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The Benedicks effect: Nonlocal electron transport in metals
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The Benedicks effect is the voltage difference between two points in a solid that are at the same
temperature. A nonzero value may be obtained if the temperature profile between the points is
asymmetric. We derive the nonlocal transport theory of a metal from the Boltzmann equation, and
use the results to discuss the Benedicks effect. The nonlocal theory is needed whenever the electron
mean free path has the same size as variations in the gradients of the voltage, temperature, or chem-
ical potential.

I. INTRODUCTION

Electron transport is inherently nonlocal. The elec-
trons arrive at a point having brought their energy from
some place else. Usually a local theory is adequate for
transport, since the mean free path of the electrons is
usually short compared with spatial variations in the
temperature, voltage, or density. ' However, laser heat-
ing of materials can produce transient heat pulses with
very large thermal gradients. In this case, the nonlocal
theory is required.

The Benedicks effect is the voltage difference between
two points in a solid which are at the same temperature.
It is related to thermoelectric phenomena, where a volt-
age difference may exist between two points which are at
difFerent temperatures. The Benedicks effect was ob-
served long ago in semiconductors. The effects are ex-
pected to be much smaller in metals. Recent experi-
ments observed a voltage along a metal surface with an
oscillatory temperature profile. It was suggested that this
voltage was caused by the Benedicks effect. Here we
provide a theory of the Benedicks effect. We show that
the phenomenon is caused by the nonlocal nature of.the
electron transport. We prove several theorems regarding
the occurrence of the effect.

Recently we shared in deriving a theory of nonlocal
heat transport for insulators where the heat is carried by
phonons. ' ' Here the relevant experiments were in sil-

icon, in which large thermal gradients were produced by
laser annealing. Now we wish to extend this theory to
include nonlocal transport in metals. We calculate the
nonlocal transport of the electrical conductivity, the See-
beck coefficient, and the thermal conductivity. The
derivation is somewhat similar to our earlier theory of
heat transport by phonons.

The local version of our transport equations are'

J= — (Vp SVT), — —0
e

o.STJ = Vp —xVT .
e

The linear transport coefficients are electrical conductivi-

II. NONLOCAL THERMOELECTRIC CURRENT

Consider a metal with a temperature distribution T(z).
We solve for the heat and electrical currents generated by
this temperature distribution. Although we are describ-
ing a transient process, we initially ignore the temporal
response of the electron distribution. Instead, we consid-
er the spatial response by examining the Boltzmann equa-
tion for the electron distribution

nk . nko
vk Vnk(z) =—

1
ko g„k ( )/'

(4)

k
p(z) .

2fPZ
(5)

The chemical potential p depends upon temperature, and
so it also depends upon position.

We want to find the actual distribution of electrons
n&(z) in terms of the equilibrium distribution nko which
depends upon position z through the local temperature
T(z). We have assumed a relaxation-time approximation

ty (o. ), Seebeck coeKcient (S), and thermal conductivity
(lc). Gradients in the temperature (T) and chemical po-
tential (p) provide the driving forces. These local equa-
tions require modification whenever the electron mean
free path (MFP) is long compared with the distance scale
of variations in the driving forces.

This paper was inspired by the recent theory in Ref. 9.
These authors consider the case of large thermal gra-
dients and discuss the nonlinear thermoelectric response.
While this phenomena is certainly nonlinear, we think
the important aspect of the phenomena is its nonlocal
character. Boltzmann's equation for electrons is solved
exactly, and exact expressions are provided for the trans-
port coefficients. All coefficients are nonlocal. The non-
linear solution of Ref. 9 is an approximate solution which
we obtain as the first two terms in a series expansion of
our result. However, our nonlocal solution is obtained in
closed form, without the need for a series expansion.
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z 1
nk(z) = dz', nko(z')exp — dz"

vl z' z vl z"

while for v & 0 one has

1 z' „1
nk(z) = — dz', nko(z')exp dz"

z vl z' Z vl z"

The mean free path of the electron is l(z)=ukr(k, z),
where the lifetime depends upon position if it depends
upon temperature. The possible forms for the MFP are
discussed below.

The electrical current is obtained by integrating over
the wave vector:

d kJ(z)=2e f 3 vknk(z),
(2~)'

J,(z)= f dvvf dk k np(z) .
2~ m

(9)

The integrals for v) 0 are treated separately from v&0.
In fact the latter are handled by changing variables to
v~ —v. The above expression for the current is changed
by an integration by parts:

J,(z)= f dvvI(z, v),eA

2~ rn

Bnko(z')
I(z, v)= —f dk k' f dz'

(10)

for the scattering term. Since we work at high tempera-
tures, this approximation is valid. We also assume that
the temperature profile varies in only one dimension.
This approximation, which applies to many experimental
situations, permits an exact solution to Boltzmann's
equation in terms of nonlocal response. The theory can
be expanded to transport in more than one dimension by
following the procedure of Ref. 12. We also assume that
the material is homogeneous, so that the only variation in
z is caused by variations in the temperature.

Equation (1) can be solved following the steps used by
Mahan and Claro. ' ' The symbol v=cosO, where 0 is
the angle between k and z. For v & 0 one has

make a similar contribution to the Anal answer. Howev-
er, the term Bp/BZ' does not contribute to the ther-
moelectric response. Instead, it contributes to the nonlo-
cal electrical conductivity due to spatially varying chemi-
cal potentials. These effects include electric fields, densi-
ty gradients, and temperature gradients. These effects are
considered below. Now we consider only the first term in
Eq. (12).

Another feature of the wave-vector integrals is
that the electron free path I will usually depend upon
the wave vector. We write the exponential factor
in (11) as exp[ f(k—)]=exp[ f(kF )——ag'/p], where
a=0.5kFBf /Bk. The integration variable is changed to
g, so the k integral has the form

P d (p+ g)(1 —ag/p, ) d T
(el'~+1)(e-~~+ I)»

a[T(z)]'
(14)

All of these terms are collected to produce the final result
for the integral over the wave vector:

f dk k
c}z'

I(z, v) =—

7T m ks Q[T(z')]2
(1—a)

3A az'

8[T(z') ]2
dz'[1 —a(z,z')], e

3g4 az'

(16)

z „1f= fdz" „„, (17)

Equations (10) and (16) represent our general result.
First we wish to show that this result reduces to famil-

iar expressions in the limit of a local response. We as-
sume that variations of temperature T(z) are slow com-
pared with the MFP l, so that the temperature can be re-
moved from the integral. We also use the fact that the
quantity a is just the derivative of the argument in the ex-
ponent. The factor (1—a) can be rewritten as
1+(kF/2)B/BkF are removed from the integral. The
only k dependence of the integral is in the MFP I in the
term f. In the limit of slow spatial variation in the tem-
perature, we find

z „1X exp — dz"
z' vl z"

I= 21r kB BT2(z)
3A4

1+— vl(k)k a
2 Bk k=kF

e~ka (kF) BT (z) Bin[1(k)]1+
9A Bing /=0

Bnkp

az'
1 'dT Bp

(e~~+ 1)(e ~~+ 1) k~ T
(12)

Bp Bp BT
BZ BT BZ

~ k~ gT~

12p Bz'
(13)

where 13=1/k&T. Both terms on the right in Eq. (12)

The result is simplified by first doing the integral over the
electron wave vector k. First we must evaluate the
derivative:

S= ~ kaT Bln[cr(p)]
3eEF 8ln( p )

(20)

The advantage of using logarithm derivatives is that one
can ignore all constants. The MFP can be related to the
electrical conductivity l(k)-o.(k)/k, which shows that
the factor in parentheses is Bln[o.(p)]/i31n(p, ). The stan-
dard definition of the Seebeck coeKcient S if found from
J=o.SV T /e, where o. is the electrical conductivity.
Thus we derive
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This expression is called the Mott formula ' ' for the
thermopower of a metal. It is the standard result, which
relates the Seebeck coefficient to the logarithmic deriva-
tive of the electrical conductivity with respect to the
chemical potential. Our nonlocal theory reduces to this
expression in the limit that the local theory is valid,
which occurs when the spatial variations in the tempera-
ture are small compared with the size of the electron
MFP.

Next we consider possible situations where the nonlo-
cal theory is required. The first case is where the temper-
ature profile is periodic in space. Then [T(z)] is also
periodic, which we represent by a series in cos(2vrnz/a ),
where a is the period. Then all of the integrals can be
done analytically, with the result (0„—=2rrnl /a ):

2 BT(z)
k Bz

a' T(
Bz'

(28)

T(z")=T(z)+(z"—z )
BT(z) + 0 ~ ~

az

f= T(z) ~z
—z'~ —sgn(z —z') — (z' —z) +1 BT(z)

2 az

(29)

(30)

The first term on the right is identical to the local theory
of thermoelectricity. The other terms contribute to the
nonlocal theory. The size of these additional terms may
be estimated by expanding the exponent in a Taylor
series:

[T(z) ] = To+ g s„cos(2irnz/a ),

emka2 kF aJ,(z)= 1+
3g3 2 0kF

Sn
X g 1 — tan '(8„) sin(2vrnz /a )

0„ 0„

(22)

—
yA. T(,z) iz' —z

I , 1 aT(z)
e f=e " 1+sgn(z —z')—

2 az

X(z —z)'+

2 aT(z), v'1' a' T(z)
Bz T Qz

(31)

(32)

AUF
l(z) =

2~re, , kii T(z)
(23)

When the MFP depends upon position, the factor in the
exponent has to be evaluated numerically. It has the
form

1
VkT,

vI
(24)

Obviously the current is also periodic. The derivative
with respect to kF operates on the MFP /(kF ).

The second case is when the MFP is limited by
electron-phonon interaction. This scattering dominates
in pure metals at high temperatures. Then the MFP is
given in terms of the transport form of the electron-
phonon coupling constant A, , :

Thus the local theory is valid whenever

«1.
T BZ2

(33)

This criteria applies to the case of the electron-phonon
interaction at high temperatures. The important point is
that the validity of the local theory does not rely upon
whether the first derivative BT/» is large or small. In-
stead, the local theory is valid as long as the variations of
the second derivative are small compared to the size of
the MFP. The local theory is valid even if l BT/Bz is
large. Also note that the correction terms are nonlinear.
This expansion rederives the nonlinear term of Ref. 9.
However, if this term is large enough to be important,
then one should use the nonlocal theory which gives an
exact evaluation of all contributions.

2~k, k
'Vk =

VAUF
(25)

III. NONLOCAL ELECTRICAL CONDUCTIVITY

T(z')exp —
yk J dz "T(z")

z'

1 0 z
exp —y„dz"T(z")

BZ . z'
(26)

The integral can now be written as

An estimate of the size of nonlocal eft'ects can be obtained
by some manipulations on the integral in (16). For z )z'
we write the factor as

Here we solve for the nonlocal electrical conductivity.
We evaluate the contribution of the second term in (12).
In the local limit, it will give the first term on the right in
Eq. (1). The integral I is

2m d, Bp f (g+ p)(1 —ag/p)
iri~ — »' (e~~+ 1)(e ~~+ 1)

(34)

aT(z ) a
, e—oo z . BZ BZ

(27)
m f ~ d, i}P
g4 — Bz' (3&)

The minus sign between the two integrals occurs because
of the absolute-magnitude symbols in the definition of f.
Next, we integrate by parts:

The quantity a is in a term which is smaller by the ratio
(ks T/EF ) and is neglected. The term in a only contrib-
utes significantly to the nonlocal thermoelectric current.
The result for the current is
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0 — QZ
(36)

This integral is our basic result for the nonlocal conduc-
tivity. In the local limit we obtain the first term in (1),
where the expression for the electrical conductivity is
O. =e n0~/m.2

Ziman and Chambers' considered nonlocal electrical
conduction in metals. Their theory was derived for the
anomalous skin effect, where the ac electric field
penetrates only a small distance into the surface of a met-
al. Their theory differs from ours in that they considered
only linear response, while our nonlocal theory is also
nonlinear.

&' a aT
p ((1 .

PT C)z BZ
(41)

The local theory is valid for the thermoelectric contribu-
tion to the heat current whenever

the chemical potential rather than on the temperature.
In the limit that the local theory is valid, this expression
reduces to the first term on the right in (2), where the See-
beck coefficient is given again by the Mott formula (20).

Again one can derive the conditions for the local
theory to be valid. At high temperature, one finds again
a criterion similar to (33). The local theory is valid for
the thermal conductivity whenever

IV. HEAT CURRENTS

The heat current is evaluated from the expression

d k
Jg =2

3 vk knk
(2~)

This formula is similar to (8). The factor of e is missing,
and it has an additional factor of the particle energy gk in
the integrand. There are other terms in the heat current,
but they are unimportant in metals.

There are two terms in this expression, which corre-
spond to the two terms in (2). The first contributes
another formula for the nonlinear thermoelectric effect.
The second is the nonlocal thermal conductivity. The
derivation of these two terms is similar to the derivations
of the preceding sections. One first integrates by parts.
The derivative of the occupation number is given in (12).
The first term on the right in (12) gives the result for the
thermal conductivity. We find

Jg, = — f dv v f dz'p(z'), e
mkii i, , (j7 (z )

6A' co Bz
(3&)

The local limit of this expression is given by the standard
result that J&, = —~BT/Bz, where the thermal conduc-
tivity is given by the Wiedemann-Franz law

~ok T

3e
(39)

mk,' 1+—
3Q 2 ~k k=kF

The nonlocal thermal conductivity depends upon the lo-
cal values of the temperature, and also the local values of
the chemical potential.

The second term on the right in (12) gives the ther-
moelectric contribution to the heat current. We find

I 8 BpT ((1 .
PT BZ BZ

(42)

In both of these cases, the nonlocal theory is required
when either the temperature or the chemical potential
varies rapidly with position.

V. THE BENEDICKS EFFECT

The Benedicks effect is the dc voltage in a solid which
exists between two points which are at the same tempera-
ture. A nonzero voltage may be observed if the tempera-
ture profile T(z) between these two points is asymmetric.
It has been observed in semiconductors. However, in
metals the voltage is expected to be small. One way to
obtain a larger voltage is to have a periodic array of
asymmetric temperature variations. One possible profile
is shown in Fig. 1. If the periodic temperature distribu-
tion is symmetric about a maximum point, then there is
no voltage. A voltage comes about because of asymmetry
in the periodic distribution. Recently, a voltage has been
observed in metals which have a periodic temperature
distribution. It has been suggested that this is caused by
the Benedicks effect.

The Benedicks effect is predicted by our nonlocal
theory. Here we discuss the conditions under which it is
observed. We show that there are three requirements in
order to observe it. (i) The first was already stated above,
namely, the periodic distribution is asymmetric about a
maximum point. (ii) The second condition is that the
electron MFP must depend upon temperature. No effect
is observed for a MFP which is a constant. (iii) The third
condition is that the electron MFP must depend upon the
wave vector of the electron. All of these requirements
are discussed below.

X f 'dv v f" dz'T'(z') ", e-Bp(z')
0 oo Z

(40)

This expression has the factor of ( 1 —a ) which again has
been changed to a factor with a derivative with respect to
wave vector. This factor always enters the thermopower.
The integral dz' again contains the factors of T (z') and
p(z') which were found in the integral for the thermal
conductivity. However, here the derivative is taken on

FIG. 1. An example of a periodic but asymmetrical tempera-
ture variation, which would show a Benedicks eFect.
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The most general periodic distribution, with a spatial
period of a, is given below. We also give the series for the
square of the function, which enters into the integral for
the nonlocal current. It is convenient to introduce the
wave vector k„—:2~n /a. The temperature and chemical
potential can be expressed as

T(z) = To + g [t„cos( k„z ) +s„sin( k„z )], (43)

T (z) = Ti + g [ T„cos(k„z ) +S„sin(k„z )], (44)

T& = T&+ ~ y (t&+s&) (45)

P (z) =po+Ciz+ g [U„cos(k„z)+V„sin(k„z)] .

(46)

J(,E)+J(.T) (47)

2 I

J' '= J f—'dvvf dz " ', e f,
0 oo Bz

(48)

J' '= —jTf dvv f dz', e, aT'(z )

0 oo az' (49)

em
JE

2 2g3
(50)

emk~ kF1+
6A 2 (3k

(51)

One condition for the observation of this effect is that
both sets of coefficients (t„,s„) in the temperature series
must have some nonzero values. This is the requirement
that the distribution be asymmetric about a maximum in
the periodic distribution. We do not provide here the
simple trigometric relations between ( t„,s„)and ( T„,S„).

We have included a similar series for the chemical po-
tential. Obviously, if the temperature distribution is
periodic, then so is the chemical potential. The object of
the derivation is to see whether the oscillating com-
ponents of the temperature distribution can provide a
nonzero value for the linear coefficient C&.

We use (10) and (16) for the nonlinear thermoelectric
coefficient J,I ', plus (36) for the nonlocal electrical
current J' ', to generalize (1):

our discussion. In a one-dimensional system, the equa-
tion of continuity for a static system requires BJ, /Bz =0.
We also assume that the ends are insulated, so that no
current can Aow. This is the same as J, =0. Both condi-
tions are satisfied, since if J=O for all values of z, then
the derivative is also zero. Thus we must have that the
two currents J' ' and J' ' are equal and opposite. The
periodic distribution in temperature will provide contri-
butions to J' '. These contributions are set equal to
—J' ', which determines the chemical potential.

We begin our discussion by proving two theorems.
The first theorem is that the Benedicks effect is zero if the
MFP I is a constant, independent of position. In homo-
geneous systems this assumption is equivalent to assum-
ing the resistivity is independent of temperature. The ex-
ponential factor f= z —z'~ l(vl ), and the integrals above
can be evaluated analytically. The result is similar to
(21), as a series in 8„=2vrnl la:

tan '0„

C, =0 ~

X [S„cos(k„z ) —T„sin( k„z ) ],
(56)

Here the thermoelectric current is periodic, and there is
no dc component. There is no Benedicks effect. We have
proved that there is no Benedicks effect when the elec-
tron mean free path is independent of position in the
solid. For homogeneous systems, this assumption is
equivalent to the condition that the MFP does not de-
pend upon temperature. The only other assumption
which we made in this proof is that Boltzmann's equation
(1) is valid. We solved this equation exactly in obtaining
our proof of no Benedicks effect. This form of the
Boltzmann equation is approximate. A better equation is
the quantum Boltzmann equation which is valid for elec-
trons which are not good quasiparticles. We have not
tried to solve this equation for this problem.

The second theorem is that the Benedicks effect is zero
if the electron MFP is independent of the Fermi wave
vector kF. That is, there is no dc voltage if the derivative
factor L is replaced by unity in (52). Since we just proved
that there is no effect if the MFP is independent of posi-
tion, we must now assume that it does depend upon posi-
tion. Thus we express the exponential factor as

It is convenient to rewrite (47) as

J, = —jz f dvv f dz', [p (z')+bT (z')L]e
0 oo

(52)

1 zf=—f dz "F(z")
V z'

1 1 BF(z)= —F(z)(z —z')+- (z —z') +
v 2 Bz

(57)

2I 2

b=
3

I.:—1+ kF

2 BkF

(53)

(54)

This expression will form the basis for the remainder of

G(z)=p +bT (58)

0=f'd. .f - d. "",-f
0 — Bz

(59)

Change the integration variable to s = ~z
—z'~F(z)lv and

the integral becomes
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v@20=— dvv e ' exp — +F o o 2F2»
BG(z+ vs /F ) vs dF+exp» 2F2»

BG(z —vs /F )

az
(60)

2 BG 3 BF 2 BG
5F » 5F »

6 BFBG
5F4»»' (61)

What kind of functions G(z) satisfy this equation. The
trivial solution is G=const, so that every term in the
series is identically zero. The Benedicks effect is given by
a function G=C&z. However, this solution is not al-
lowed. The first term is nonzero, and proportional to C&.
However, all other terms are zero since they contain high
derivatives of G (z). This is true even for all terms besides
those few shown. That is, if one disallows solutions such
as G ~z" for n &1, then n =1 is also not allowed. We as-
sume that the function G(z) has no periodic terms: the
ac terms in T are cancelled by equal and opposite ac
terms in p . Otherwise one cannot satisfy 0=BG/» for
all values of z. Then the only remaining question is
whether G(z) has a linear term. The above series does
not permit a nonzero value of C&.

There is a Benedicks effect. Real metals have a MFP
which does depend upon temperature and upon the Fer-
mi wave vector. Below we will show how to obtain a
nonzero value of C, in this case. Previous derivations '

have obtained a Benedicks effect while assuming that the
MFP is a constant —independent of either position or
Fermi wave vector. We regard those derivations as in-
correct. Generally their mistake was in not treating the
two currents J' ' and J' ' on an equal footing. An ex-
pansion was made in the nonlinear, or nonlocal, proper-
ties of one current, but not the other. However, they
must be treated together, since the two terms almost
completely cancel their contributions at each order of
perturbation theory.

Now we derive the Benedicks effect. We must allow
the MFP to depend upon position, and we must retain
the derivative factor of L. We rewrite the argument of
the integral as

BG+bBT'(L 1) f= fBG -bBT'-Bf
»' »' »' »' Blnpo

new term H=G —bT A, where A=BlnF/Blnpo. Now
the oscillatory terms in H(z) cancel, leaving only the
linear term which is the Benedicks effect. The next two
terms can produce constant terms, and hence contribute
to C&. The functions T and F are both oscillatory. The
product of two oscillatory functions can produce a con-
stant term which does not oscillate: e.g. ,
2cos 8=1+cos(29). There are other terms depending
upon 8"+'F/Bz"Bingo. They usually vanish, since F is
usually a product of a factor which depends upon z and a
factor which depends upon kz, in which case the double
derivative of lnF will vanish. Recalling that
C& =2poBpo/» is the dc component of p, we finally
derive an expression for the dc component of the chemi-
cal potential, which is the Benedicks effect:

3~ ka a 1 BlnF
dz

10apo o [p(z)]3 Blnpo

(3 T dF BT ()F

Here we have retained only the largest term. We also
averaged over a period, in order to eliminate the oscilla-
tory components. Generally the factor with the logarith-
mic derivative does not oscillate. For example, in (24) we
show the usual case for metals at high temperature where
F= vy& T. For this case the above result simplifies to

3A' (1—g)
1omaz',

1 BT
o [T(z)]i Bz

(62)
T 0 T

(65)

where po is the equilibrium chemical potential. This for-
mula is used in the integrand in (52). One evaluates the
integral again. There are new terms arising from the last
term in the above equation. The series (61) has new
terms which are

b
BlnF
Blnpo

4I Q2 T2 ()F+3F ~z 5F»
4'I ()T~ Q~F

15F' »»' (63)

The first term is oscillatory. It has the same form as the
first term in (61). These two terms are combined into a

Binder (p )

Blnp
(66)

Bp 21k' (1 —g) ~ 1 dT
dz

10maA, , o [T(z)]
(67)

Since A. , is dimensionless, the voltage scale over one
period is given by b, V-(fi /ma )(b,T/T), where a is
the length scale of the temperature variation.

The dimensionless factor of g is of order unity. For ex-

The second term in brackets can be integrated by parts,
which shows that it has the same form as the first term.
Combining them gives

'3
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ample, for alkali metals at their melting temperature, ' '
they range in value from g= —6 for lithium to /=+4 for
potassium. This quantity can be inferred from the mea-
surement of the thermopower.

This expression is evaluated for the numerical example
discussed in Ref. 9. The variation over a single period
has a sawtooth shape T(z)=TO+(T, —To)(3z/2a) for
0(z (2a /3 and T(z) = To+3(T, —To)(1 —z/a ) for
2a/3&z &a. Their values were T& =600 K, TO=300 K,
a =10pm. In this case, the two terms in the integrand of
(65) contribute a similar amount, and the result is

sions for the electrical current to derive a formula for the
Benedicks effect, which is the voltage between two points
in the solid which are at the same temperature. We show
that the Benedicks effect exists if three conditions are
satisfied: (i) the temperature varies in an asymmetrical
way between the two points, (ii) the electron mean free
path depends upon position, and (iii) the electron mean
free path depends upon the wave vector of the electron.
Granted that these conditions are met, the size of the
voltage is given approximately by the expression

ai 4X lo-' V „
a

(68)
R a BlnT

(69)

If one uses a metal such as silver with A, , -0.13 the value
of 6V-0.2 pV. This is smaller than the estimate in Ref.
9. As we said above, our expression is different because
we systematically expanded together the two terms in the
current, and only obtained a nonzero result because the
mean free path depends upon the position and wave vec-
tor.

VI. DISCUSSION

We have derived the nonlocal response for electron
transport in metals. We have used the nonlocal expres-

The voltage is generally quite small.
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