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Resonant Raman scattering in a quasi-one-dimensional ZrS3 crystal
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A theory of Raman scattering in one-dimensional crystals is presented, emphasizing resonance
enhancement at the Mo and M, singularities. A Slater-Koster model is used to incorporate the
eft'ect of electron-hole interaction. This leads to metamorphism of the critical points. Our experi-
mental results show an enhancement of the one-phonon Raman intensity in a quasi-one-dimensional

ZrS3 crystal near the lowest-energy gap. They agree well with the theory both above and below the

energy gap after including electron-hole interaction.

I. INTRODUCTION

The crystal structure of transition-metal trichal-
cogenides (MX3 ) has been the subject of considerable in-

terest for over a decade. ' A large number of experi-
mental studies have established a significant one-
dimensional anisotropic character in these crystals. '

They' grow as fibrous ribbons with linear chain of metal
atoms (M=Zr, Ti, Hf; Nb, Ta) parallel to the b crystallo-
graphic axis. Six chalcogen atoms (X=S, Se, Te) sur-
round each metal atom forming a trigonal prism. The
distance between metal atoms along the b axis is much
shorter than the interprism distances. These struc-
tures' ' have a bundle of metallic chains each with an
insulating sheath. The interaction between chains is
rather weak and therefore one-dimensional electronic be-
havior is expected from the structure. Similar stacking
arrangement in NbSe3 leads to high electrical conductivi-
ty along the linear chain direction. ' The conductivity
perpendicular to the chains is, however, several hundred
times smaller. Similar anisotropy is expected for TiS3
(Ref. 16) and ZrS3 also. High conductivity along the
chain clearly indicates that the motion of electrons is re-
stricted to one dimension, and that the material behaves
as a quasi-one-dimensional crystal in its electronic prop-
erties.

The direct and indirect band gaps in ZrS3 have been
determined by optical-absorption spectra. ' From these
optical studies it was concluded that the optical proper-
ties reAect the anisotropy of the crystal so that the band-
gap energy of ZrS3 is (2.56+0.01) eV with an exciton ion-
ization energy of (0.08+0.01) eV for E~~b and (2.57+0.01)
eV with an exciton ionization energy of (0.12+0.01) eV
for Elb. ZrS3 shows a strong polarization dependence
which indicates a large anisotropy in the band structure.
Assuming a linear variation of band gap with tempera-
ture, we estimate that the band gap at 180 K is 2.54 eV.
The Mo and M3 Van Hove singularities determine the
optical properties of the quasi-one-dimensional systems.
Consequently we identify the Mo singularity at 2.54 eV.

The vibrational properties of ZrS3 have been extensive-

ly studied ' ' by infrared and Raman spectroscopy. In-
frared measurements revealed that the vibrations of the
ZrS3 crystal, both parallel and perpendicular to the chain
axis, are one dimensional. Raman investigations ex-
hibit a large number of phonons at the zone center which
are characterized as 3 and Bg modes of C2h crystal
symmetry.

Resonant Raman scattering (RRS) in ZrS3 near the
lowest-energy gap transition has also been reported. '
Sourisseau and Mathey studied the interchain A modes
and showed that strong enhancement in intensities of
these modes can be accounted for by a Franck-Condon
scattering mechanism. Kurita et al. argued' that the in-
termediate state in the Raman process is 1S exciton.
However, these authors have not calculated the exciton
energy and have also not considered the effect of dimen-
sionality on band-gap singularity which would be
reAected in a resonant Raman experiment.

In this paper, we present a theory of resonant Raman
scattering at the Mo and M3 critical points of a one-
dimensional semiconductor for free electron-hole pairs as
intermediate scattering states. It was assumed in the
theory that the various components of the scattering ma-
trix elements of the Raman tensor were basically in-
dependent of the photon energies and were assumed to be
constants. These constant matrix elements correspond to
averaging over the different components of the Raman
tensor. The effect of electron-hole interaction on scatter-
ing is discussed by using the Slater-Koster interaction.
Electron-hole interaction leads to metamorphism of the
singularities. We also present experimental results on
resonant Raman scattering on one-dimensional ZrS3 near
the energy gap transition. We have conducted Raman
experiments for the Mo critical point stressing the reso-
nant nature of the scattering process. For experiment,
the scattering photons were detected unanalyzed corre-
sponding to averaging over the anisotropies. The one-
phonon 2 modes show enhancement at the energy gap.
Our experimental results agree well with the theory both
below and above the energy gap after including electron-
hole interaction.
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II. THEORY OF RAMAN SCATTERING NEAR THE SINGULARITIES: NO ELECTRON-HOLE INTERACTION

Consider Raman scattering (RS) in one-dimensional crystals near the Van Hove singularities assuming free electron-
hole pairs as intermediate scattering states. The one-phonon RS amplitude' at the Mo edge is then given by

max dk,
A (co)- I

[cog
—co+coo+(hk, /2m)+iI ][co —co+(hkz /2m)+iI ]

82= —,'tan '[I"/(co —coo —co~)]. A constant background
density of states will only contribute a constant term to
Raman amplitude. Similarly, RS amplitude at the M3
edge can be calculated by considering the negative
effective mass

co„=co —hk, /2m

so that for the M3 edge one gets
(2)cok =cos+hk, /2m,

where cu and coo are the energies of the incident photon
and phonon, respectively. The momentum dependence of
scattering matrix elements has been neglected in Eq. (I),
I being the damping factor associated with lifetimes of
the intermediate scattering states. Since not much is
known about the nature of the relaxation processes in
ZrS3, we prefer to treat the phenomenological parameter
I as a constant.

Assuming parabolic bands,

where k, is the total wave vector and cu is the band gap.
Then, Eq. (I) becomes

~ ~/I (co)-
o (cok co+iI—)(cok co+—coo+iI )

~ ~
~A (co)-

~g (co1, co+—iI )(cok co+co11—+i I )
(3) We find using the contour in Fig. 2 that the Raman am-

plitude at the M3 edge is

3 (co)- 1 sinO,

[(~ ~ )2+ I 2]1/2

Extending the upper limit to k by taking k,„=~, this
integral can be evaluated with the contour given in Fig. 1.
The Raman amplitude at the Mo edge is /I (co)-

sing)

)2+ I 2]1/4

sin02

[(co—
coo —co ) +I ]'/"

cosOi+
[( )2+ I 2]1/4

cos02

[(~ ~ ~ )2+ I 2]1/4 (4)

for all values of co where 0, = —,'tan '[I /(co —cog)] and

1 cosOi

[(~ ~)2+ I 2]1/4

cos02

[(cog+coo —co) +I ]'/

for all values of co where 8, = —,'tan '[1 /(co —cos)] and
02= —,'tan '[I /(co —coo —co )].

FIG. 1. Contour used to evaluate the integral in Eq. (3). FIG. 2. Contour used to evaluate the integral in Eq. (6).
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III. EXCITON EFFECTS:
SI.ATER-KOSTER INTERACTION

So far we have considered free electron-hole (e-h) pairs
as the intermediate scattering states. A simple model in-
corporating electron-hole interaction is that due to Slater
and Koster where V(r)=5(r)g, which is zero except
when the electron and hole are in the same unit cell. This
model has been used to discuss metamorphism of the
singularities due to electron-hole interaction by Velicky
and Sak and. Toyozawa et al. '

The Slater-Koster potential" in the k representation is
given by

(k~u~k') =gN

for all states belonging to a given set of valence and con-
duction bands. X is the number of unit cells per unit
volume and g is the constant which gives the strength of
the interaction.

The RS amplitude at the Mo edge can be written as

dco'Nd(co')
ReF(co)=N 'P f (co co )

The RS amplitude at the Mo point can be calculated by
rewriting Eq. (12) with the help of Eq. (2):

dcok(cok —cog) '/ [1+2~g~ReF(co„)]
A (co)—. . . (14)~ ~

0 (cok —co+iI )(co1, co+—co0+i I )

A simple integration of Eq. (13) gives ReF(co) at the M0
point:

'/7(co& co) 1f co (co&
ReF(co)- '0 (15)

dk, [1+2~g~ReF(cok )]
A (co)—,(12)

0 {cok co+ 1 I )(cog co+co0+l I )

where the real part of F(co) is the Hilbert transform of
Nd(co):

max dk, ~y'(0) ~'
/1 (co)-

0 (cok —co+I 1 )(cok —co+co0+l'r) (8) and for the M3 point one gets

where P'(0) is the envelope function describing the
electron-hole from Velicky and Sak; we have

y'(0) I'=
~
1+gF (co)

~

where

77(co co& ) 1f co ) co&

ReF(co)- '0

Combining Eqs. (14) and (15) one gets

/I (co)—
~, (cok co+i I )(co—k co+ co0+—i r)

(16)

d co'Nd ( co' )
F(co)= —N —co (co co +171)

Nd(co') being the joint density of states.
For gF(co) ((1,

(10) 2~g~~ i. ",
co0 "0 (co„co+i—I )(cok co+ C—O0+i r )

(17)

1 =1—2g ReF(co) .
~1+gF(co)

~

Then for g (0 Eq. (8) becomes

The second term of Eq. (17) will be a slowly varying func-
tion of ~ near mg which we call C. The first integral of
Eq. (17) will be solved with the help of suitable contours
shown in Figs. 1 and 2. Then at the Mo point, we obtain

3 (co)— 1 sinO,

[( )2+ r2]1/4
sin82 2~g~~Cr

[(co—co0 —co ) +I ]'/ (co —co) +I
2/gf~cr

(co —co+co0) +I

1 cosOi+
)2+ r2] 1/4

cosO~ 2~g~C(co —co)~ 2~g~C(co —co+co0)„

[(co—
co0

—co ) +I ]' [(co~ —co) +I ] (cog —co+co0) +I (18)

for all values of co where 191=—,'tan '[1 /(co —co )] and 92= —,'tan '[I /(co —
co0

—co )]. Similarly one can calculate the
Raman amplitude at M3 point as

1 sinO, Sln02
A (co)—

co0 [(co —co) + I ]'/ [(co +co0—co) +I ]'/
2/g/~cr 2[g/~cr

(cog —co) + I (co —co+co0) + I

l cosO]+
[( )2+ I 2]1/4

cos02

[(co, +co,—co)'+ r']'"
21gl~C(co —co) 2~g~C(co —co+co, )~

(cog co) +I (co —co+co0)2+I 2
(19)
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for all values of co where 0, = —,'tan '[1 /(co —cos)] and
8~= —,'tan '[I /(co —coo —cps)].

For small damping the resonance curve predicts double
resonance behavior at cog and cu +coo corresponding to
incoming and outgoing photons for both interacting and
noninteracting e-h pairs. However, for large damping
I -coo, a single peak falling roughly halfway between the
two resonances is expected. The phenomenological
damping parameter I, which we assume to be a constant,
removes the artificial divergence for negligible damping.

IV. EXPERIMENTAL PROCEDURE

Single-crystal platelets of ZrS& were prepared by chem-
ical vapor transport using sulfur excess as the transport-
ing agent. Thick single crystals about 4XO. 5X0.5 mm
were obtained with 50 Torr of S5 in temperature condi-
tions 620—750'C in an evacuated sealed silica tube when
the source temperature is 850'C. The single crystals
were characterized by microp robe analysis, x-ray
diffraction technique, and optical absorption of the
[Zr]/[S] ratio samples. X-ray patterns show that the
structure is a monoclinc one with crystallographic pa-
rameters as a=5.06, b=3.60, c=8.95 A, and B =98.5
determined from ground single crystals. These results
agree with those obtained by Schairer and Shafer. The
absorption measurements show that the fundamental op-
tical gap energies are about 2.8 eV at room temperature.

Resonance Raman scattering experiments were done in
the backscattering geometry. The scattered light was
scanned with a double monochromator and the signal
was detected by photon counting electronics.

Resonance near the direct gap was studied in ZrS& by
using various argon-ion laser lines and the temperature
tuning the gap. The sample was mounted in a closed cy-
cle cryostat and temperature was obtained by conduction
cooling and measured with a calibrated gold thermocou-
ple. The incident 1aser power was kept below 100 mW to
avoid sample heating effects. The lifetime broadening of
the phonon modes does not vary appreciably with tem-
perature.

The absorption corrected Raman intensities have been
normalized to the intensity of the 520-cm line of silicon
as the resonance effect of silicon is very well known be-
tween 1.8 and 3.7 eV at elevated temperatures.

ZrS&

20K

JD
C

c5

V)

CLP

(c)

C5

E
cf

CZ

180K

ZrS& crystal exhibits negative temperature coefficient and
is in resonance with incident photon energy (co;-2.54
eV) at 180 K. Figure 3(b) shows enhancement of all 3
modes at resonance. The peak at 280 cm ' shows
sharper enhancement than the other two peaks at 150
and 320 cm '. The resonance enhancement of the B
modes, on the other hand, is rather weak. In fact, the B
modes are not completely resolved at 180 K and are
resolved into structure at 204 and 215 cm ' at 20 K as
shown in Fig. 3(c).

Figure 4 shows the resonance Raman spectra of ZrS3
crystal near the direct energy gap transition at cps(180
K)-2.54 eV using dift'erent laser wavelengths. The oscil-
lator strength of Ag modes at 280 and 320 cm ' in-
creases with decreasing laser wavelength and is maximum
for kl =4880 A. The low-frequency mode at 150 cm
shows anomalous behavior, the mode becomes weak for

0

XL =5017 A and gains strength on further lowering the
laser wavelength. The 8 modes in the frequency range
200—250 cm ' are very weak off resonance but appear

V. RESULTS AND DISCUSSION

Figure 3 displays the Raman spectra from a quasi-one-
dimensiona1 ZrS& crystal at various temperatures for the
4880-A (2.54-eV) laser line. At room temperature, the
Raman spectrum consists of three dominant A modes at
150, 280, and 320 cm ' and assigned ' as libration R'
motion, totally symmetry stretching mode of Zr—S(I) in-
terchain bonds and the v, (ZrS2 ) vibration, respective-
ly. In addition, there are weak bands in the frequency
range 200—250 cm ' which are B modes of rigid sublat-
tice. Polarization effects were not discriminated in our
experiments, thus averaging over the anisotropies.

At lower temperature, the A modes shift to higher
frequencies. Further, the direct energy gap transition in

(b)

X—
2

I

700 250 300

Wove-number shift ( cm )
-1

350

FIG. 3. Unpolarized Raman spectra of ZrS& at different tem-
peratures (a} 300 K, (b} 180 K, and (c}20 K with A, L =4880 A.
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FIG. 5. Resonance curve of ZrS3 at 180 K for heap=15 meV.
The solid line shows e-h interaction fit to Eq. (18) taking
11ct)g: & 54 eV ~g ~

=0.1 eV, h I =30 meV. Raman intensity is
plotted on log ~p scale.
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FIG. 4. Unpolarized resonance Raman spectra of ZrS3 at 180
K using diA'erent wavelengths of argon-ion laser.

TABLE I. Phonon modes at 180 K in quasi-one-dimensional
ZrS3 crystal.

near resonance for XL =4880 A. These modes appear as
a broad band. Table I lists observed phonon modes at
180 K in a quasi-one-dimensional ZrS3 crystal.

Figures 5, 6, and 7 show the resonances of these 2
modes near the direct-gap transition in quasi-one-
dimensional ZrS3. The experimental points in Figs. 5—7
were collected in the temperature range between 300 and
150 K and in this range the lifetime broadening of the
p onon modes does not vary appreciably with tempera-h
ture, so that the damping factor is a constant in this tem-
perature range. The theoretical Raman intensities are
calculated for each A phonon using Eqs. (18), taking
g=0. 1 eV and I =30 meV as adjustable parameters. The
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FIG. 6. Resonance curve of ZrS, for heep=35 meV. Other
parameters are the same as in Fig. 5.
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Expt Q & D ~o = homey

structure is expected. On increasing I" towards coo, the
two resonances begin to overlap until for I -~o. Only a
single resonance is seen between ~=co~ and co=co +coo.
We have calculated the Raman intensity in a quasi-1D
system using Eqs. (4) and (18) in our theory, which exhib-
its a single resonance structure falling roughly in between
the incoming and outgoing resonances for damping such
that I -coo. This is irrespective of the strength of the
electron-hole interaction.

z',

X 06
IX
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I I

2.5 2.55

ENERGY (ev)

2.6 2.65

FICx. 7. Resonance curve of ZrS3 for bono=40 meV. Other
parameters are the same as in Fig. 5.

values of I =30 meV and g=0. 1 eV are consistent with
the values quoted by other authors. ' ' The value of
constant C has been chosen arbitrarily. The experimental
results are in good agreement with theory.

Our experimental results show a one-singularity reso-
nant structure in ZrS3 is due to large damping of inter-
mediate scattering states. This is consistent with previ-
ously reported' values of I in this crystal. In II-VI com-
pounds, the absence of outgoing resonance to
h cc)L =A Mg +A coo can be explained by a three-
dimensional (3D) theory which assumes a strong
Coulomb interaction between electrons and holes in the
intermediate state. We would normally expect singular
structure at ~=co and co=co +coo corresponding to res-
onance of the incoming and outgoing photons with inter-
mediate scattering states. For small damping, a two-peak

VI. CONCLUSION

We have presented a detailed theory of resonant Ra-
man scattering in a quasi-one-dimensional system near
Mo singularity. A two-peaked resonant structure would
be seen for small values of I . On increasing I one ob-
tains overlapping resonances corresponding to the incom-
ing and outgoing photons. In this case the theory pre-
dicts a single-peak structure situated roughly between the
incoming and outgoing photon resonances for both free
and interacting electron-hole pairs as intermediate
scattering states. We conjecture that the one-singularity
resonance structure in ZrS3 is due to large damping of the
intermediate scattering states.

The experimental data on a quasi-one-dimensional
ZrS3 crystal near the direct-gap transition are in conso-
nance with our theory which is appropriate to Raman
scattering in a one-dimensional crystal near the Mo
singularity. The damping factor is taken as an adjustable
parameter in the theory to match the maximum of the
theoretical resonance curve to that of experimental curve.
For the Mo singularity at 2.54 eV the results are in good
agreement both below and above the transition energy. It
is interesting to note that double resonance effects are
seen in Raman scattering from some 2D crystals like
GaSe, but neither in 3D or in 1D materials. The basic
reason for the occurrence of either incoming or outgoing
resonances or both in Raman scattering from semicon-
ductors is not known. This is an interesting problem
which remains unsolved.
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