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Conductance of a disordered narrow wire in a strong magnetic field

Jari M. Kinaret and Patrick A. Lee
Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
(Received 11 June 1990; revised manuscript received 24 September 1990)

We have studied numerically the two-probe conductance of a narrow wire in a strong magnetic
field using a tight-binding Hamiltonian with random disorder. We found that for a square-well
confining potential the interband scattering between edge states is significant and leads to sharp
minima in conductance near the transitions from one quantized conductance plateau to another.
Within these minima the conductance fluctuates quasiperiodically as a function of the magnetic

field.

INTRODUCTION

In the past few years it has become possible to fabri-
cate increasingly narrow two-dimensional electronic de-
vices, which have shown physical properties quite
different from those of a two-dimensional electron gas.
These devices consist typically of a metal-oxide-
semiconductor field-effect transistor structure with a very
narrow (less than 100 nm) gate electrode that can be used
to control the electron density in the inversion layer un-
der the gate. The conducting channel can be several mi-
crometers long, hence the aspect ratio of the device is
typically of the order of 100. Much interest has been fo-
cused on the transport properties of these mesoscopic
systems in strong magnetic fields, when the magnetic
length is comparable to the width of the channel, and
quantum effects play an important role.

In a strong magnetic field the two-dimensional electron
gas is well known to exhibit quantized Hall effect with
vanishing longitudinal conductance and transverse con-
ductance equal to Ne?/h [integer quantum Hall effect
(IQHE)], where N is the number of occupied Landau lev-
els.! It has been shown that the IQHE can be understood
in terms of edge states propagating along the boundaries
of the sample.?”* In this paper we study the conduc-
tance of a quasi-one-dimensional electron gas in a strong
magnetic field using the edge state picture, and we expect
to find finite-size corrections to the behavior of the two-
dimensional electron gas.

CLEAN SYSTEM

The eigenstates of a two-dimensional electron gas in a
perpendicular magnetic field in the § direction can be
written in the Landau gauge A= —BxZ as
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with energies E, =(n + 1)fiw., where w, is the cyclotron
frequency eB/mc. To ensure current conservation and
unitarity of the scattering matrix it is convenient to
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choose the normalization coefficients 4,, so that each
eigenstate carries unit flux. The states are extended plane
waves in the longitudinal z direction, but in the trans-
verse x direction they are localized within a few magnetic
lengths I, =V'#ic /eB from their guiding centers x,=kl3.
In an infinite system the energy of a state is independent
of k and the guiding center. If a confining potential is in-
cluded in the x direction, we can continue to label the
states with n (subband index) and k, but the energy in-
creases with |k| and hence depends on the guiding center
xo={x), as can be easily derived for a parabolic
confining potential. At a given energy a clean system
supports N, propagating modes, where N, is defined by
E >ENp—l(k =0), E <ENp(k =0). For a square-well

confining potential the energy bands are displayed in Fig.
1.

The conductance of a device can be related to the prob-
ability of an incoming electron being transmitted through
it.2~7 It has been shown that in linear response the
(two-probe) conductance is given by

2
F=%Tr(tTt) , )

where ¢ is the transmission matrix across the system.
Analogous formulas have been derived for multiprobe
measurements as well.* We can immediately see that the
conductance of a clean, noninteracting electron gas with
N, propagating modes is
o2
erp—h— s (3)

independent of the length of the sample. The conduc-
tance of a disordered system is always less than or equal
to this limiting value.

MODEL FOR A DISORDERED SYSTEM

In a disordered system the energy levels broaden to
bands the widths of which depend on the amount of dis-
order. Now the situation is very different depending on if
the Fermi level lies near the bulk energy levels or well be-
tween them. In the former case states on the Fermi sur-
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FIG. 1. Lowest energy bands in arbitrary units as a function of the guiding center {x ) for electrons in a square-well confining po-
tential in a strong magnetic field. The width of the wire is W =25q and the magnetic field is 0.25%c /ea?.

face can easily scatter elastically among themselves, but
in the latter case they either have to scatter across the en-
tire sample, or to a different subband. As can be seen
from Fig. 1, the guiding centers of the latter states are lo-
cated near the boundaries of the sample, and they can be
classified as edge states. Classically these states corre-
spond to electron orbits hopping along the boundaries of
the sample (Fig. 2). The bulk states are more likely to be
reflected back than the edge states, as the latter ones can
only reverse their direction by scattering across the sam-
ple. Hence the conductance (2) of a disordered system in
a magnetic field is primarily due to the propagation of
edge states.

For weakly disordered systems that are much wider
than the magnetic length the interedge scattering is likely
to be negligible and the conductance is expected to be
quantized to I'=N,e?/h, where N, is the number of edge
states. However, if the magnetic length is long compared
to the width of the system, we expect the magnetic-field
effects to be unimportant, leading to a length-dependent
conductance that goes to zero as the length of the sys-
tems increases. The crossover from the low- to the high-
field regime as the magnetic field is increased is the main
topic of the remainder of this paper.

We studied the effect of impurities on a discrete lattice
using a tight-binding Anderson Hamiltonian

H=% Ujkajzcajk_’_ 2 ij,j'k'a};caj'k' , 4)
Jik Jik,j' k'
where
0, k<Oor k>L and |jl| <IN
U= jup, 0<k <L and |j|<iN (5)
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FIG. 2. Schematic illustration of the classical hopping orbits
that propagate along the edges.
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This Hamiltonian describes a noninteracting spinless
electron gas in an infinite wire of width W =Na with
clean leads attached to a disordered region of length La.
We have chosen an infinite square-well potential for com-
putational simplicity. The actual confining potential in
real devices is considerably smoother, but we believe that
a square-well potential is sufficient to describe the devices
qualitatively. The entire wire is in a uniform magnetic
field along the y axis. The magnetic field is represented
by the complex hopping terms and is expressed in units
#ic /ea®. The Hamiltonian is periodic in B and can be re-
garded as an approximation of the continuum system if
B <<, i.e., if the magnetic flux through a lattice cell is
much less than half a flux quantum. The disorder param-
eter u is a uniformly distributed random variable with
lu;;| <Vp /2. In addition to this rough impurity poten-
tial we also considered a smoothened model, where ran-
dom impurities were placed on a coarse lattice and u;;
was obtained by interpolating between the points of the
coarse lattice.

We use the Lippmann-Schwinger equation to connect
the states 9 of the disordered system to the states ¢ of the
clean system with the same energy.® On a lattice the
equation becomes

B,(r)=¢,(1)+ 3 G(r,r')V(r'),(r'), )

where G is the Green’s function for the disordered sys-
tem. In a continuum system we can use the equation of
motion

G(r,r')=68(r—r') (8)

2

E — +Vix)

L l—ihv—ﬁBxi
2m c

for the Green’s function G to write Eq. (7) in a more con-
venient form. The boundary conditions for G are chosen
so that to the right of the disordered region we only have
states propagating to the right. Hence the appropriate
function to use is G, the retarded Green’s function.
Applying (8) to eliminate the GV term from Eq. (7) we
obtain for the continuum system

Y, (r)=[1—Pp(r)]$,(r)

7 .
+ I G opd 4,96 (5,0 =G T (5,r)V'S,

+2i%A(r’)¢n(r’)G+(r,r’) ,

9)

where 0D denotes the boundary of the disordered region
D. The projection operator Pp(r) is 1 for r€ D and O oth-
erwise. The corresponding transformation can be per-
formed on a lattice as well. The final result only contains
sums over the ends of the disordered region and is more
suitable for numerical work than expression (7).

The states ¢ can be written as linear combinations of
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the states ¢
P, (0)= 3 t,d, (1), (10)

where 7 is the transmission matrix in the basis formed by
the eigenstates of the clean system. The conductance is
given by the trace of the transmission matrix, which is in-
dependent of the basis, but the calculation is most con-
veniently done in this basis, since we can immediately dis-
tinguish propagating states from exponentially decaying
evanescent modes, which are generated by scattering pro-
cesses in the disordered region. In an infinitely long wire
the evanescent modes die out in the leads before reaching
the probes and hence do not contribute to the conduc-
tance. We solve Eq. (10) for a fixed z and consider only a
finite number of transverse states Y,. It should be noted
that )y, are not eigenstates of the same Hermitian opera-
tor and are in general not orthogonal to one another;
however, they are linearly independent. By placing the
entire system in a uniform magnetic field we can avoid
any reflection due to impedance mismatch caused by the
changing field and isolate the effect of impurities.

The problem of calculating the two-probe conductance
has now been reduced to evaluating the various Green’s
functions that appear in (9). It is convenient to write
them as complex N XN matrices (N is the number of
transverse lattice points) that depend on two parameters z
and z’. The Green’s functions for the disordered system
can be evaluated recursively starting from the Green’s
function for one of the semi-infinite clean leads by grow-
ing the disordered region slice by slice.”!® In a uniform
magnetic field the Dyson equation for the left lead be-
comes, in this model, a second-order matrix equation

G,Gy'—G VG, Vi=r, (1

where G, is the Green’s function for an isolated slice, G,
is the propagator that describes an electron in the last
slice of the semi-infinite clean lead, and V is the diagonal
hopping matrix

V=08 e Bx . (12)

Equation (11) can be solved analytically for zero magnet-
ic field, but for a nonzero field we must solve it numeri-
cally. Solving this system of 2N? coupled nonlinear equa-
tions becomes very time consuming even for rather small
values of N. The Green’s functions that describe an elec-
tron propagating within the last slice of a semi-infinite
disordered system that extends from — o to z +1 can be
constructed recursively from

GLiz+1L;z+1)=[Gy Nz +1;z+1)—VG,(z;2)VT] L.
(13)

The other clean lead can be attached to the end of the
disordered region in the same fashion to give the propa-
gator for the rightmost disordered slice in the infinite sys-
tem with both leads attached,

G(L;L)=[G; L;L)—V'Gg(L +1,L +1)V]7! . (14)

G(1;1) can be constructed analogously starting from the
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Green’s function for the right lead. Off-slice Green’s that appear in Eq. (9) and consequently to calculate the
functions can be evaluated using the formulas transmission matrix and the conductance.
G(L;)=G(L;J+1)V'G, (J;]), (15)
G(L,J)=G(1;J —1)VGxr(J;J) . (16)

RESULTS OF A NUMERICAL STUDY

We performed a series of numerical calculations for
These formulas can be used to construct all propagators N =13 and L =104, 208, 325, 650, and 1300 varying the

aT = =
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FIG. 3. Ensemble-averaged conductances for systems of variable lengths and rough disorder potentials of different strengths: (a)

L =208 and V) =0.30, (b) L =650 and ¥V, =0.30, and (c) L =650 and ¥V, =0.15. The dashed line indicates the conductance of a
clean system.
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magnetic field and keeping the chemical potential fixed.
We also studied the effect of the width of the sample by
repeating some of the calculations for N =11 and
L =325 and 650. The calculations were done for rough
and smooth impurity potentials and the two models were
found to yield qualitatively similar results, although the
smooth potential was found to have smaller effects for the
same value of Vp, as could be expected. Ensemble-
averaged quantities were calculated for ensembles of 10,
25, or 100 systems.

In the clean system the conductance is quantized to
N, pez/h. When the magnetic field B is increased, the sub-
band energies increase, and when the bottom of a sub-
band passes above the Fermi level, the conductance is re-
duced by e2/h. We found that the primary effect of im-
purities is to reduce the conductance at low magnetic
fields and near conductance steps. At low magnetic fields
the states are very wide, and states traveling in opposite
directions can scatter to one another quite easily, hence
even a small amount of impurities causes significant back-
scattering. Near a conductance step the situation is quite
similar. The states on the highest occupied subband on
the higher plateau are located near the center of the wire,
and again the state with longitudinal wave vector k can
scatter to state with —k, since they are within the
effective range of the scattering potential. As the impuri-
ty potential becomes stronger, the bulk energy levels ac-
quire finite widths and states nearer the edges have other
states with the same energy within the scattering range of
the potential, and can therefore effectively take part in
scattering processes. The electrons in these states start to
scatter across the wire and the conductance decreases.
The transition from one plateau to another becomes more

aT = —

3851

gradual and the plateaus themselves narrower. The
dependence of I of L and ¥V, is shown in Fig. 3. The
dashed line in Figs. 3(a)-3(c) indicates the conductance
of a clean system, which is given by the number of occu-
pied subbands.

The intraband scattering processes described above
cause the contribution of a particular channel to the con-
ductance to decay exponentially with the length of the
wire. We observed that also the total conductance of the
wire decays according to a simple exponential law

I'(B,L)=Ty(B)e L/MB) (17)

as shown in Fig. 4. This simple decay law was confirmed
over a wide range of L and ¥V, for B in the transition re-
gions between plateaus. We note that in the middle of a
conductance plateau T differs by less then e?/h between
the shortest and longest wires studied, and it is difficult to
determine the precise length dependence of I'. If the
edge states did not mix, the conductance would be given
by a sum of exponentially decaying terms with a different
decay constant for each edge state. The observed simple
exponential decay indicates that the edge states thermal-
ize and the interband scattering is important in square-
well wires. More direct evidence for the interband
scattering and the mixing of edge states is given by the
conductance minima near transitions from one conduc-
tance plateau to another (Fig. 3). The conductance falls
well below the expected value for the lower plateau,
meaning that several edge states can reverse their direc-
tions of propagation by scattering across the wire. They
can do so by scattering via a neighboring intermediate
state on a different subband. It has been shown that at
least for a parabolically confined wire the interband

—_—
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FIG. 3. (Continued).
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FIG. 4. Conductance as a function of the length of the wire. The widths of the wires are W =13a and the disorder potential is
smooth with ¥, =0.30. Magnetic fields are B =0.02, 0.07, 0.15, 0.22, and 0.27 (from top to bottom on the left). Statistical error bars

are shown for B =0.15.

scattering rate is a Gaussian function of the separation
between edge states'! and, for a slowly varying potential,
the interband scattering rate is reduced by a Gaussian
overlap. In a square-well potential the edge states are
packed closely together and the scattering rate is
enhanced. This enhanced scattering rate near the con-
ductance steps is reflected by sharp minima of A(B). The
conductance is only quantized if the backscattering of the
edge states is small, so the quantization condition can be
written as A(B)>>L. This shows that the quantization of
the two-probe conductance is first lost at low magnetic
fields and near the conductance steps, where the inter-
band processes increase the backscattering rates of edge
states. At strong magnetic fields the edge states are very
narrow and consequently the interedge scattering is
weak, resulting in quantized two-probe conductance even
in long wires. In Fig. 5 we have plotted the inverse local-
ization length 1/A as a function of the magnetic field for
a fixed strength of the impurity potential ¥, =0.3. For
this impurity potential the two-probe conductance
remained quantized at I'=1 even in the longest wires we
studied for magnetic fields exceeding 0.37%c /ea?.

Between the quantized plateaus the conductance was
found to be a quasiperiodic function of magnetic field

(Fig. 6). The oscillations are caused by interference
effects between different paths through the sample. In
the systems that we studied it is difficult to determine the
characteristic period AB of these oscillations accurately
because of the narrowness of the transition region where
the oscillations occur. In wires that are short compared
to the localization length A the oscillations are similar to
universal conductance oscillations seen in metals. %3
The period of the oscillations is given by LWAB =21,
which yields AB =0.002 for a wire of length L =208 and
width W =13, in agreement with Fig. 6(a). The ampli-
tude of these oscillations is about 0.3e?/k, which agrees
well with theoretical estimates for universal conductance
fluctuations for spinless electrons. It is interesting to note
that the character of the oscillations changes qualitatively
from smooth oscillations to sharp peaks as the length of
the wire becomes comparable with A. In long wires the
oscillations are quite rapid and the accuracy in determin-
ing their period is limited by the magnetic-field resolution
of the simulations. Qualitatively we can say that the
period of oscillations decreases with increasing length of
the wire and increases with increasing disorder. We do
not have a quantitative understanding of these structures
at the present.
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FIG. 5. Inverse localization length 1/A as a function of B. The width of the wire is W =13a and the disorder potential is smooth
with ¥V =0.30.
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FIG. 6. Conductances of individual samples near the transition from one plateau to another for systems of variable lengths and
disorders: (a) L =325 and V, =0.60, (b) L =325 and V;,=0.30, and (c) L =1300 and V), =0.30.
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FIG. 6. (Continued).

COMPARISON WITH EXPERIMENTS

Experimentally the conductance is usually measured
with a four-probe technique which uses different contacts
as current and voltage probes, and few experimental re-
sults using two probe technique have been published.

The measurements by Kastner er al.'* show that the
conductance of a narrow Si wire in a magnetic field is
quantized in units of 2¢2/h. Our interpretation of the ex-
tra factor of 2 is that it is due to two degenerate energy
valleys in silicon that are occupied equally. We have

shown elsewhere that symmetric occupation of valleys is
energetically favorable provided that the wire is narrow
enough and the electron density is sufficiently high.!®> At
low electron densities the exchange interactions between
electrons make it favorable to fill the valleys asymmetri-
cally and consequently the conductance should be quan-
tized in units of e2/h in narrow Si wires with low enough
electron density.

In the experiments it was observed that different con-
ductance plateaus disappear at different temperatures.
This indicates that there are two different energy gaps in
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the system. We interpret the smaller gap to be due to
Zeeman energy, which leads to conductance steps that
disappear at quite low temperatures (1.5 K). The larger
gap is due to transverse modes (subbands). Hence we
conclude that the first conductance step is due to the for-
mation of edge states with spin up in the lowest subband,
the second step is caused by lowest subband edge states
with spin down, and the third step is related to edge
states in the second subband. This is in contrast with the
original suggestion!* that all observed conductance steps
could be explained in terms of orbital effects. This point
can be checked by introducing a magnetic field parallel to
the interface. Parallel fields do not affect orbital states,
but they do change the Zeeman splitting and hence move
conductance steps due to edge states with opposite spins
to opposite directions when measured as functions of gate
voltage. If the density of electrons is sufficiently high and
the wire is narrow enough, we expect that both spin
states will be filled symmetrically and the conductance
will be quantized in steps of 4e2/h. To our knowledge
this has not yet been observed.

The downward cusps in the conductance were not ob-
served by Kastner et al. This indicates that the inter-
band scattering is less important than the simulation im-
plies. We believe that this is because the confining poten-
tial in the experimental system is smoother than the
infinite square well we used in the simulation, and the
edge states are further apart. Moderate cusps have been
observed in an earlier experiment by Fowler et al.!® Be-
cause of the weakness of the observed conductance mini-
ma and the insufficient magnetic field resolution of the
measurements neither group saw conductance oscilla-
tions between the quantized plateaus. However, oscilla-
tions similar to those we found in the simulations have
been observed in four-probe measurements!”!® near tran-
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sitions from one plateau to another. Chang et al.!” also
observed deviations from the exact quantization R,, in
long narrow wires. Their results are in qualitative agree-
ment with our simulations, though quantitative compar-
ison is difficult as the experiments were conducted using a
four-probe technique.

CONCLUSION

We have shown that the two-probe conductance of a
narrow wire in a strong magnetic field can be explained in
terms of edge states that are scattered across the wire by
impurities. The conductance is quantized if each state is
either fully transmitted or fully reflected. We found that
in an infinite square-well potential the interband scatter-
ing is important and leads to partial transmission of edge
states that would be fully transmitted in the absence of
interband scattering. This destroys the quantization in
transition regions between the plateaus. In these regions
the conductance is lower than expected and decays ex-
ponentially with the length of the wire. The transition re-
gions are broader for longer wires and stronger impurity
potentials, destroying the quantization of the two-probe
conductance at higher and higher magnetic fields.
Within the minima the conductance oscillates quasi-
periodically as a function of the magnetic field with a
period that depends both on the area of the wire and on
the impurity concentration.
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