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Surface-phonon dispersion investigation of the (1 X 1) = (5 X 1) reconstruction of the Ir(100) surface
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High-resolution electron-energy-loss spectroscopy has been used to investigate the dispersion of
surface phonons on the unreconstructed (1X1) and the reconstructed (5X1) Ir(100) surface. A
significant difference in the dispersion properties of the (1 X 1) and (5 X 1) surfaces is found for both
the [011] and the [001] direction. Lattice-dynamical calculations in a second-nearest-neighbor
force-constant model fit the experimental results on the (1 X 1) surface if a large amount of surface
stress is invoked. Our results suggest that the surface stress is the driving force for the surface
reconstruction of Ir(100)-(1X 1)~Ir(100)-(5 X 1).

I. INTRODUCTION

In the past few years high-resolution electron-energy-
loss spectroscopy (EELS) has been successfully applied to
measure the dispersion of surface phonons of clean and
adsorbate-covered surfaces. ' These studies have
demonstrated that by comparing the experimental results
with theory one is able to obtain important information
concerning dynamical and structural aspects of surfaces.
These studies have also revealed that the interatomic
forces at the surface are in most cases difT'erent from the
forces in the bulk. The capability of this method for the
investigation of metastable surfaces or of surfaces with a
propensity towards reconstruction is of particular impor-
tance since direct information concerning the reconstruc-
tion and relaxation mechanism is provided.

In the present study we have investigated the recon-
structed and unreconstructed phases of an Ir(100) sur-
face. It is well known from previous surface sensitive
spectroscopic investigations that the Ir(100) surface un-
dergoes a (1 X 1)~(5 X 1) surface reconstruction. 4

What is quite unique about the Ir(100) surface is that
stable and atomically clean surfaces of both Ir(100)-
(1 X 1) and Ir(100)-(5 X 1) can be obtained by controlling
experimental conditions. This behavior of the Ir(100)
surfaces thus provides us with a unique opportunity to
directly compare the properties of the surface phonons of
the unreconstructed and the reconstructed surfaces. The
dispersion of surface phonons has been measured along
both the I X [011]and the I M [001] directions. For both
directions we find that the frequency of the Rayleigh pho-
non near the zone boundary is higher on the (1 X 1) un-
reconstructed surface. This result is considered as being
indicative of a substantial tensile stress on the (1 X 1) sur-
face and that this stress plays a major role in driving the
reconstruction.

II. EXPERIMENT

The experiments reported here were carried out in an
ultrahigh vacuum chamber equipped with a double-pass
electron-energy-loss spectrometer, low-energy electron-

diffraction (LEED) optics, an Auger-electron spectrome-
ter (AES) and a mass spectrometer. The chamber was
pumped by a 220 1/s ion pump and a liquid-nitrogen-
cooled titanium sublimation pump. The base pressure of
the chamber was in the low 10 "mbar range.

The voltage supply of the EELS spectrometer has been
described previously. In brief this computer-controlled
voltage supply provided a high stability and a low noise
level ( (0.2 meV), which enabled us to obtain EELS
spectra with a resolution [full width at half maximum
(FWHM)] as good as 7.5 cm ' (0.93 meV) in the elastic
beam. The resolution of the EELS spectra reported here
was set to be within the range of 15—25 cm '. The
momentum-resolved EELS spectra were measured by ad-
justing the incident angles (0; ) of the electron beam with
fixed final scattering angles (9f ), as described in detail
previously. The impact energies of the incident electron
beam used in the present study were in the range of
29—70 eV. All phonon spectra were recorded at 300 K.

The Ir(100) surface used in the present study was cut
and polished to within 0.5 of the desired orientation.
The crystal was initially cleaned by cycles of Ne+ ion
sputtering at 300 K (6 lzA, 2 kV) for 5 min followed by
annealing at 1400 K for 5 min. The final stages of clean-
ing involved the exposure of the crystal surface to —10 L
of oxygen at 1200—1300 K followed by annealing for 1

min at 1400 K. After these cleaning procedures the AES
measurements revealed that the surface was free of oxy-
gen and the impurity level of carbon was less than l%%uo

near the surface region. The cleanliness of the surface
was also assured by EELS measurements. Similar to that
reported p'reviously, the clean Ir(100) surface obtained
after the above procedures was characterized by a sharp
(5 X 1)-LEED pattern, indicating that the surface un-
derwent a (5 X 1) surface reconstruction.

The preparation of a clean Ir(100)-(1X1) unrecon-
structed surface from an Ir(100)-(5X1) reconstructed
surface has been described by other authors prev&ous-
ly. ' ' The procedures used in the present study were as
follows: A clean Ir(100)-(5 X 1 ) reconstructed surface was
exposed to 45 L of 02 at -450 K followed by slowly
heating the crystal to 740 K. Such a procedure resulted
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in an oxygen-covered surface with an Ir(100)-(1 X 1)-0
LEED pattern. The adsorbed oxygen was then removed
by exposing the surface to 5 L of Hz at —525 K followed
by slowly heating ( —1 K/sec) to 700 K. After the above
chemical treatment a clean, unreconstructed Ir(100)-
(1X1) surface characterized by a sharp (1X1)-LEED
pattern was routinely obtained. The surface was found to
be free of oxygen as indicated by both AES and EELS
measurements. Only EELS spectra with a very high
magnification of about 10 compared to the elastic beam
indicated traces of oxygen as identified by a small vibra-
tional loss at about 540 cm '. The carbon impurity level
was less than 1% near the surface region as judged by
AES measurement. Occasionally small dipole active
EELS losses were observed around 125 and 195 cm ', re-
spectively, on both clean surfaces, which were probably
caused by steps or defects.

As reported previously, ' ' the unreconstructed
Ir(100)-(1 X 1) surface was found to be stable in the tem-
perature range of 300-700 K. Heating the Ir(100)-(1X1)
surface to 1400 K gave rise to a thermally irreversible
(5 X 1) reconstruction of the surface.

III. RESULTS

Schematic drawings depicting an unreconstructed
Ir(100)-(1 X 1) surface and a reconstructed Ir(100)-(5 X 1)
surface are shown in Fig. 1. These drawings are repro-
duced from the LEED investigations of the reconstruc-
tion of Ir(100) by Heinz et al. As shown in Fig. 1 the

first layer

/
second layer

/

[001]

= [0»]

Ir {100) (1 ~1)

unreconstructed surface is characterized by the bulk-like
fourfold symmetry. LEED investigations showed that
there is only a very small relaxation between the first and
second surface layer of b,d /d = —2%%uo+2%. ' ' The (5 X 1)
reconstructed surface is on the other hand characterized
by a quasisixfold symmetry for the top Ir overlayer.
LEED analysis favored the "two-bridge" model of Fig. 1,
where two of the six atoms in the (1 X 5) unit cell occupy
precise bridge positions. The top layer is buckled so that
it possesses twofold symmetry only. There are six atoms
in the unit cell on five nearest-neighbor distances in [011]
direction, i.e., the density of atoms in the quasihexagonal
layer is 20%%uo larger than in the (1 X 1) surface. Two
domains, rotated by 90', exist on the Ir(100)-(5 X 1) sur-
face.

Figure 2 shows the surface Brillouin zone of an un-
reconstructed Ir(100)-(1X1) and a reconstructed (5X1)
surface with the hexagonal overlayer considered in isola-
tion from the substrate. In our phonon-dispersion mea-
surements the scattering plane was aligned within -2'
along the two high symmetry I X [011] and I M [001]
directions, respectively. For the ease of comparison the
phonon spectra of the (5 X 1)-reconstructed surface were
also measured along these two directions. By comparing
Figs. 1 and 2 one can notice that the I X [011]direction is
also a high symmetry direction for the (5 X 1)-
reconstructed surface. However, for the two domains of
the overlayer, one samples two different directions in the
hexagonal Brillouin zone, namely, I M ' and I K '. The
I M [001] direction is no longer a high symmetry one for
the (5X1) surface, however it is unique in that it is
equivalent for both domain orientations. The breakdown
in the symmetry of the (5X1) surface along the [001]
direction is reAected in the phonon dispersion curve,
which will be presented later.

A set of phonon spectra of the unreconstructed
Ir(100)-(1 X 1) surface measured along the I X direction is
shown in Fig. 3. The phonon wave vectors in Fig. 3 are
normalized with respect to the zone boundary of the I X

0
direction (Q~~

= 1.16 A ') and are represented as g. Fig-
ure 3(a) is a typical phonon spectrum recorded at the X

[011]

x Fl'

[001]I
FI/

—[01']]
X K'

The Ir(100) (5~1) Reconstruction

FIG. 1 ~ Schematic drawings of th structures of Ir(100)-(1 X 1)
and Ir(100)-(5X 1). The dashed circles represent the second lay-
er Ir atoms. The square and rectangle represent the unit cells.

FIG. 2. Surface Brillouin zones of the unreconstructed
Ir(100)-(1X1) and the reconstructed (5X1) surfaces with the
hexagonal overlayer considered in isolation from the substrate.
Letters with a prime refer to high symmetry points of the hexag-
onal Brillouin zone.
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The remaining parameter of the model is the first
derivative of the pair potential between second-nearest
neighbors yz. Its value is fixed by the condition that the
bulk of the material be stress-free:
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At the surface one has the additional condition that
the net forces on the surface atoms must vanish. The
condition is fulfilled automatically for the net force paral-
lel to the surface by virtue of the inversion symmetry.
For the perpendicular forces the condition reads for the
first and second layer, respectively,

—u„up~ (1,3)—4(u„—u, ~)n, (1,2)y", (1,2)

—y'2(1, 3) +4n, (1,2)cp' (i1,2) =0, (2)

—u, ~y2 (2, 4) +4( u, 2
—u, 3)n, (2, 3 )y", (2, 3 )

—4(u, 2
—u, &)n, (2, 1)y", (1,2)+4rp&(2, 3)n, (2, 3)

+4(p', (1,2)n, (2, 1)—y2=0 .

0
I

I

0.2 0.4 0.6 0.8

& = 0.„n 6t, (A-'.)

FICz. 7. Phonon dispersion curves of Ir(100)-( 1 X 1 ) and
Ir(100)-(5 X 1) measured along the I M direction.

TABLE I. Parameters for the second-nearest-neighbor model
for Ir in 10 dyn/cm; y," and y,' denote the first and second
derivative of the pair potential to the ith neighbor, respectively,
and ro is the nearest-neighbor distance.

7.20 0.128

enough to fix the parameter of a nearest-neighbor central
force model. While such a simple model fails to provide
a suitable description of the elastic constants it does fit
the frequencies near the boundary of the Brillouin zone
for some of the 3d fcc transition metals like Cu and Ni. '

For 5d transition metals larger range interactions need
to be taken into account. Also noncentral forces become
important in general ~ For the particular case of Ir, how-
ever, the Cauchy relation between the elastic constants
(here Ci2 = C44) is well fulfilled' and a central force con-
stant model should therefore su%ce. In order to fix the
parameters for a central force constant model with
second-neighbor interactions included we have matched
the parameters to provide a least-square fit to the zone
boundary frequencies of platinum, an element which is
next to Ir in the Periodic Table. The average deviation
between the experimental frequencies ' and the frequen-
cies of the model is only 1.5%%uo. The resulting parameters
were scaled to match the maximum frequency for Ir and
are listed in Table I.

Here y,'(j, k) and cp,"(j,k) denote the first and second
derivative of the pair potential to the ith neighbor be-
tween layers j and k, respectively, n, (j, k) is the z com-
ponent of the bond vector from an atom in the j layer to
the nearest neighbor in the k layer, and u, are the verti-
cal displacements of the atoms in the j layer; u, 3 is as-
sumed to be zero. If all force constants are kept at their
bulk value, the surface layers relax their vertical distance.
In view of the small relaxation of 2% (Ref. 11) deter-
mined by LEED we set all u, —:0 in our model. The con-
ditions above are then fulfilled if

', (1,2) =
—,
'

Using these parameters we have performed a lattice-
dynamical slab calculation and compared the results to
the experimental data. As is seen from Fig. 8 the theoret-
ical dispersion curve runs below the experimental data
near the zone boundary. Qualitatively, this result is typi-
cal for all fcc (100) surfaces (see, e.g. , Ref. 13), for the
Ir(100) surface, however, the difference is particularly
large.

In earlier publications ' ' the surface stress mecha-
nism has been invoked in order to explain the deviation
between experimental data and the surface phonon
dispersion calculated from bulk force constants. The ra-
tional for this model is that surface atoms, by virtue of
their lower coordination number, seek a smaller lateral
bond distance, are however fixed in their lateral distance
by the registry with the bulk lattice. In other words, sur-
face atoms are held in a lateral distance which is larger
than the equilibrium distance of their mutual pair poten-
tial. Consequently, the first derivative of the pair poten-
tial between the surface atoms yi(1, 1) should shift to
larger, positive values, whereas the second derivative
y", ( 1, 1 ) should become smaller. The picture drawn
above is consistent with results from the "embedded
atom" model. More recently, total energy calculations
have been performed for Al surfaces by Gaspar and
Eguiluz. These authors find that the primary origin for
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the (1X1) each atom has eight nearest neighbors, the
average coordination number in the (5 X 1) unit cell is 7—,

per atom. Reducing —,
' of a bond per atom costs the ener-

gy y=( —')( —')E„„=0.39 eV/atom, with E,,„being the
cohesive energy, which is 6.94 eV/atom for Ir. Thus the
net gain in energy would be Ay =0.53 eV/atom by reliev-
ing the surface stress upon the (IX 1)~(5XI) recon-
struction.

try directions the frequency of the Rayleigh phonon near
the zone boundary is higher on the unreconstructed
(1 X 1) surface. A lattice-dynamical analysis shows that
this enlarged frequency can be attributed to a strong ten-
sile surface stress. We conclude that this surface stress is
the driving force for the (1X1)—+(5X1) reconstruction
of the Ir(100) surface.
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