the self-consistent
electronic structure of the host solid, aluminum, and the
TB-LMTO method for describing the impurity in a clus-
ter. In the following we closely follow the notation of
Ref. 2.

B. Hamiltonian and overlap matrices

O~ =I+h~p~h~,

where

h~=h(I+oh)-'

(lb)

The matrix elements of h and the potential parameters
E, o, and p~ are defined in Refs. 2 and 6, and I is the
identity matrix. The nearly orthogonal orbitals are par-
tially localized and the Hamiltonian decays exponentially
in R space. ' We require a very localized Hamiltonian
for keeping the calculation of the recursion coefficients to
a manageable size. It is known that further localization
of the interaction leads to nonorthogonal orbitals. Thus,

In order to use the recursion formalism, we have to
specify the tight-binding Hamiltonian H and the ap-
propriate basis functions. We choose to work in the
nearly orthogonal representation of the LMTO method,
denoted by the superscript y, in which the Hamiltonian
and overlap matrices are'

H~=E +h~+h~E p~h~

where we have ignored the potential parameter p~, which
is generally small. We define Eq. (3) as the second-order
Hamiltonian H' ', i.e.,

H' '=F +h~ .V

The Hamiltonian H' ' is correct up to second order in
(E E) a—nd it decays exponentially in R space due to
the exponential decay of S~. ' It can be used as the
Hamiltonian if we desire the accuracy that it offers and
are willing to increase the size of the cluster for calculat-
ing the recursion coefficients because of the long range of
the interaction. A simpler and more efficient approach is
to express S~ in terms of the most localized structure ma-
trix S~, i.e.,

Si'= Sr [ l+ () —P)S~]

The potential parameters yr and the tight-binding param-
eters I3& are defined in Refs. 2 and 6. The superscript P
denotes the tight-binding representation of the LMTO
method. Now hr, Eq. (2), can be written as

hr =h~( I+o~h~)

Then substituting for h~ from Eq. (6) in Eq. (4), we get

H"'= E.+hi'(I+ oi'hi')-'

=E.+h~ —h~o~X~+a~o~h~o~~~—

=E +X~—S~oI'hl'

and

H"'=E.+h~, (7b)

where we have defined H"' as the first-order Hamiltoni-
an, as it is correct up to first order in (E E„). The first-—
order Hamiltonian H"' decays more rapidly than the
second-order Hamiltonian H' ' because H"' contains S~
instead of S . Typically, H' ' vanishes after third- or
fourth-nearest neighbors, while H"' vanishes only after
second-nearest neighbors for close-packed solids. ' ' We
use the first-order Hamiltonian H"' for describing the in-
teraction between the atoms in a cluster for calculating
the recursion coefficients.

C. Local density of states and charge density

For obtaining a self-consistent solution we need the
electronic charge density inside the perturbed Wigner-
Seitz (WS) sphere. Formally the charge density p(r) can
be expressed in terms of the wave functions P(r) of the
system, where j is the band index. The wave functions

we have to calculate (O~) ' H~(Or) ' and use this as
the Hamiltonian. In order to do this, we first evaluate
the Lowdin orthonormalized Hamiltonian

(O'Y) i~28'Y(Q'Y) i~2 =(I—hi'pshaw'y2)

X(E +br+hi'E p~h~)

X (I—hopi'h~ /2)

=E +h~,
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can be constructed as

P(r)=+PL(r) .

OCC

p(r)=gP (r)P(r),
J

(10)

where the summation is over occupied states only. The
evaluation of the charge density using Eq. (10) is evident-

In Eq. (8) we have defined

1trL (r)=gajyL(r —R),
R

where aj are the expansion coefficients, L —= (l, rn) is the
orbital index, R denotes the atomic sites, and gL (r) are
the basis functions. Then the charge density is

ly laborious if the basis functions are not very localized.
We also have to determine the expansion coefficients ag.

A simpler approach for evaluating the spherically sym-
metric valence charge density, p(r), inside the impurity
cell is to use the local density of states and the partial
wave solutions of the impurity potential, i.e.,

E
4irp(r) =g f 2ni(E)gi(E, r )dE, (1 1)

where ni(E) are the local density of states, Pi(E, r) are
the partial wave solutions, and EF is the Fermi energy.
The factor of 2 takes care of the spin degeneracy. The
partial waves PI(E, r) are approximated by a Taylor-
series expansion around some reference energy E I ~

Keeping terms up to (E E&) —the expression for the
electronic charge density becomes '

EF
4~p(r) =g P I(r)N&+2/„&(r)P &(r)f 2nI(E)(E E I )dE—

I

E
+g P,(r)+P, (r)P, (r)f 2n, (E)(E E, ) dE +—

I

(12)

where
FF

Ni
——J 2ni(E)dE (13)

are the integrated local density of states and the overdots
indicate the derivatives with respect to energy E. The lo-
cal density of states

n((E) = ——ImGii(E),
1

where GIi(E) are the diagonal elements of the Green's
function at the impurity site, is evaluated using the recur-
sion method. The angular momentum l denotes s, p, e~,
and t2& states. For terminating the recursion coe%cients
we use the Beer and Pettifor approach. Once we have
evaluated nr(E) the charge density inside the impurity
atom can be evaluated using Eq. (12).

D. Self-consistent impurity in a cluster problem

V(r) =f, dr' — + V„,(r)+ VM(r),
2Z

(15)

The Green's-function recursion method can be used to
describe the electronic structure of impurities in crystal-
line clusters. We assume that the impurity potential is lo-
calized within the impurity WS sphere. We also assume
that the electronic density of states of the nearest neigh-
bors remains unchanged. Under these assumptions the
self-consistent calculation of the impurity potential
reduces to a self-consistent calculation inside the impuri-
ty atom at the central site of the cluster. The eA'ective
one-electron potential, V(r), inside the WS sphere is
given by

where all the quantities refer to the impurity atom and
p„,(r) is the sum of valence and core charge densities. In
Eq. (15), Z and V„,(r) denote the nuclear charge and the
exchange-correlation potential, respectively. The
Madelung potential V~(r) is not taken into account be-
cause we do not perturb the electronic density at the
neighboring sites. The procedure followed for obtaining
the self-consistent impurity electronic structure is out-
lined below.

(i) Construct the potential V(r) by renormalizing the
free-atom electron density to the WS sphere.

(ii) Calculate the recursion coefficients and determine
the local density of states for all symmetry-projected
states given by Eq. (14).

(iii) Get the new electron density using Eq. (12) and the
frozen core charge density.

(iv) Construct the new effective one-electron potential
by solving Poisson's equation for the electron density and
then adding —2Z/r and V„,(r).

(v) Solve the Schrodinger equation as described in Refs.
18 and 20.

Now the output potential obtained from (v) is used to
set up the new impurity Hamiltonian and (ii) —(v) are re-
peated until self-consistency is achieved.

III. APPROXIMATIONS IN THE GREEN'S-FUNCTION
RECURSION METHOD

In the Green's-function recursion calculation the ap-
proximations are twofold: (i) those intrinsic to the recur-
sion method and (ii) those related to the tight-binding
Hamiltonian. A detailed description of the approxima-
tions involving (i) is given in Ref. 4. The approximations
intrinsic to the LMTO Hamiltonian are discussed in
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Refs. 1 —3. We
roxi

rieAy outline the more import t
p xirnations of (t) and (ii) and suggest ways to correct for
t em.

p. Recursion method approximations

The most important approximation is due to the finite
size o the cluster. The size of the cluster limits the num-

er of recursion coefficients that can be calculated exact-
y, thereby limiting the accuracy of the local density of

states. In most cases, it is possible to make a compromise
between the cluster size and the desired accuracy in the
local densit
the re

i y o states. There are several ways b h hy ywic

ed.~ 4, 28
e recursion coefficients in the tail can ban e approximat-

0

O
A

3

~
JJ

/

1
I

/X

IJ r ) f

/
/

B. Hamiltonian-related approximations

We use an approximate tight-binding Hamiltonian
H"', which is correct up to first order in h. For wide

ands one should include the second-order term as well.
Given the first-order Hamiltonian, we can get more accu-
rate results by dividing the band in differ'ent energy
panels by appropriately choosing different E 's. To im-

prove upon the results obtained using the first- de rs -or er
i onian H, we can use the second-order Hamil-

toniant
' ' ', which requires an increase in the cluster size

o exact recursionfor ca1culating the same number of
coe cients.

IV. RESULTS AND DISCUSSION

Th e electronic structure of 3d impurities in Al is calcu-
ate using the Green's-function recursion method. The

impurity atom is placed at the center of a 489-atom face-
centered-cubic (fcc) cluster. The cluster is co t t d

a ve levels of recursion coefficients can be calculated
exactly when we include up to second-nearest-neighbor
interactions. The description of the host lattice, in this
case that of Al, was calculated by the LMTO method.

The aatomic wave functions of the im urit and h
atoms are calce calculated by solving, self-consistently, the ful-

y relativistic Dirac equation with f - t bree-a om oundary
conditions. The electronic configurations and term
values of atoms belonging to 3d series of the Periodic
Table are listed in TTable I. During the self-consistent

r
0
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FIG. 1. Th
LMTO method inc

. The l-projected density of states f f Alor cc using the
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respectively.
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A. Electronic structure of bulk aluminum

The sel-
late

-consistent electronic structur f Al
'

1

a ed with the LMTO method in the atomic-s here a-
proximation ' ' ' To a xi-o account for some of the approxi-

M
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A
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/

/

Green s-inunction recursion calculations we freeze the po-
tential due to all core electrons. Th hn . e exc ange and corre-
lation effects are included thro h throug t e parametrization
given by von Barth and Hedin.

TABLE I. Electronic configurations and term values for 3d
J

elements of the Periodic Table.

/( J~

.r~ /
/

J /

Element

Ti
V
Cr
Mn
Fe
Co
Ni
Cu

4
5
6
7

9
10
11

Electronic configuration

[Ar]3d '4s '
[Ar] 3d '4s '
[Ar]3d'4s'
[Ar]3d 54s 2

[Ar]3d 4s
[Ar] 3d '4s '
[Ar] 3d 84s 2

[Ar]3d "4s '

Term value

F
4
F3/2
S3

6
S5/2
D4

4
F9/2

3F
2S}/2

r
~r

o
0.0 0.2 0.4 0.6 0.8

E (Ry)

FIT+. 2. The inte
LMTO method, inclu in

grated density of states for fcc Al
'

hcc using t e

dotted
e o, inc u ing the combined correction t Therms. e

, dashed, and solid lines are s p d d, p, an integrated densi-
ties of states, respectively.
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TABLE II. Summary of results for Al at the WS radius
S=2.9778 a.u.

Fermi energy (Ry)
~MTz (Ry)
Number of s electrons
Number of p electrons
Number of d electrons
DOS at EF (states/Ry)

—0.053
—0.716

1.130
1.451
0.419
5.309

mations resulting from the atomic-sphere approximation,
we include the combined correction terms. ' ' Our final
self-consistent results do not depend on canonical scal-
ing. The Brillouin-zone integration was carried out
with 916 points in an irreducible wedge of the Brillouin
zone. The reference energy E

&
was chosen to be the

center of gravity of the occupied part of the I band. The
l-projected densities of states obtained from the self-

consistent potential parameters are shown in Fig. 1. The
density of states compares very well with the results in
Refs. 30 and 31. Our calculated total density of states at
the Fermi energy for the bulk Al is 5.309 states/Ry
which is in good agreement with the results of Refs. 30
and 3I which are 5.578 and 5.46 states/Ry, respectively.
The integrated densities of states are shown in Fig. 2.
Our integrated s, p, and d densities of states compare well
with the results in Ref. 31, which are 1.55, 1.38, and 0.07,
respectively. A summary of results for bulk Al is given in
Table EE.

B. Electronic structure of 31 impurities in aluminum

A detailed account of all the results for the 3d impuri-
ties in Al is presented in this section. The results have
been collected under the following categories: (i) local

O
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FICs. 3. DOS for Ti in Al (a) and (b) and V in Al (c) and (d) using the Green's-function recursion method. The dotted, dashed, and
solid lines are s, s +p, and s +p +d local densities of states, respectively.
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density of states, (ii) charge transfer and screening, and
(iii) virtual bound states

I L.ocal density of states

The changes in the energy spectrum of the perfect solid
brought about by the impurity atom are clearly manifest-
ed in the local density of states at the impurity site as well
as at the sites surrounding the impurity. In the case of
dilute alloys, it is reasonable to assume that the changes
in the local density of states will get smaller further away
from the impurity site. Although it can be shown that
the charge perturbation of the host atoms due to the im-

purity is long-ranged and oscillatory in nature, it is evi-
dent that the most dominant change in the density of

states occurs at the impurity site. The change at the im-
purity site is followed by smaller changes in atoms sur-
rounding the impurity.

As a first approximation, we can assume that the
changes in the density of states are localized at the im-
purity site and the host atoms surrounding the impurity
retain their bulk density of states, i.e., they are bulklike.
In metals the impurity is quickly screened, thereby local-
izing the perturbation. For the most part, the single-site
approximation predicts results that are in good agree-
ment with experiments. But in order to predict the
charge transfer between impurity and host atoms more
accurately, one should at least include the perturbation of
the neighboring host atoms. The inclusion of nearest-
neighbor perturbation becomes necessary because even a

40
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O
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0
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FIG-. 4. DOS for Cr in Al (a) and (b) and Mn in Al {c)and (d) using the Green's-function recursion method. The key is as in Fig. 3.
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small shift in the potential of the nearest-neighbor host
atoms can lead to a rather large charge redistribution.
That, in turn, will affect the local density of states at the
impurity site. The computational effort involved in in-
cluding the perturbation at the nearest-neighbor sites is
prohibitive and we do not follow this procedure.

The self-consistent local densities of states (LDOS), for
3d impurities in Al, calculated with the Green s-function
recursion method are shown in Figs. 3—6. In these
figures we show s (dotted line), s +p (dashed line), and
s +p +d (solid line) densities of states, respectively.
These LDOS can be easily understood in terms of the
bulk density of states and the idea of resonance and an-
tiresonance points. We see that the s and p densities of
states do not change by much as we go through AlTi to

3ICu. The large change in the d density of states
represents the virtual bound states. The movement of the
virtual bound state from well above the Fermi energy for
AlTi to well inside for AlCu can be seen clearly.

The local densities of states at EF at the impurity site
are given in Table III. We also list the results of a
separate Green's-function —LMTO calculations for 3d im-
purities in Al. In our Green s-function —LMTO calcula-
tions we express the Green's function at the impurity site
in terms of the Green's function of the host lattice and
the perturbing potential. With the assumption of only
one perturbed muon tin, as in the Green's-function re-
cursion method, the resulting Dyson equation is solved
self-consistently. Thus the differences between the two
methods (Green's-function recursion and Green's-
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FIG-. 5. DOS for Fe in Al (a) and {b) and Co in Al (c) and (d) using the G-reen's-function recursion method. The key is as in Fig. 3.
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function —LMTO) arise due to (i) the use of recursion and
(ii) the use of the first-order Hamiltonian H"' in the
Green's-function recursion method. The details about
the Green's-function —LMTO method can be found in
Refs. 5 and 6.

As expected the LDOS calculated with the recursion
method is smaller than the LDOS calculated with the
Green's-function —LMTO method. According to the re-
cursion calculations, AlCr has the highest LDOS at EI.
while from the Green's-function —LMTO calculations, we
And AIMn to have the highest LDOS at EF. The local
densities of states at EF for 3d impurities in Al are
different from the LDOS in the respective 3d metals. For

example, the LDOS at EF for metallic Cr is 9 52
states/Ry while for AlCr it is 30.02 states/Ry. Similar-
ly, the LDOS at EF for A/Mn is higher than the LDOS
for metallic Mn. The enhanced LDOS makes the impuri-
ty more susceptible to becoming magnetic, which can be
seen by considering the Stoner criterion. '

In Fig. 7 we compare the LDOS for A/Ti calculated
with the Green's-function recursion and the Green's-
function —LMTO methods. The differences in the LDOS
calculated by the two methods are primarily due to the
small size of the cluster and the use of an approximate
tight-binding Hamiltonian H'" in the Green's-function
recursion method. The use of a small number of exact re-
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FIG. 6. DOS for Ni in A1 (a) and (b) and Cu in Al (c) and (d) using the Green's-function recursion method. The key is as in Fig. 3
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0.514
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0.599
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Also, the virtual bound states can be directly compared
with experiments, and hence provide an important check
for the theoretical model. The virtual levels are charac-
terized by high densities of states in the energy spectrum.
Thus, whenever Fermi electrons have access to the virtu-
al levels, we expect these levels to have profound effects
on the electronic transport and related properties of the
dilute alloys.

The movement of the virtual levels in Al can be under-
stood by considering the filling up of the atomic d level of
the impurity atom. For example, let us consider the
movement of the virtual levels for 3d impurities in Al.
The atomic d level of Ti with its two d electrons is well
above EF of Al. Thus, the corresponding VBS is also
well above EF but with its position changed due to the in-
teraction with the host atoms. As we add more electrons
to the d orbital and increase the nuclear charge, the
atomic d level lowers its energy, resulting in movement of
the VBS towards EF. In Figs. 3—6 we see clear evidence
of the virtual bound states which are characterized by
high densities of states. For example, the VBS for AlV is
located around E = —0.05 Ry while for 2/Ni it is located
around E= —0.33 Ry. The virtual bound state crosses
EF between AICr and AIMn and it is well inside for
3Icu.

V. SUMMARY AND CONCLUSIONS

We have studied Al-based dilute alloys using the
Green's-function recursion method. In this method the
impurity atom, taken from 3d series, is surrounded by
488 Al atoms on a fcc lattice. For our self-consistent cal-
culations we have assumed that the impurity potential is
localized within the impurity WS sphere. The assump-
tion of only one perturbed muon tin implies that all the

host atoms, including the nearest-neighbor atoms, are
taken to be bulklike. The resulting self-consistent local
densities of states at the impurity site give a good descrip-
tion of the changes in the energy spectrum due to the im-
purity atom.

The Green's-function recursion results for the LDOS
and charge transfers are in agreement with the more ac-
curate results of Green's-function —LMTO method, indi-
cating the accuracy of the present approach. The recur-
sion results can be further improved by including (i) the
third term, h~o~h~, in the first-order Hamiltonian given
by Eq. (7a), (ii) more than one energy panel, and (iii) the
combined correction terms.

Our results are based on perturbing only the impurity
muon tin, but to be able to predict charge transfers be-
tween the impurity and the host atoms more accurately,
we must perturb at least the nearest-neighbor host atoms.
The perturbation of nearest-neighbor atoms can be easily
implemented in the Green's-function recursion method
but in the Green's-function —LMTO method it leads to a
significant increase in the computational effort.

In conclusion, we have presented a first-princip1es
technique, based on local description, for self-consistently
calculating the electronic structure of systems without
perfect translational symmetry. Its application to Al-
based dilute alloys yields results that are in agreement
with the results of more accurate methods. The present
approach can be readily applied to calculate the electron-
ic structure of surfaces, interfaces, and substitutionally
disordered binary alloys.
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