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We investigate the electrical conductivity of disordered random resistor networks. A systematic
perturbative weak-disorder expansion of the conductivity is derived, in terms of the moments of the
probability distribution of the random-bond conductances. This diagrammatic technique applies to
any distribution of (possibly complex) conductances, and any regular lattice of arbitrary dimen-
sionality d. Explicit quantitative results are given, up to the sixth order of perturbation theory, for
(hyper)cubic lattices in all dimensionalities of physical interest, and compared with the predictions
of the effective-medium approximation (EMA). The conductivity generically departs from the
EMA formula at the fourth order of perturbation theory. On the square lattice, due to the duality
symmetry, the EMA starts to be incorrect only at the fifth order. In all the situations considered,
the discrepancy between the EMA prediction and the exact conductivity is affected by a very small
numerical factor. The limit of a large dimensionality d is also investigated. The conductivity is
shown to have a systematic 1/d expansion, three terms of which are given explicitly. The
discrepancy with the EMA formula is again very weak, and starts with the 1/d terms. This study
yields, therefore, a quantitative understanding of the currently observed fact that the EMA predic-
tion is very accurate for a large class of conductance distributions.

I. INTRODUCTION

Electrical transport properties of disordered media are
often modeled by random resistor networks. Neglecting
the geometrical randomness of the material, one maps it
onto a regular lattice, where the disorder only enters the
distribution of the conductances living on the bonds of
the lattice, considered as independent random variables.
Of special interest is the case of binary composite media,
such as the conductor-dielectric mixture, which exhibits
a percolation transition. G-eneral reviews on these topics
can be found in Refs. 1—6. More recently, random-
network models have also been proposed to study the
frequency-dependent (ac) conductivity and dielectric con-
stant of binary systems, and other random mixtures. In
this latter case, the bond conductances assume, in gen-
eral, complex values. Reference 7 presents a recent re-
view of ac electrical properties of disordered media.

One of the key issues is the determination of the mac-
roscopic conductivity of the random network, as a func-
tion of the probability distribution of the bond conduc-
tances. Although very few analytical results are avail-
able, several eKcient and accurate numerical approaches
have been proposed, which will not be reviewed here.
The present analysis concerns mostly the effective-
medium approximation (EMA). This approach, by now
over 50 years old, ' is a self-consistent approximate
scheme, which owes its success to both advantages of be-
ing easily applicable to many various situations, and its
ability to yield quantitatively good predictions (see Ref.
10 for a review), except for conductance distributions
that are too singular, such as, e.g. , the binary mixture

close to the percolation threshold.
In spite of the many successful applications of the

EMA, the analytical study of its validity does not seem to
have motivated much work so far. Kirkpatrick' argued
in a qualitative way that the EMA formula is expected to
be a very good approximation, since it only ceases to be
exact, in the case of weakly disordered networks, at the
fourth order of perturbation theory. This argument has
then been confirmed on a quantitative basis by Bergman
and Kantor, " in the case of a binary distribution of the
bond conductances, on the three-dimensional cubic lat-
tice, by means of a weak-disorder expansion of the con-
ductivity, up to the seventh order of perturbation theory.
A somewhat similar perturbative analysis has also been
performed in a slightly different context, namely hopping
models on random chains. ' ' These models describe the
diffusion of classical particles hopping in a disordered
medium, characterized by static random transition rates
between neighboring sites. In one dimension, the static
diffusion coeKcient Do is known exactly, and the weak-
disorder expansion of the frequency-dependent diffusion
coefficient D(z) can be recast into a systematic low-
frequency expansion in powers of z ', of the form
D(z)=DO(l —aiz'~ +ariz+ ). Here z denotes a di-
mensionless variable, proportional to the squared fre-
quency. It turns out that the second correction
coe%cient a2 is, in general, not correctly predicted by the
EMA formula.

The goal of the present work is to investigate, from a
very general viewpoint, the validity of the EMA predic-
tion for the conductivity of random resistor networks,
built from (hyper)cubic lattices in any dimension d, and
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with arbitrary (possibly complex) conductance distribu-
tions. We aim, in particular, at a systematic comparison
between the predictions of the EMA formula and of the
perturbative weak-disorder expansion, thus extending the
results of Ref. 11, which concerned only the binary distri-
bution for d =3.

The content of this article is as follows. Section II
presents some general formalism about circuit equations
in random resistor networks, in a form adapted to derive
a weak-disorder expansion. The diagrammatic expansion
of the conductivity is described in Sec. III, whereas Sec.
IV is devoted to a general comparison between the EMA
prediction and a perturbative weak-disorder results. We
show, in particular, how the EMA formula amounts to
performing a resummation of one-impurity effects, often
referred to as a T-matrix resumation. In Sec. V we dis-
cuss, from a more quantitative viewpoint, several specific
situations, namely the linear chain, where the conductivi-
ty is known exactly; the square lattice, where the conse-
quences of the duality symmetry are discussed; the cubic
lattice; and finally the limit of a large dimensionality. A
short summary is presented in Sec. VI, where the rather
peculiar case of weakly diluted lattices is also discussed.

II. GENERAL FORMALISM

In this section we present some general formalism
about circuit equations, which will be used later to derive
the perturbative weak-disorder expansion of the conduc-
tivity of random resistor networks.

We denote by x the sites of the hypercubic lattice in
any dimension d, and by e, (1 + i ~ d ) a basis of unit vec-
tors. The lattice spacing is taken equal to unity. The
bond joining the sites x and x +e, carries a random con-
ductance o.

, (x). These bond conductances are indepen-
dent random (possible complex) quantities, drawn from
some probability distribution p(o. )do. Let V(x) be the
electric potential (voltage) of the site x. The current in-
tensity I;(x), flowing out of site x in the positive ith
direction, is related to the voltage drop by Ohm's law,

solution to the circuit equations (2.3) of the form

d

V(x)=E x+ W(x) with E x = g E;x;, (2.4)

where the disorder-induced potential fluctuations W(x)
have the same periodicity L in each direction as the ran-
dom bond conductances. Since the electric potential is

only determined up to an additive constant, we can im-

pose the condition that the average of the fluctuations
W(x) over the sample vanishes: g W(x) =0.

The conductivity tensor X; of the finite sample is
defined as the set of coefficients of the linear relation be-
tween the mean current intensities J, and the applied
electric field, namely

(2.5)

This conductivity tensor can be shown to be a self-
averaging quantity in the thermodynamic limit. Namely,
although X, varies from sample to sample as long as the
size L is finite, it converges to a well-defined limit, with
probability 1 as L goes to infinity. In the present situa-
tion, since the distribution of the microscopic bond con-
ductances is isotropic, it can be argued that the conduc-
tivity tensor of the infinite random network is an isotro-
pic quantity, of the form X, =X5,", where 6," is
Kronecker's symbol. Throughout the following, X will
denote the conductivity of the model in the thermo-
dynamic limit.

In the simple (nonrandom) case of a uniform network,
where each bond conductance takes the value o. , it can be
easily checked that the function W(x) vanishes identical-
ly in such a way that I;(x)=oE, , implying X=o.. The
conductivity of the network is just the common value of
the bond conductances, with our choice of units where
the lattice spacing is 1.

We now set more precisely the formalism which will be
used in the perturbative weak-disorder analysis of the
problem. We assume that the bond conductances take
the form

I, (x)=o, (x )[ V(x +e, ) —V(x)],
whereas the conservation of electric charge reads

(2.1)

o,.(x)=o.o[1+e,(x)], (2.6)

d

g [I,(x) I, (x —e, )]=0 . — (2.2)

Thus we obtain the circuit equations for the potentials in
the form

d

g Io., (x)[V(x+e, ) —V(x)]
i =1

where the dimensionless fluctuations e, (x ) are considered
as small and have zero average. In other terms, o.

o is, by
definition, the average of o;(x ) over the distribution

p(o )do of the conductances.
We introduce the moments of the conductance Auctua-

tions

+o;(x —e; )[ V(x —e; ) —V(x) ] I
=0 . (2.3) p„=([e,(x)]") (k ~1), (2.7)

In order for the problem to be well behaved, and in
analogy with previous studies of diffusion problems on
random lattices, '"' we restrict the problem for a while
to a finite sample with length L lattice spacings in each
direction, and periodic boundary conditions. This sample
then has the topology of a torus and consists of L" sites.
We impose an arbitrary electric field E, , and look for a

where the average is taken over the distribution p(cr )do'.
We have thus, in particular, p, =0. Our aim is to evalu-

ate the conductivity X of the random network as a sys-

tematic series expansion in the moments pk (k ~ 2).
With the above definitions, the key equation (2.3) can

be recast as
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d—b, W(x) = g E; [e; (x) —e;(x —e;)]
i =1

d
+ g [e,(x)[W(x+e;)—W(x)]

+e;(x —e, ) [ W(x —e; ) —W(x) ]],

W(q)= g e '~'"W(x) .
X

The reciprocal formula reads

W(x) = g e'~ "W(q),1

L d
q

(2.11)

(2.12)

with the notation
d

b, W(x)= g [W(x+e;)+ W(x —e, ) —2W(x)]

(2.8)

(2.9)

where the sum runs over the L" discrete values

q; =2am, /L of the wave vector q, with 1 ~ m, ~ L. In the
limit of a large sample, this normalized sum becomes an
integral over the first Brillouin zone, namely

for the discrete Laplace operator on the lattice. The local
current intensities take the form

1„g~f dq with dq =
L d (2m )" (2.13)

I;(x)=cro[1+e;(x)][E;+W(x+e;) —W(x )] . (2.10)

It turns out to be advantageous to rewrite the above
equations in reciprocal space. We define the Fourier
transform W(q ) of the function W(x) through

where each component q; of the wave vector varies be-
tween 0 and 2~.

We define in a similar way the Fourier transforms I, (q )

and Z, (q ). Equations (2.8)—(2.10) are then fully
equivalent, in the limit of a large system size L, to

d

K(q)W(q)= g (1 —e ') EZ, (q)+ f

dpi',

(p)(e ' —1)W(q —p) (2.14)

and

J, =RE, =oo E, + d f dq Z;( —q)(e ' —1)W(q)

with the definitions

K, (q)=(1 —e ')(1 —e ')

(2.15)

W(q ) as an infinite power series in the function e(p ),
which involves more and more complex multiple in-
tegrals.

For the sake of clarity, we present first a very detailed
calculation of the leading nontrivial term in the perturba-
tive analysis, which turns out to bring a second-order
contribution to the conductivity, proportional to pz.

This leading contribution originates in the term linear
in Z;(q ), which can be directly read from the first term on
the right-hand side of Eq. (2.14), namely

i(q, —q )/2 .=4e ' ' sin —sin
2 2

(2.16)
lq

W(q)= g E; e, (q)+
K(q)

(3.1)

d d

K (q)= g K,, (q)=4 g sin —=2 g (1—cosq, ) .
i =1 i=1 i=1

By inserting this expression into Eq. (2.15), we are left
with

III. PERTURBATIVE
WEAK-DISORDER EXPANSION

This section is devoted to the derivation of the weak-
disorder expansion of the conductivity X of random resis-
tor networks, in terms of the moments p& of the distribu-
tion of the bond-conductance fluctuations, up to the sixth
order of perturbative theory, using the general formalism
exposed in the preceding section.

The mechanism underlying this expansion is the struc-
ture of Eq. (2.14), which reads symbolically W=e+Z, W,
hiding integrals and prefactors in a convolution-like
operation, denoted symbolically by an ~. This implicit
equation can be solved iteratively, yielding
8'=e+e, e+e, e, e+ - . We obtain thus the solution

(3.2)

Let us consider for a while the quantity

S~(q) =
d e;( —q)e, (q )

1

1

d g e'~'~ 'e, (x)e (y ) . .

x,y

(3.3)

Since the conductances of any two different bonds are
statistically independent, the only terms which yield a
nonzero contribution in the limit of a large sample corre-
spond to both e's being on the same bond, namely x =y

K;~ (q)
J;=oo E, —

d g EJ f dq e,. ( —q)e,(q).



3936 J. M. LUCK 43

and i =j. We thus have the following limit behavior,
with probability 1,

L

S,)(q)~p25; as L~~ (3.4)

for any value of the wave vector q, where 6," is again the
Kronecker symbol. We are thus left with

K;~(q )J;=0+; 1 —
IM2f dq K(q)

(3.5)

For reasons of symmetry, the value of the integral is in-
dependent of the index i. This value is therefore 1/d, in
such a way that we obtain the following expression for
the conductivity to the lowest nontrivial order:

P2X=o. 1 — +. . .
d

(3.6)

This first correction term induced by the randomness is
thus proportional to the variance Ao. of the distribution
of the conductances, since we have
Ao = ( 0 ) 0'0 —Ppo'0.

The next terms in the weak-disorder expansion of the
conductivity X can be obtained in a systematic way as
follows. One derives from Eq. (2.14) an expression of
W(q ) as a power series in e;(p ), as explained above. Let
us write explicitly the solution up to terms quadratic in
e;(p)

FICz. 1. The six diagrams which contribute to the weak-
disorder expansion of the conductivity, up to the fourth order of
perturbation theory. Their contributions are listed in Table I.

K;~(q —p )f dpi';(p) g E,K q

xe (q —p)+
(3.7)

dashed lines joining the dots show how the averaging
over the random conductance fluctuations is performed.
Any connected set of k dots joined by dashed lines corre-
sponds to a factor of c&, the k th cumulant of the distribu-
tion of e';(x ). Let us recall here for further reference the
relationship between the cumulants c& and the moments
pl, of a probability distribution, up to k =6, in the partic-
ular case pi =0:

The conductivity is the obtained by inserting this expan-
sion into Eq. (2.15). Let us notice that it is sufhcient to
expand the function W(q ) up to terms of order e" ' in-
cluded, in order to obtain the conductivity up to terms of
order e .

The next step consists of evaluating the multiple sums
of the random conductance Quctuations e; (x ), which gen-
eralize the sum considered in Eq. (3.3). Since these ran-
dom variables are independent and have zero mean, it is
easy to realize for instance that the sum involving three
e's is proportional to p3, since the e's are bound to be on
the same bond, whereas the sum involving four e's splits
into a term in p~ (corresponding to the four e's on the
same bond) and a term in pz (corresponding to two pairs
of e's on two difFerent bonds).

It turns out that each contribution obtained through
this procedure is advantageously represented by a dia-
gram, analogous to those used, e.g. , in Refs. 11 and 12.
Figure 1 shows all the diagrams which contribute up to
the fourth order of perturbation theory. Each dot along
the solid line represents one function e, (p ), which can be
thought of as one elementary scattering of the electric po-
tential with the disordered bond conductances. The

TABLE I. Contribution of the six diagrams shown in Fig. 1
to the weak-disorder expansion of the conductivity up to the
fourth order of perturbation theory.

Term

—c&/d

c3/d
—c4 /d
—c2& /d'

Diagram label

D
E

Contribution

Il
0
d

C2 p27 C3 p37 C4 p4 3pZ

, (3.&)
c ~

=ps —10p2p3y c6 p6 15p2p4 —10p3+ 30p

The present expansion shares all the common features
of field-theoretical diagrammatic expansions. The contri-
bution of each diagram takes the form of a multiple in-
tegral over several internal wave vectors, each of them
running over the first Brillouin zone. The integrands in-
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volve products of the functions K;J(p) and K(p), defined
in Eq. (2.16), respectively, in their numerators and
denominators. We prefer not to bother the reader with a
detailed exposition of these technicalities. The contribu-
tions to the conductivity of the diagrams shown on Fig. 1

are listed in Table I. The actual contribution of a dia-
gram is the product of two factors, namely (1) the prod-
uct of cumulants and powers of the spatial dimension d
given for each diagram in the "Term" column of Table I,
and (2) the result of the integration over internal wave
vectors, given in the "Contribution" column. The ex-
pression of the quantity I&, which enters the contribution
of the diagram labeled D, will be given in Eq. (3.9). It is
worth noting that the diagram labeled E brings a vanish-
ing contribution to the conductivity. More generally, it
can be shown that only the "one-particle-irreducible" di-
agrams have a nonzero contribution. Those diagrams are
defined by the property that they cannot be separated
into two disconnected parts by cutting the solid line once.

In pursuing this diagrammatic expansion up to higher
orders, one realizes soon that several different diagrams
may have identical contributions. These a priori casual
coincidences become evident when using another graphi-
cal representation of the various terms. We are thus led
to introduce graphs, analogous to the Feynman graphs of
quantum field theory. A graph is obtained from a dia-

gram by curling it up, in such a way that all the dots
which are connected by a given dashed line are brought
to coincidence. The dashed lines vanish in this pro-
cedure, so that a graph is made of a single curved solid
line, with two external legs. Any given graph corre-
sponds to several diagrams, which contribute to the con-
ductivity for equal amounts. In the following, the num-
ber of such contributions is called the multiplicity of the
graph.

Figure 2 shows the 24 different one-particle-irreducible
graphs that contribute a nonzero amount to the conduc-
tivity, up to the sixth order of perturbation theory. The
contribution of each graph to the conductivity is given in
Table II as the product of three factors, namely (1) the
product of cumulants and powers of d given in the
"Term" column, (2) the result of the integration over
internal wave vectors, given in the "Contribution"
column, and (3) the number of identical terms represent-
ed by the graph, given in the "multiplicity" column.

The contributions of these graphs involve four non-
trivial numerical quantities, denoted I„I2, J&, and Jz,
and called "lattice integrals" in the following. These
numbers are actually the only ingredient of the weak-
disorder expansion that depends explicitly on the
geometry of the underlying lattice. They are defined as
the following integrals over several wave vectors:

I, =d'f dp f dq f dr 5(p+q+r) K,;(p) K,, (q) K;;(r)

K;;(p) K;;(q) K,;(r) K,, (s) K,, (t)I2=d f dP f dq f dr f ds f dt 5(p+q+r+s+t)
K(p) K(q) K(r) K(s) K(t)

d

J, =d" g f dP f dq f dr f ds 5(p+q+r+s)
(3.9)

K;,.(p) K, (q) Ki(r) K~(s) Ki(t)J2=d g f dP f dq f dr f ds f dt 5(p+q+r)5(p —s —t) K (p) K (q) K (r) K (s) K (t)

In these formulas, i is any fixed direction index
(1 ~i ~d); the results do not depend on i, for obvious
symmetry reasons. The functions K(p) and K,J(p) have
been defined in Eq. (2.16), and 5 is a notation for the nor-
malized Dirac 5 function on the Brillouin zone:

G(x)= '

~lP X

fdp for d)2,K p
lP'X ]f dp for d2.
K p

(3.1 1)

5(p)=(2~) 5(p, ) . 5(pq)= pe'~ (3.10)

where the summation runs over all the points x of the
infinite d-dimensional hypercubic lattice.

In the following we will need, both for analytical and
numerical purposes, an alternative representation in real
space for the four lattice integrals I, , I2, J„and J2.

Let us introduce first the lattice Green's function G(x ),
defined by

This function obeys the difference equation
—EG(x ) =5 0 where b is the lattice Laplace operator
defined in Eq. (2.9). We can thus interpret G(x —y) as
the kernel of the inverse of the operator ( —b, ), hence the
name "Green's function. " Since the basic equation (2.8)

involves the difference operator 6, the Careen's function
G(x ) can be expected to play some part in a real-space
reformulation of our results.

In any dimension d )2, G(x ) is maximal for x =0, and

falls off for large x as the Green's function in the continu-
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um, namely G(x)=~x~ /[(d —2)S&], where S&
denotes the area of the unit sphere in d dimensions. For
d = 1 and 2, one subtraction has to be performed, as indi-
cated in Eq. (3.11), in order to avoid a long-distance, or
"infrared, " divergence. One thus has G(0)=0. In one
dimension, the Green's function can be evaluated exactly,
namely G(x )= —

~x ~/2. In two dimensions, G(x ) grows
logarithmically at large separations, as
G(x ) = —lnlx

I
/(2~)

We define then the following second-order differences:

G; (x ) =G(x ) —G(x+e, ) —G(x —e. )+G(x+e; —e. )

K; (p)= Jdpe'~'
x(p) (3.12)

12 The integral representation of the term on the second line
of this equation holds in any dimension d 1, and the
G; (x) always fall off as ~x

~
. By inserting into the

definitions (3.9) of the lattice integrals the plane-wave
representation (3.10) for the Dirac 5 functions, we are
left, after some elementary manipulations, with the fol-
lowing alternative definitions of I] Ip J& and Jz in real
space:

I, =d g [G;;(x)]

17

20

I~=d'g [G,, (x)]

d

J, =d g g [G~(x)]
x g=1

J~=d g g G;;(x —y)[G, (x)] [G, (y)]
xy j= 1

(3.13)

22

23 24

FICx. 2. The 24 one-particle-irreducible graphs which con-
tribute to the weak-disorder expansion of the conductivity, up
to the sixth order of perturbation theory. Their contributions
are listed in Table II.

These expressions will prove to be very useful in the fol-
lowing, both for analytical and numerical purooses.

We close this section with our main general result,
namely the weak-disorder expansion of the conductivity
X of an arbitrary random resistor network, up to the
sixth order of perturbation theory. The following expres-
sion has been obtained by adding up the contributions,
given in Table II, of the 24 graphs shown in Fig. 2. In
terms of the moments pk, we have

Pz PsX=cr (10+X~+X +iX~+X +5X +6. . ) with X~=—,Xg=

X~= —
~ [p~+(d —3+I, )p~],

G

X,= [p, +(3d —10+4I, +J, )@~i],= 1
(3.14)

X6= — [p6+(4d —15+6Ii +3Ji )p~~+(2d —10+4Ii +2J, +I~)pqd'

+ [2d —12d +30+3(d —6)Ii +(d —9)Ji +4J~ ]@~]
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IV. THE EFFECTIVE-MEDIUM APPROXIMATION

This section is devoted to a detailed comparison of the
systematic weak-disorder expansion derived above and
the effective-medium approximation (EMA). As stated in
the Intoduction, the EMA is an approximate self-
consistent scheme that was proposed long ago' ' to
describe the conductivity of inhomogeneous materials.

Our first goal is to show how the EMA formula can be
viewed as a self-consistent one-impurity resummation of
the weak-disorder expansion exposed above. To do so,
we go back to the general formalism of Sec. II. We split
the random bond conductances according to

o. ; ( x ) =X™[ 1+rj,.(x )], (4.1)

TABLE II. Contribution of the 24 graphs shown in Fig. 2 to
the weak-disorder expansion of the conductivity up to the sixth
order of perturbation theory.

Term

—c2/d

c3/d
—c4/d'
—C2/d

Graph
number Contribution Multiplicity

just as in the definition (2.6), but without the hypothesis
that X is the average of o, (x ) with respect to its dis-
tribution p(o )do. Under this circumstance, we can re-
cast the central equations (2.3) and (2.5) into the follow-
ing form, which is more appropriate for a real-space
analysis. We denote by F,(x) the total voltage drops
across the bonds,

F;(x)= V(x +e; ) —V(x ) =E; + W(x +e; )
—W(x) .

(4.2)

In terms of these quantities, the circuit equations (2.3) or
(2.8) assume the form

F;(x)=&; —g G;, (x —y )rI, (y)F, (y ), (4.3)

where G;, (x) denotes the combination of lattice Careen's
functions defined in Eq. (3.12). The mean current intensi-
ties read

yEMAJ;=
d g [I+rj;(x)]F;(x) . (4.4)

FEM A( )
d

d+rt;(x )

so that the conductivity of the network is given by

y EMAd
~+ (d —i )XEM" )

(4.5)

(4.6)

In order to recover the weak-disorder expansion of the
conductivity within the present formalism, one would
just have to solve Eq. (4.3) iteratively, thus obtaining
F;(x ) as a power-series expansion in the r) (y), to insert
this expansion into Eq. (4.4), and finally to average over
the distribution of the g (y). This approach, which is
fully equivalent to that exposed in Sec. II, although less
elegant, has the advantage of showing more explicitly the
part played by each individual random bond conduc-
tance.

The EMA approach consists of taking into account-
in the successive terms of the weak-disorder expansion—
only the random part g;(x ) of one single bond conduc-
tance. One thus approximates the quantity F, (x) that
shows up in Eq. (4.4) by the solution F™(x)of Eq.
(4.3), obtained by neglecting all terms on the right-hand
side of that equation, except for the term with
(y, j)=(x, i ).

Since G;;(0)=1/d —this quantity is nothing but the
integral on the right-hand side of Eq. (3.5)—we obtain

c, /d4

C2 C3 /d

c6 /d

C2C4/d'

2 /d 5

—c,'/d'

7
8
9

10

12
13
14
15

16
17
18
19

20
21
22
23
24

II
d
d
J)

I,
d
d
J)
II

I2
J)
J2
dI I

d2

dJI
d2

where the angular brackets denote an averaging with
respect to the probability distribution p(o )do. This ap-
proximate result for the conductivity X still depends on
the choice of X . Recall that we have not assumed
X =(o,(x)). The usual assumption which leads to
the EMA formula is the rather natural self-consistency
requirement that X =X . The standard EMA formula
is thus recovered, in the form of the implicit equation

(
y EMA

=0
1 )yEMA

(4.7)

where the angular brackets again denote an averaging
over the probability distribution p(cr )dcr

In order to compare the EMA prediction for the con-
ductivity with our perturbative results of Sec. III, we
have to derive the weak-disorder expansion of the EMA
prediction. To do so, we go back to the notation (2.6) for
the bond conductances, with o o

= ( cr, (x ) ), and we as-
sume that both e;(x) and X —era are small. We can
thus determine recursively from the implicit formula (4.7)
an expansion of the EMA conductivity, in terms of the
moments pk. The result reads, up to the sixth order,
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XEMA ( 1+XEMA+ XEMA+ XEMA+ XEMA+ XEMA+. . .
) th XEMA XEMAP2 P3—

CTp 2 3 4 5 6 3 2

X ——
[ +(d —2)p ], X = [p +(3d —5)p~ ] (4.8)

X6 = — [@6+2(2d—3)p~4+(2d —3)@3+(2d —8d+7)p2] .EMA

Since we have derived the EMA formula along the
lines of the general formalism introduced in Sec. II, we
are able to point out, in a quantitative way, which ap-
proximation the EMA procedure corresponds to, on the
contribution of each diagram in the perturbative expan-
sion. Since the EMA theory only takes into account
one-impurity effects, it is easily realized that it amounts
to approximating the values of the lattice integrals
defined in Eqs. (3.9) and (3.13), by the contribution of the
single term in Eq. (3.13) where all bonds are identified,
namely x =0 for Ii and I~, (x =0, j=i ) for Ji, and
(x =y =0, j=i ) for Jz. Since we have G, , (0)= 1/d, as
mentioned earlier in this section, the EMA approxima-
tion just corresponds to the values

I

concerned. The general formalism of Sec. II is not need-
ed in this case, since we know from elementary circuit
theory that the resistance of several elements put in series
is the sum of their individual resistances. The conduc-
tivity of the infinite random chain is therefore given by
the exact formula

X= 1

(1/~) (5.1)

For weakly disordered random conductances of the form
(2.6), the general result can be expanded as a power series
in the moments pk. We thus obtain

X =~ol 1 —
V2+V3+ (

—
V 4+VV

Ii =I2 =J, =J~ = 1 (EMA) (4.9) +(V5 —2Vu3)+( —V6+2Vu4+V3 —
V z)+

XEMA (1 I ) +21

d3
(4.10)

for the leading correction to the EMA formula for the
conductivity of an arbitrary, weakly disordered resistor
network.

V. SPECII'IC RESULTS

In this section we discuss the general results presented
in Secs. III and IV in several specific cases, namely the
linear chain (d =1), where the conductivity is known ex-
actly, the square lattice (d=2), for which the duality
symmetry yields some constraints on the conductivity,
the cubic lattice (d =3), and finally the limit of a large
dimensionality (d ~~ ).

A. One dimension

The one-dimensional situation is that of a linear chain,
a trivial geometry as far as random resistor networks are

of the four lattice integrals involved in the weak-disorder
expansion of the conductivity. Indeed, it is easy to check
that the expansion (4.8) of the EMA formula is
recovered, for the hypercubic lattice in any dimension d,
by inserting the EMA values (4.9) into the exact expan-
sion (3.14).

A more quantitative comparison of the exact perturba-
tive expansion and the EMA prediction will be presented
in Sec. V, where the dimensionalities 1,2,3, and the
d ~ ~ limit, will be considered successively. Let us just
mention that the EMA prediction ceases to be exact, in
general, at the fourth order of perturbation theory.
Indeed, the term in p~ involves the lattice integral Ij,
which is, in general, different from its EMA value, given
in Eq. (4.9). One has therefore, in general, the following
estimate,

(5.2)

The linear chain thus provides an explicit example, on
which our general perturbative result (3.14) can be tested.
To do so, we just have to evaluate the four lattice in-
tegrals involved in the diagrammatic expansion and
defined in Eq. (3.9). Since the indices i,j can assume only
one value, the integrands in Eq. (3.9) are identically equal
to unity, and the measure dp is normalized, so that we
have

I, =I2=J, =J2=1 (d=l) . (5.3)

It is easily checked, once these values are inserted into
Eq. (3.14), with d = 1, that the expansion of the conduc-
tivity coincides with Eq. (5.2), as it should.

The exact value (5.1) for the conductivity of the one-
dimensional chain is also correctly predicted by the EMA
formula (4.7), for any distribution of the bond conduc-
tances. In particular, going back to the weak-disorder
analysis, the values (5.3) of the lattice integrals for d =1
coincide with their EMA values (4.9).

B. Two dimensions

The two-dimensional case is that of the planar square
lattice. This situation is also peculiar, because of the ex-
istence of the duality symmetry. Duality is a geometrical
transform acting on two-dimensional graphs, defined as
follows. To each planar graph 6, one associates its dual
graph 6, obtained by drawing one dual bond across each
bond of 6, and matching these dual bonds in a consistent
way, taking special care with boundaries (see, e.g. , Ref.
16). The infinite square lattice is self-dual, i.e., dual to it-
self. This symmetry has many consequences concerning
the physics of various lattice models. It was used long
ago by Kramers and Wannier' to determine the critical
temperature of the Ising model. Reference 18 contains a
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complete review of the applications of duality to statisti-
cal mechanics.

Now consider graph 6 as an electrical circuit, with ar-
bitrary conductances o.

I on its bonds labeled by l, and
build a dual circuit 6 by putting conductances o.

&

= 1 /o. I

on the bond l dual to l. It can be shown that the conduc-
tances X and X of both networks, with appropriate posi-
tions for the electrodes, are also reciprocal to each other:

XX= 1 (5.4)

Straley ' noticed that this identity still holds when X
denotes the conductivity of an infinite square random
resistor network, the bond conductances having any
probability distribution p(o ), and X denotes the conduc-
tivity of the random network with the "dual" distribution
of bond conductances, obtained from the initial one by
changing o to 1 /o . This result has, in particular, re-
markable consequences for binary distributions of the
bond conductances, in connection with percolation
theory (see Ref. 7 for a recent review).

In the present context, the duality symmetry imposes
some constraints on the weak-disorder expansion derived
in Sec. II, in the case of the square lattice. Indeed, the
identity (5.4) has to be obeyed by the power-series expan-
sion (3.14) of both conductivities X and X. Since the
bond conductances o. of the original network are given by
Eq. (2.6), we are led to set

= cro(1 +e)
1

oo 1+e

The condition ( e ) =0 implies

1o.o= 1 /0 o E = 1 ~1+e '
1

1 +e

(5.5)

(5.6)

with unknown coeKcients a 2, etc. , a systematic expan-
sion of the identity (5.4) yields expressions of the
coeKcients of the even orders in terms of those of the
previous odd orders, namely

a2 = —
—,, a4I =——

—,a31 1 3

a42 = —
—,+ —,a33 ~ 3

a 6I
= —

—,+ —,a 3
—

—,a 5 I
1 ~ 5 5

11 x ~ 5 3a62 = —, —6a3 —,a5I —
—,a52

a63 =
—,

—2a3 +—,a 3 a 52
1 l 2

a64 + a3 + a52

(5.8)

Equation (5.6) allows one to express the moments pk of
the dual variable e in terms of the p&, and to obtain thus
the power series of X. If we now assume that the conduc-
tivity X admits the following power-series expansion,

&=~o[ 1 +a 2P2+ a 3P3+ ( a 41P4+ a42P2)

+ ( a 51P5+a 52P2P3 )

+ ( 61P6+ 62P'2P4+ 63P3+ 64P2) +2 3

(5.7)

Roughly speaking, one-half of the terms of the weak-
disorder expansion of the conductivity of the square lat-
tice are determined by the duality symmetry.

It can be checked that all the conditions (5.8) are
obeyed by the general expression (3.14), provided the four
lattice integrals obey the following identities:

I, =I,= 1, J, =J, (d =2) (5.9)

As a matter of fact, it is rather easy to prove that the in-
tegrals defined in Eq. (3.9) indeed obey Eq. (5.9). Let us
give an explicit proof for the first lattice integral I, . Con-
sider the quantity

2~k = f dp f dq f dr 5(p+q+r)

K;;(p) K, (q) Kkk(r)
X

K(p) K(q) K(r) (5.10)

where the direction labels i,j,k take the values 1 or 2.
For reasons of symmetry, among these eight numbers,
there are only two different quantities, namely A; k

=X
for i =j=k, and A; &

= Y in all other cases. On the other
hand, by summing over any one of the three indices, we
obtain a factorized integral over two wave vectors, which
is very easily evaluated. This remark yields the sum rule

»k + A»k = 4, for any values of the indices j and k, and
two other analogous relations. The first sum rule, taken
for (j,k ) = ( 1, 1 ) and (j,k ) = ( 1,2 ), yields X+ Y=2 Y=—',
implying X= Y= —,', and finally I2 =8X = 1. Q.E.D.

Thus the weak-disorder expansion of the conductivity
up to sixth order on the square lattice,

~ =~oI ,'P2+ .'P3 —
8—P.+ —,-', (P—s+Jl P2P3)

,', I P6+ (3~—
1
——1)P2P4+(2J1—1 )P3

+( —3J, +2)P2]] (5.1 1)

involves only one quantity that has not been calculated
explicitly, namely the integral JI ~

We have evaluated the numerical value of J&, by means
of its representation (3.13) in terms of the lattice Green's
function G(x ). It is known (see Ref. 20 for more details)
that the exact value of the Green's function of the La-
place operator on the square lattice can be determined via
a recursive scheme, using only two inputs, namely the
difference equation —b, G(x ) =5„o, and the values on the
main diagonals, which are known explicitly:
G(+nel+ne2)= —(1/~)[1+—,

' t —,
' + . + 1/(2n —1)].

We have used this scheme to generate very accurate nu-
merical values of G(x ), and performed the sum given in
Eq. (3.13). The result J, = 1.092 958 179 is reproduced
in Table III.

Let us now turn to a quantitative comparison with the
EMA prediction. The conductivity of the square lattice
ceases to be correctly described by the EMA approach
only at the fifth order of perturbation theory, since the
value of the lattice integral Il, given in Eq. (5.9), coin-
cides with its EMA value, given in Eq. (4.9), whereas this
is not the case for JI ~ The leading discrepancy for weak-
ly disordered networks therefore reads
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gEMA 1
(J 1 )~~~ (5.12a)

or, numerically,

X —X =5.809 886X 10 cr()p~3 . (5.12b)

The leading fifth-order contributions to the conductivity
that are not correctly taken into account by the EMA ap-
proach therefore come into play with a very small numer-
ical coeKcient, of the order of 0.5%.

C. Three dimensions

X—X =2.822 87X 10 ops~~ . (5.13)

This leading correction to the EMA formula again in-
volves a very small numerical prefactor.

D. Large dimensionality

I.et us finally examine the behavior of the weak-
disorder expansion of the conductivity, in the limit of a

The case of the three-dimensional cubic lattice is fully
generic, from a purely technical viewpoint. Indeed, the
four nontrivial lattice integrals, involved in the result of
the weak-disorder expansion up to the sixth order of per-
turbation theory, and defined in Eq. (3.9), do not possess
any remarkable property for d=3. We have evaluated
these quantities numerically, using their expressions
(3.13) in terms of the real-space Green's function G(x).
Unlike the two-dimensional case, the difference equation
obeyed by the function G(x ) is not sufficient to determine
it entirely. We have therefore made use of the integral
formula (3.12) to evaluate the required differences of lat-
tice Green's functions. The numerical values of the four
lattice integrals are listed in Table III. Although this
procedure is less accurate than the "exact" one used in
the case of the square lattice, a precision better than the
seven significant digits quoted in Table III is easily
achieved, without having to use more sophisticated tech-
niques, such as those developed in Refs. 21 and 22.

As far as the comparison with the EMA prediction
goes, since the three-dimensional case is generic, the
EMA formula begins to depart from the exact conduc-
tivity at the fourth order of perturbation theory, with the
terms in p2, according to Eq. (4.10), which yields, numeri-
cally,

G(0)= f dp = f dp f dte
K(p) 0

(5.14)

where Io is the modified Bessel function, namely

f P zcosp
0 1T k&o (kt)

(5.15)

When the dimensionality d of the lattice becomes large,
the t integral on the second line of Eq. (5.14) is dominated
by the vicinity of the origin t =0. To leading order, the
Bessel function Io can be replaced by 1, so that we have
G(0)= Jo"dt e "'=1/(2d). This procedure can be pur-

sued, by keeping higher orders of the series expansion
(5.15). We obtain thus a systematic 1/d expansion of the
Green's function at the origin, namely

G(0)= + +1 1 3 + 0 ~ ~

(2d ) (2d )
(5.16)

For a generic lattice point x, with a fixed number of
nonzero coordinates, G(x ) can be shown to fall off
proportionally to an integer power of the lattice dimen-
sionality d, namely G(x)-d ~ ~ ', where )x(=(x, )

+~x2~+ . . denotes the sum of the absolute values of
the coordinates of the vector x. In other terms, only the
value G(0) of the Green's function at the origin decays as
1/d, whereas its values G(+e, ) at the first neighbors of
the origin decay as 1/d, and the values G(+2e;), or
G(+e;+e ) for iW j, decay as 1/d, etc.

Therefore, in order to evaluate the lattice integrals to a
given order of the 1/d expansion, starting from their rep-
resentation (3.13), we have to consider only a finite num-

large dimensionality d. The key point of the following
analysis is that the lattice Green's function G(x ), defined
in Eq. (3.11), possesses a regular expansion in powers of
1/d, the inverse of the dimensionality, e.g. , for x =0, and
more generally for any fixed value of the position x, with
a finite number of nonzero coordinates, such as
x =ei+e2.

The simplest way of deriving the 1/d expansion of the
Green s function is to introduce a Schwinger-like variable
t, conjugate to the denominator K(p) in the definition
(3.11). Let us exemplify this derivation in the simplest
case of the origin x =0:

TABLE III. Values of the four lattice integrals, defined in Eq. (3.9), that enter the weak-disorder ex-

pansion of the conductivity, in the case of (hyper)cubic lattices of various dimensionalities. For
d = 1, 2, or 3, the values 1 are exact, whereas the other numbers are very accurate numerical estimates.
The last column gives a few terms of the large-d expansion of the integrals.

Integral d=1 d=2 d=3

I2

J2

1.092 958 178

1.092 958 179

0.923 782 5

0.986 912 8

1.263 574 7

1.056 1133

—(1+1/2d+1/2d + . )

—,
"(1+1/6d+ )

—(1+3/2d+3/2d + . . )
2

4
—(1+7/d + . .

)
d
8
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ber of types of neighbors of the origin. We do not give
the full derivations here. The last column of Table III
gives the first two or three terms of the 1/d expansion of
the four lattice integrals involved in the perturbative ex-
pression of the conductivity.

We now have the more ambitious aim of recasting the
result (3.14) of the general weak-disorder expansion into a
systematic 1/d expansion of the conductivity of a ran-
dom resistor network in a large dimensionality, without

reference to perturbation theory. This reinterpretation of
our result is made possibly by the following observation.
The apparent structure of the terms of Eq. (3.14) is fully
general. Namely, the sum X& of the terms of order k has
an explicit prefactor of ( —1/d)" ', whereas the rest of
the expression only takes up one power of d for every
even order in perturbation theory. Therefore, it makes
sense to recast our result (3.14) in the following form of a
systematic 1/d expansion, using the results of Table III:

X=o 1 ——+(p —p ) +( —4p, +9@ +13@~ —9p ) +1
(5.17)

More generally, the term in d " is a linear combination
of terms of various orders k ranging from k=n+1 to
k =2n in the perturbative weak-disorder expansion.

We finally notice that the large-d behavior of the lat-
tice integrals, as given in the last column of Table III, is
not correctly reproduced by the EMA values (4.9). As a
consequence, there is a discrepancy between the exact
large-d expansion (5.17) of the conductivity, and the ex-
pansion of the EMA prediction, starting with the terms
of order 1/d, namely

(5.18)

VI. DISCUSSION

In this paper we have shown how a systematic pertur-
bative weak-disorder expansion could be derived for the
conductivity of random resistor networks, built from
(hyper)cubic lattices in arbitrary dimension d. The out-
come of this diagrammatic expansion only involves the
moments of the probability distribution of the (possibly
complex) microscopic bond conductances, whereas the
structure of the underlying lattice enters through some
integrals involving lattice propagators. The explicit re-
sults given up to the sixth order of perturbation theory
involve four such nontrivial integrals, denoted I& I2 Ji,
and J2. Either exact or very accurate numerical values of
these quantities are given in Table III for all dimensions
of physical interest (d =1, 2, or 3) and in the limit of a
large dimensionality. These results generalize therefore
those presented in Ref. 11, which were derived using a
somewhat similar diagrammatic approach, but concerned
only the binary distribution on the three-dimensional cu-
bic lattice.

We have also checked explicitly that the effective-
medium approximation (EMA) corresponds to a self-
consistent resummation of the one-impurity terms ( T
matrix resummation) of the perturbative expansion.
From a quantitative viewpoint, this approximate scheme
amounts to replacing all the lattice integrals by 1, namely
the value obtained by taking into account only the contri-
bution of coinciding points, using a real-space formalism.
Under general circumstances, in agreement with Refs. 1

and 11, we have shown that the EMA formula ceases to

be exact at the fourth order of perturbation theory, and
this discrepancy is affected by a very small numerical pre-
factor. This analysis explains, therefore, on a quantita-
tive basis, the current observation that the EMA predic-
tion is very accurate for quite a broad variety of distribu-
tions of the microscopic conductances (see, e.g. , Refs. 2,
7, and 10).

These general results are then discussed in more detail
in several more specific situations. In the case of the
linear chain (d = 1), the conductivity is known exactly for
any distribution of the conductances. This exact result is
correctly reproduced by the EMA. This example pro-
vides therefore a test case for the formalism used in this
work. The case of the square lattice (d =2) is also partic-
ular, since the duality symmetry imposes rather severe
constraints on the expression of the conductivity. One
consequence of this symmetry is that the EMA prediction
departs from the exact value of the conductivity only at
the fifth order of perturbation theory. In both two and
three dimensions, the leading terms discarded by the
EMA formula show up with a very small numerical pre-
factor, of a fraction of a percent (also see Ref. 11).

In the limit of a large dimensionality (d ~ oo ), it turns
out that our perturbative results can be recast in a sys-
tematic expansion of the conductivity in negative powers
of the dimension. The terms calculated so far yield the
explicit values of the first three terms of this 1/d expan-
sion. The EMA prediction is also shown to be very accu-
rate in the limit of a large dimensionality, since it ceases
to be exact only at the level of the coefficient of 1/d .

We want to discuss finally in some detail the specific
case of a binary distribution of conductances, where each
bond conductance o, (x ) equals either o „with probabili-
ty p, or o2, with the complementary probability q = 1 —p.
This binary model has been studied extensively, especially
in connection with percolation theory (see Ref. 7 for a re-
cent review). In particular, the limiting cases o.2=0 and
o. , = ~ correspond to the conductor-insulator and the
conductor-superconductor mixtures, respectively, which
undergo a percolation transition for p=p„where p,
denotes the geometrical (connectivity) threshold of the
bond-percolation problem.

Denoting by h the (possibly complex) dimensionless
conductance ratio o 2/o. i, along the lines of Ref. 7, we ex-
pect the EMA prediction to be reasonably good for all
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values of p and h, except in rather limited critical regions
around both isolated percolation critical points
(p =p„h =0) and (p =1—p„h = ao ). Going back to a
weak-disorder analysis, one realizes that there are two
limiting cases where the binary model becomes weakly
disordered, namely (1) h ~1, and (2) p~0 or p —+1. In
the first situation, our weak-disorder analysis applies ful-

ly, and generalizes that of Ref. 11 to an arbitrary dimen-
sionality. We do not aim at being more quantitative
about the general binary model in the present article.

The second situation is more peculiar. Let p~O for
definiteness. It can be shown that all the moments pk,
defined in Sec. II, vanish linearly with p. As a conse-
quence, the successive terms of our perturbative expan-
sion do not become smaller and smaller in a nicely con-
trolled way. Hence the present version of perturbation
theory cannot be viewed as a systematic small-p ap-
proach. It is known that the EMA prediction correctly
describes the term linear in p in the conductivity of the
binary model, whereas the evaluation of the term propor-
tional to p is a dificult task, which has been achieved in

a series of papers, for both site and bond dilution,
using another perturbative approach, and a formalism in-
spired from kinetic theory. It would be desirable to work
out a more general perturbative scheme, which would
embrace both our approach (which holds for general dis-
tributions, under the assumption that the moments pk of
the fiuctuating part of the microscopic conductances fall
off for high values of the order k), and the kinetic-
theoretical one (which is valid for a peculiar kind of weak
randomness, namely weak dilution).
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