PHYSICAL REVIEW B

VOLUME 43, NUMBER 5

Polarization dependence of multiphoton transitions

Alfredo Pasquarello and Antonio Quattropani
Institut de Physique Théorique, Ecole Polytechnique Fédérale de Lausanne,
PHB-FEcublens, CH-1015 Lausanne, Switzerland
(Received 5 September 1990)

In order to determine the polarization dependence of multiphoton transitions to excitonic
states in solids, we develop a symmetry analysis of the transition-rate formula that includes the
study of its transformation properties under permutation of the photon indices. These properties
play an important role when some or all of the photons have equal frequency or polarization. The
way permutation invariance affects the transition rate depends on the symmetry of the excited
state. We show how the number of dynamical parameters in the polarization dependence is
reduced when some of the photons are of equal frequency and how this effect can lead to
more stringent selection rules. We apply the theory to the case of two-, three-, and four-photon
transitions. We describe a procedure that gives the polarization dependence for any crystal point
group. In particular, we point out that the more stringent selection rules that are found in the
case of photons of equal frequency are the same as in the case of photons of equal polarization.
This property is related to the invariance of the transition rate under permutations of all the
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photon indices.

I. INTRODUCTION

In recent decades multiphoton spectroscopy has be-
come a powerful tool to investigate electronic properties
in solids. Spectroscopic techniques that differ because
of the number of photons participating in the interac-
tion process generally provide alternative and comple-
mentary information. The selection rules are different
according to the number of participating photons. For
instance, in solids with inversion symmetry, two-photon
spectroscopy allows us to detect transitions to states of
even parity, which are forbidden for one-photon transi-
tions. With the increase in the number of photons in-
volved, generally more transitions become allowed. For
example, in solids of Op symmetry, more states can be
excited in three-photon spectroscopy than in one-photon
spectroscopy.! =% Another aspect of multiphoton spec-
troscopy is the increased flexibility of the technique. By
changing independently the polarizations of the photons,
it is possible to determine the symmetry of the excited
state.®=® Moreover, the possibility of varying the total k
vector by changing the relative direction of the photons
can be used in order to study the k dispersion of the
polariton and even excite the longitudinal excitons.1®~12

In multiphoton absorption processes from the crystal
ground state, the polarization dependence for transitions
to states of a given symmetry can be determined, i.e.,
all transitions to states of that symmetry have the same
polarization dependence. In this case the transition rate
can be separated into a geometrical factor that contains
the polarization dependence and a dynamical factor that
contains the transition-matrix elements.!3 Only the lat-
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ter is dependent on the photon frequencies. However, this
is not generally the case: the transition rate is then no
longer separable and the polarization dependence con-
tains dynamical parameters that have different values
for different excited states of the same symmetry.}4:4:15
Only the number of dynamical parameters that appear
in the transition rate is determined by the symmetry of
the excited state. The number of dynamical parame-
ters in the case of small point groups is generally larger
than in the case of point groups of higher symmetry.14
When the number of absorbed photons increases, gen-
erally the number of dynamical parameters increases as
well.14% These parameters, which are usually unknown,
are taken as free parameters and therefore a precise sym-
metry identification of the excited state from polarization
measurements alone is often difficult in multiphoton tran-
sitions. We will show that with the use of permutation
symmetry it is possible to reduce the number of nonva-
nishing dynamical parameters. In some cases it is even
possible that additional selection rules occur.*:® The pos-
sibility of varying the number of nonvanishing dynamical
parameters is an extremely valuable tool for symmetry
assignments of excited states.

In this paper we present a general procedure that gives
the polarization dependence of multiphoton transitions,
with a particular emphasis on the cases in which the ab-
sorbed photons are of equal polarization or frequency. We
show that the dynamical factors in the n-photon tran-
sition rate transform under permutation of the photon
frequencies like basis-functions of irreducible representa-
tions of the permutation group on n elements.!® This
implies that if some or all of the involved photons are of
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equal frequency, some of the dynamical factors may van-
ish. If, for transitions to states of a particular symme-
try, all the dynamical factors vanish, additional selection
rules occur. For example, in the case of two-photon ab-
sorption, it is known that the dynamical parameters are
either symmetric or antisymmetric for exchange of the
photon frequencies.!® Antisymmetric dynamical factors
vanish when the absorbed photons have equal frequen-
cies. In this case, excited states of a particular sym-
metry whose transition rate contains only antisymmet-
ric dynamical factors are forbidden. In this paper we
show that this additional selection rule found in the case
of two-photon transitions is related to the permutation
symmetry of the photon frequencies, and we develop a
general framework that allows us to deduce similar rules
for cases in which more photons are absorbed. In gen-
eral, permutation symmetry reduces the number of non-
vanishing dynamical factors and therefore simplifies the
polarization dependence. The polarization dependence
turns out to be the same for all excited states of the
same given symmetry if all dynamical factors but one
vanish. The symmetry analysis shows that particular ir-
reducible representations of the permutation group are
associated to the allowed irreducible representations of
the point group. Thus it is possible to study the sym-
metry of the excited states by analyzing how the number
of dynamical parameters in the polarization dependence
varies when some or eventually all the absorbed photons
are of equal frequency.
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where the A are symmetry invariant operators
_ (e |
Alw) = Z By — Bo— ho’ (2)

the total momentum operator P is given by P = ). p;,
and €; and w; (j = 1,2,---,n) represent the polarization
vector and the frequency of the jth photon, respectively.
The operator O, permutes all the indices of the polar-
izations and frequencies. The sum over ¢ in (1) stands
for the sum over all the n! permutations of n indices.
Because of this sum the expression is symmetric for a
permutation of the photon indices.

We consider the operator in the matrix element in
(1) for one particular permutation: suppose for simplic-
ity the identity. The transition operators in (1) trans-
form in the same way as P; FP;,--- P, , where 7, for
k=1,2,--.,n indicates the component of each momen-
tum operator. The order in which the momentum op-
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In particular, we show that when the photons are taken
of equal frequency or of equal polarization, the dipole se-
lection rules are affected in the same way. The relation
between the transformation properties for separate per-
mutations of the photon frequencies and polarizations is
given by the condition that the transition rate is invari-
ant if frequencies and polarizations are permuted simul-
taneously. The invariance under permutation of all the
photon quantum numbers of the electron-photon inter-
action is a consequence of the bosonic character of the
photons.

In Sec. II, we present a symmetry analysis of the n-
photon transition rate that emphasizes the transforma-
tion properties of the geometrical and dynamical factors
under permutations of the photon indices. In Sec. III,
the theory is applied to the case of two-, three-, and four-
photon transitions. A general procedure is presented that
yields the polarization dependence for any crystal point
group. Concluding remarks can be found in Sec. IV.

II. SYMMETRY ANALYSIS OF THE
MULTIPHOTON TRANSITION RATE

The n-photon transition rate can be obtained from
time-dependent perturbation theory. We are interested
in the transition rate from the ground state of the system
|0) to a final state f* which belongs to the vth row of
the representation a of the point group. In the dipole
approximation, the transition rate is proportional to

1P Awn) ;P |0)), (1)

erators appear is relevant because of the presence of the
A operators. These transition operators transform as a
3"-dimensional representation R of the point group as
well as of the permutation group. Moreover, as permu-
tation operators and symmetry operators of the point
group commute, the transition operators also transform
as a 3"-dimensional representation of the group, which
is obtained as a direct-product of the point group and
the permutation group. The representation R can there-
fore be decomposed in the irreducible representations of
this direct product group, which are direct products of
the irreducible representations of the point group and the
permutation group. Expression (1) can be rewritten by

decomposing the transition operators in operators T,Ef’):ﬁ ),
which transform as the v/th row of the irreducible rep-
resentation o of the point group under space operators
and as the Ath row of the irreducible representation 8 of
the permutation group under permutations of the com-
ponent indices i;. Expression (1) now reads



43 POLARIZATION DEPENDENCE OF MULTIPHOTON TRANSITIONS

5 5 S e

n,(a'B)v'=12=1

2

>o,

L&) (e | T P -

3839

ywn) | 0) (3)

where the index n labels identical representations (a’B), which can occur more than once, and where I, and I are
the dimensions of the representations o’ and 3, respectively. The ¢ are expressions of the polarization vectors,
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are the analogous of the Clebsch-Gordan coefficients. With the use of the Wigner-Eckart theorem,

we derive that the transition operators must have the same symmetry as the final state, and the above expression

simplifies to
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where standard notation has been used for the reduced
matrix elements. Because of the scalar products in (1),
the ¢’s have the same transformation properties as the
T’s. We note that as the different €x;, are labeled by the
photon index k, a permutation of the component indices
i yields the same result as the same permutation of the
photon indices k. Thus the ¢’s transform under the oper-
ators O, according to the irreducible representation § of
the permutation group. On the other hand, the T;’(aﬂ)
do not transform as any irreducible representation when
the indices of the photon frequencies are permuted. How-
ever, if the effect of the O, on the ¢’s in (5) is worked
out, it can be seen that the 7”s are projected on the same
irreducible representation 8 to which the ¢’s belong. A
detailed derivation is given in Appendix A. We obtain
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where the D;"’(aﬁ) are the projected T’s. The explicit
expression of the D;‘”(aﬂ) as a function of the T”s is given
in Appendix A.

Some important remarks can be made on the result
(6). First, according to the symmetry a of the excited
state, not only the polarization dependence is different,
as was expected,!®4 but in general also the associated
permutation symmetries § are different. In fact, in the
decomposition of the transition operator into the irre-
ducible representations of the product group, product
representations are found that relate representations of
the permutation group to representations of the point
group.

Second, in the polarization dependence of the transi-
tion rate, a certain number of dynamical factors D can
appear. These factors have different values for different
excited states of a given symmetry. If more than one
dynamical factor appears in (6), the polarization depen-
dence is not dependent on symmetry alone and contains
N —1 dynamical parameters, where N, is the number of
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dynamical factors in (6). The number N, corresponds to
the number of times the representation « appears in the
decomposition of the representation R of the transition
operators into the irreducible representations of the point
group. If N, = 1, the transition rate is a simple product
of geometrical and dynamical factors and the polariza-
tion dependence of the transition rate is the same for all
final states of symmetry .

Third, expression (6) shows that the dynamical fac-
tors transform under permutations of the frequencies ac-
cording to irreducible representations of the permutation
group on n elements. This result is very useful in order
to determine which dynamical factors vanish when some
or all the photons have the same frequency. This aspect
is analyzed in detail in the next section for the cases of
two-, three-, and four-photon transitions.

Fourth, the transformation properties of the dynami-
cal factors D under permutation of the photon frequen-
cies are exactly the same as those of the corresponding
geometrical factors ¢ under permutations of the photon
polarizations. In fact, because of this property the whole
expression (6) is still invariant for permutation of all the
photon indices, although the projector ), O, does not
appear explicitly any more. The fact that the transition
rate is symmetric under permutation of the photon in-
dices follows directly from the bosonic character of the
photons. The formulation in Eq. (6) is useful because
it emphasizes the transformation properties of geomet-
rical and dynamical factors separately. For instance, in
two-photon transitions, if the dynamical factor vanishes
for equal frequencies, we know that the corresponding
geometrical factor vanishes for equal polarizations.

We conclude this section with some remarks on the n-
photon transition rate (1). This formula is obtained by
supposing that the absorption occurs taking one photon
from each of the n beams that are focused on the sam-
ple. The total energy that is needed to reach the final
state corresponds to the sum of all the photon energies. If
some of the beams have equal energy (but not necessarily
equal polarization), it is also possible to reach the final
state by taking two photons from the same beam. Be-
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cause of this possibility, additional terms appear within
the square modulus of formula (1) for the transition rate.
These other terms, which are omitted in (1), can be ana-
lyzed in the same way. When this occurs, the polarization
dependence of the transition rate can be dependent on
the relative intensities and phases of the electromagnetic
fields of the radiation beams.

We have analyzed explicitly the case of n-photon ab-
sorption processes. If a photon is emitted, as occurs, for
example, in hyper-Raman scattering'? or in difference-
frequency generation,'? the polarization vector of the
emitted photon has to be replaced by its complex conju-
gate and its frequency w by —w.

We note that all the conclusions of this paper are
based on an analysis of the transition rate (1) in the
dipole approximation. In this approximation, the only
relevant quantum numbers of the photons are their fre-
quencies and polarization vectors, as their wave vectors
do not appear in formula (1). Nevertheless, the analysis
can be applied to derive selection rules for longitudinal
and transversal excitations, e.g., the longitudinal exciton
(LE) and the transverse polaritons (TP). In this case the
interaction with the electromagnetic radiation yields a
symmetry reduction with respect to the symmetry of the
point group. The polarization dependence can be found
analogously by decomposing the excited state in compo-
nents that are parallel (for LE) or perpendicular (for TP)
to the total wave vector.'®

III. APPLICATION TO TWO-, THREE-, AND
FOUR-PHOTON TRANSITIONS

In this section we apply the theory to the cases of two-,
three-, and four-photon transitions with a particular em-
phasis on the effects due to permutation symmetry. We
will first take as a symmetry group of the system the full
spherical group O(3), which includes all proper and im-
proper rotations in three dimensions. As O(3) contains
all the crystal point groups, the results for a particular
point group follow easily, making use of compatibility
relations. For the point groups we will use the nota-
tion of Koster et al.'® We will study in detail the point
groups Oy, T4, and Cs,, which correspond to the cubic,
zinc-blende, and wurtzite structure, respectively. We will
limit ourselves to the case of n-photon absorption pro-
cesses from the crystal ground state.

A. Two-photon transitions

The polarization dependence of two-photon transitions
has been studied for all the crystal point groups. It is
well known that dynamical factors can either be sym-
metric or antisymmetric for the exchange of the photon
frequencies.!3 A tabulation of all possible cases can be
found in the paper by Inoue and Toyozawa.'* In this
subsection, we apply our formulation in order to recover
these results and to illustrate the procedure in a simple
case. As we will show, our procedure is particularly use-
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ful in the more complicated cases in which three or more
photons are absorbed.

The transition operators transform as P;, P;, and form
a 9-dimensional representation R of the group O(3), of
the permutation group on two elements Sz, and of the
product group O(3) ® S2. We decompose the represen-
tation R into irreducible representations of these three
groups:

0(3): R— D} @ DY ® DT, (7

S,: R— 6T} @307, (8)

O0B)®S>: R—D} -TteDf TreDf -TF, (9)

where the Dji’s represent the well known irreducible

representations of O(3) and I'f and I'7 are the one-
dimensional symmetric and antisymmetric representa-
tions of Sa, respectively. We will denote the represen-
tations of the permutation groups by f‘,f, where k is the
dimensionality of the representation and the sign indi-
cates whether the representation has a positive or nega-
tive character for the exchange of two elements. The rep-
resentations of O(3)®.S, have been indicated as products
of representations of its subgroups. We note that the rep-
resentation of the highest angular momentum transforms
necessarily as the total symmetric representation of the
permutation group.

Let us consider, for example, the case of the point
group Op. By use of compatibility tables, we deduce
from Egs. (7) and (9)

On: R—T{orlierert, (10)

01,®Sy: R—Tt.Tterf Ifer: ryerd rtf.
(11)

All symmetries of the point group appear just once in the
decomposition of R into the irreducible representations of
Op, and therefore the polarization dependence is the same
for all transitions to states of a given symmetry. Only the
dynamical factors of transitions to I'} states are antisym-
metric with respect to the exchange of the frequencies.
In the case of two radiation beams of equal frequency,
transitions to I'} states are forbidden. We note that the
additional terms, which appear in the transition rate be-
cause of the possibility of absorbing two photons of the
same beam, vanish for the same reason. Another im-
portant remark is that also the geometrical factor of T'}
transitions is antisymmetric for the exchange of the two
polarization vectors. Hence, in the case of two beams
of different frequency but equal polarization, '} states
cannot be detected. Of course, in the case of one-beam
two-photon spectroscopy (equal frequency and equal po-
larization) the transition rate vanishes as well.

For the point group Ty, the conclusions are identical
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to the case of. Oy apart from the fact that parity is no
longer a good quantum number. In fact, in two-photon
spectroscopy it is possible to excite states that are also
excited in one-photon spectroscopy (states of I's symme-
try):

Ti: R-T,0Tl3606T4®Ts, (12)

T;®S,: R—T, - Tters - Iterlr, Iyols-Tf.
(13)

As another example we consider the group Cls,, which
is the point group of the wurtzite structure. We find

Cev: R—2I®T202Is® T, (14)

Csy®Sy 1 R — 2Ty-THel, T els-IFels I ol I .
(15)

For this point group it is not always possible to express
the transition rate as a simple product of dynamical and
geometrical factors. In the case of excited states of I'y
or I's symmetry, there are two dynamical factors, and
therefore one dynamical parameter appears in the polar-
ization dependence. The transition rates of 'y and I'g
contain just one dynamical factor and their polarization
dependence is thus independent of dynamical parame-
ters. In the case of photons of equal frequency, transi-
tions to I'; states are forbidden analogously to the case
of transitions to I‘I states in Oy. For I'; transitions the
two dynamical factors are both symmetric for the ex-
change of frequencies, whereas for I's transitions one is
symmetric and the other is antisymmetric. In the case of
photons of equal frequency, the polarization dependence
of transitions to I'; states will therefore still contain one
dynamical parameter. On the other hand, for I's transi-
tions, the antisymmetric dynamical factor vanishes and
the polarization dependence will thus be identical for all
I's states. Care must be taken in the transition rate of '
states in the case of two beams of equal frequency. Now
the symmetric geometric and dynamical factors that cor-
respond to the case of two photons being absorbed from
the same beam do not vanish and must be accounted for
in the polarization dependence.

In order to use a handy formulation we introduce
Young diagrams that represent projectors on the rows
of the representations of the permutation group.'® In the
case of two-photon transitions the representations are one
dimensional and can be represented as in Fig. 1. The
projectors associated to the diagrams act by first taking
the symmetric part with respect to the indices that are
contained in the horizontal boxes and then the antisym-
metric part with respect to those that appear in the same
vertical column. It is evident that the result will vanish
if the Young projector is applied on expressions that are
invariant for exchanges of indices that appear in the same
column.
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FIG. 1. Young diagrams for the projectors on the rows of
the irreducible representations of the permutation group on
two elements S2: (a) f‘f, the symmetric representation; and
(b) I'7, the antisymmetric representation.

B. Three-photon transitions

Recently there has been increased interest in the use of
three-photon spectroscopy to investigate electronic states
in crystals.3 Since there are many allowed states, the un-
derstanding of the polarization dependence of the tran-
sitions is particularly useful. For the case of absorption
processes of three photons of equal frequency and polar-
ization, the polarization dependence has been tabulated
for all crystal point groups.? In the case of Oj symmetry,
the polarization dependence has also been given for pho-
tons of equal frequency but for all possible polarizations.®
As already pointed out,® Ref. 20 contains incorrect state-
ments.

We start our analysis as in the case of two-photon tran-
sitions with the full spherical group O(3). The transition
operators transform as a 27-dimensional representation

of O(3), of S3, and of O(3) ® Ss:

0(3): R— Dy ®3D; & 2D; & Dj, (16)

S3: R—10I'f @807, (17)

0B3)®S3: R— Dy -TreD; -TteD; T,
@Dy -T2 @ D3 -TT. (18)

The permutation group on three elements S3 has three
kinds of irreducible representations: the symmetric rep-
resentation I‘f, the antisymmetric representation I'f,
and a two-dimensional representation I';. The associ-
ated Young diagrams are given in Fig. 2. Dynamical or
geometrical factors that transform as 'Y do not vanish
even if the three absorbed photons are equal. On the
other hand, dynamical (geometrical) factors that trans-
form as I’ vanish unless the three photons have three
different frequencies (polarizations). In the case of the
I’y representation, there are two dynamical factors that
appear together and transform according to the two rows
of the representation. The rows that are defined by the
projectors in Fig. 2 represent one possible choice. If the
frequencies of the three involved photons are taken to
be equal, both of the I'; dynamical ‘factors vanish. In
fact, if the dynamical factors are chosen to transform as
defined by the projectors in Fig. 2, the first is antisym-
metric for the exchange of the frequencies of photon 1
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(a) ©

(b)

3 2

FIG. 2. Young diagrams for the projectors on the rows
of the irreducible representations of the permutation group
on three elements S3: (a) f;’, the symmetric representation;
(b) I'2, the two-dimensional representation; and (c) f‘;’, the
antisymmetric representation.

and photon 3, whereas the second is antisymmetric for
the exchange of the frequencies of photon 1 and photon
2. If only two frequencies are equal, for instance those of
photon 1 and photon 2, the first dynamical factor con-
tributes, whereas the second vanishes. The same reason-
ing applies for the geometrical factors in the case of equal
polarizations. From Eq. (18), we see how the dynamical
factors in the transition rates of states of a given sym-
metry transform under permutations. In particular the
transition rate of states of D symmetry contains three
dynamical factors; one that transforms as It and two
that transform as I'. In the case of photons of equal fre-
quency, the nonvanishing dynamical factors are deduced
as discussed above.

In the following part of this subsection we will illustrate
our analysis in the case of the Op, T4, and Cs, point
groups. The polarization dependence for these groups is
given in Appendix B. An analogue analysis can be carried
out for any point group.

For the Oy point group the transition operator trans-
forms as

On: R—Ty&Tl; ®2l; @4l'; ®3I;, (19)

0,®S3: R—T;.-TTerl; Iferl; T,e2r; -Tf
elr; - Toor; Tfer; T, (20)

If only one radiation beam is used, only states of I'; , I'J,
and T'y symmetry can be excited. The polarization de-
pendence of I'; and T’y states have only one dynamical
factor and thus contain no dynamical parameters. In the
case of I'] transitions, there is one dynamical parameter
as the representation I'y - f‘i" appears twice in the de-
composition of R. If two beams are used, also 'y states
are observable. The polarization dependence of I'; tran-
sitions still has no dynamical parameters, whereas those
of I'; and 'y acquire one parameter more. Finally, with
three photons of different frequency and polarization it is
also possible to observe the I'T states. In the latter case

ALFREDO PASQUARELLO AND ANTONIO QUATTROPANI 43

the number of dynamical factors that occurs in the po-
larization dependence of transitions to states of a given
symmetry is given by the number of times that symme-
try appears in the decomposition of R: 1 for I'y and I';,
2 for I's, 4 for 'y, and 3 for I'y .

The representation R of transition operators decom-

poses as follows in irreducible representations of 7y and
T4 ® S3:

Ty: R—T1®T;®203® 3l ®4Ts, (21)

Td®531 R — Flf.{@rzf‘;®raf2@r4f_{

Knowing the relation between permutation symmetry
and point-group symmetry, it is now simple to deduce
as above the number of nonvanishing dynamical factors
for each possible configuration of the photons. In partic-
ular, we note that for three photons of equal frequency,
I'y, T4, and T's states can be excited. We note that I's
states are observable in one-beam spectroscopy either ab-
sorbing one, two, or three photons.

As a final example, we give the decomposition of R for
the Cs, point group:

Cep: R— A1 @3, ®3@® T4 @ 6Is @ 3T, (23)

Cey®Ss: R— 2I'-Tter, T,00, - TT@l, T,
@Fa'ffEBra;'ff
@®2ls - I @ 2I'5 - Ty
@l -If @6 - Ts. (24)

Representations of Cg, are either one-dimensional, such
as I'y, '3, T's, and T'4, or two-dimensional, such as I's and
I'¢. Because of the lower symmetry of Cg, with respect to
the cubic groups, there are now many dynamical param-
eters, as much as five for I's transitions. If the absorbed
photons are all of equal frequency (or polarization), all
states but those of I'y symmetry are observable. In this
case, I'3, 'y, and I'¢ transitions have a polarization de-
pendence with no dynamical parameters, whereas I'; and
I's transitions have a polarization dependence with one
dynamical parameter.

C. Four-photon transitions

In this subsection we present the results of our symme-
try analysis for four-photon transitions. We only discuss
the case of the O(3) point group. The transition oper-
ators transform as an 81-dimensional representation of

0O(8), of S4, and of O(3) ® Sa:
0(3): R—3Df ®6D} @6DF ®3D3 & Dy,
(25)

Sy: R— 15T @ 15T @ 6T, @ 313, (26)
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0(8)®Ss: R— Df -TfeDf T.0DF T
oD} -T3 ® DF - TT

eDf -T;®Df -T¥eDf TTeDF T (27)

The Young diagrams for S4 are given in Fig. 2. From Fig.
3 we can deduce the transformation properties of the dy-
namical factors and identify the nonvanishing ones in the
case of photons of equal frequency. Only the I'} represen-
tation is nonvanishing if all the frequencies are equal. We
thus deduce that in the case of one-beam spectroscopy,
only states of Df, DF, and D} symmetry can be de-
tected. As another example, if we take the frequencies
of photons 1 and 2 to be equal and at the same time the
frequencies of photons 3 and 4 to be equal to each other
but different with respect to those of photons 1 and 2, we
see that only the dynamical factors that transform as f‘f'
and one of the two that transform as I's do not vanish.
It is worthwhile to note that all the results presented
here can also be applied to atomic and molecular gases.
The same analysis can be carried out considering the
point group of a molecular system. Finally, the tran-
sition rate is obtained by averaging the directions of the
polarization vectors over the whole solid angle. In this
way, only expressions of the polarization vectors that are
spherically invariant are maintained. Operatively this
can be done by expressing the ¢ that appear in Eq. (6)
for a particular molecular point group as linear combina-
tions of expressions Ry, that transform in the same way
as the spherical harmonics Y},,,. The products R}, ., Rim,
which occur after the square modulus has been taken,
can again be decomposed into linear combinations of Rj,,
that also transform as spherical harmonics. When the

(b)

tl2 ]3] [i]3]a] [1]2]4]
L4 L2 13

(c)

I 1] 3

304l |24

tla] [1]2] [1]3]

2
3

2
4 4
FIG. 3. Young diagrams for the projectors on the rows of

the irreducible representations of the permutation group on
four elements Si: (a) T'F, (b) T'¥, (c) T2, (d) T5, and (e) 7.
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spherical average is taken, all the R;,, vanish except those
transforming as Yoo. In this way a procedure is provided
that produces analogue results as alternative methods in
which the average over the whole solid angle is taken in
the beginning of the analysis.?! ~ 23 In particular our pro-
cedure can be useful if for some reason a full spherical
average is not required.

Before concluding this section we want to make some
remarks on the polarization dependence. The polariza-
tion dependence that has been described here is com-
plete, i.e., it gives the full dependence on the polariza-
tion vectors for a given point group. However, it is often
possible to go beyond the most general polarization de-
pendence because of additional physical information. For
example, if it is known that only particular intermediate
states are important in the absorption process, a more
detailed description of the polarization dependence can
be given using two-band?* or three-band?® models. As
another example, if the final states are well described in a
spherical model, the polarization dependence will rather
be as for the O(3) group instead of as for the crystal
point group, i.e., because of additional information we
know that some of the crystal dynamical parameters are
very small.

For certain point groups, final states of different spa-
tial symmetry can be degenerate because of time-reversal
symmetry. In this case, the absorption rate is given by
the sum of the transition rates of each of the states that
are degenerate. The dynamical parameters that appear
in the single expressions can be related to each other be-
cause of time-reversal symmetry. Sometimes, for example
in the case of Wannier exciton states, different states of
different symmetry turn out to be almost degenerate.!3
Analogously as for the time-reversal degeneracy the tran-
sition rate is obtained as a sum of different contributions.
In this respect, Refs. 18 and 13 are particularly interest-
ing.

Additional selection rules can occur because of the fact
that the electromagnetic radiation can only excite the
singlet component of exciton states. This property is in-
dependent of the number of photons participating in the
process. Although the spin is not a good quantum num-
ber, the mixing because of the spin-orbit interaction be-
tween singlet and triplet is often very weak. The mixing
can be increased by external magnetic fields.?

IV. CONCLUSIONS

We have presented a symmetry analysis of the multi-
photon transition rate of exciton states in crystals. Par-
ticular emphasis is given to the transformation properties
of the rate under permutation of the photon indices. The
transition rate is expressed as the square modulus of a
sum of products of geometrical factors, which depend on
the polarizations of the photons, and dynamical factors,
which depend on the frequencies. We show that the geo-
metrical as well as the dynamical factors of the n-photon
transition rate transform as irreducible representations of
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the permutation group on n elements under permutations
of the photon polarizations and frequencies, respectively.
Our formulation turns out to be particularly useful to de-
termine the number of nonvanishing dynamical factors in
the case of absorbed photons of equal frequency. When
all the dynamical factors vanish, a new selection rule oc-
curs in addition to the usual dipole and geometrical se-
lection rules. We have pointed out that because of the
fact that corresponding dynamical and geometrical fac-
tors belong to the same irreducible representation of the
permutation group, for permutations of frequencies and
polarizations, respectively, the same additonal selection
rules are found if the photons are taken of equal frequency
or of equal polarization. This property is related to the
fact that the transition rate is invariant under simulta-
neous permutations of all the photon indices.

The theory can be applied to any point group and for
any number of absorbed photons. We have considered
in detail the case of two-, three-, and four-photon transi-
tions and we have analyzed as examples the point groups
O, T4, and Ce,, which correspond to the cubic, zinc-
blende, and wurtzite structure, respectively. For these
point groups we have given the polarization dependence
explicitly in the case of three-photon transitions.

We have considered multiphoton absorption processes
from the crystal ground state. The same analysis can
be extended to cope with transitions between states of
all possible symmetries, as has been done in the case
of two-photon transitions by Bader and Gold.!® If ini-
tial and final state transform as I'; and T'; of the point
group, respectively, the transition operators that trans-
form as one of the representations in the product I'; ® T';
will be active. The number of nonvanishing dynamical
factors depends on the number of photons of equal fre-

D:,(Qﬂ)(wl’
Al=1 o

Z PAA' (f"‘HT)‘ (aﬁ)(wl’

A"—l

where 'Pf,\, are projectors on the Ath row of the irre-

ducible representation 5. Hence the Df\"(ap ) transform

under permutations of the frequencies in the same way
1 "’r(aﬁ)

as the corresponding ¢,’;

polarizations.

under permutations of the

APPENDIX B: POLARIZATION
DEPENDENCE OF THREE-PHOTON
TRANSITIONS

In this appendix we give the polarization dependence
of three-photon transitions for the point groups O, Ty,

'wn) = Z Z[MA,\'(O')]*Oo(fa||T,\",’(aﬁ)(w1,~-.

»wn)|[0),
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quency and can be determined as for transitions from the
ground state. Other processes, related to higher-order
susceptibilities x(*), such as sum-frequency or difference-
frequency generation,'” can also be described by formulas
that are similar to that of Eq. (1). In this case, the final
and initial state are the crystal ground state. In order to
have nonvanishing x(™), there must be a transition oper-
ator that transforms as the representation I';. Moreover,
if some of the involved photons are of equal frequency,
at least one of the I'; dynamical factors should not be
vanishing.
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APPENDIX A: EXPLICIT EXPRESSIONS
OF THE DYNAMICAL FACTORS

The ¢} {@F) in Eq. (5) transform as partner functions
of the u‘reduable representation  of the permutation
group on n elements:

,(aﬁ) Z M 1,\( )¢”’£7ﬁ),

Al=1

(A1)

where M f’x is a matrix representation of 5. By insert-
ing Eq. (A1) in expression (5) we obtain expression (6),
where

»wn)||0)

(A2)

and Ce, explicitly. We give the ¢™{**) of Eq. (6). The ¢
transform as rows of the 1rreduc1b1e representations of S,
which are given in Fig. 2. We note that the geometrical
factors of a given symmetry of the point group that trans-
form as I’y appear always in pairs as they correspond to
the two rows of the I's representation.

For the Oy point group we use the shorthand notation
(ijk) for ej;€zj€esr and ¢£3,) for the geometrical factors,
dropping the indices that refer to the permutation sym-
metry. The basis for the polarization vectors has been
chosen along the cubic axes. The geometrical factors
that transform as the symmetric representation F are
given by®
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b2 = \/ig[ (zy2) + (229) + (vzz)

+(zyz) + (yzz) + (z2y)), (B1)
( ) = (zzz),
(1) = (yyy), (B2)
&? = (222),
o= f [(=yy) + (yzv) + (vyz)
+(xz22) + (222) + (222)],
¢(2) = —=[(yzz) + (zyz) + (22y)
\/_ (B3)
+(yzz) + (zyz) + (22Y)],
(2) \/_ [(zzz) + (z22) + (x22)
+(zyy) + (y2y) + (yy2)],
85, = % [(zyy) + (vzy) + (yyz)
—(zz2) — (zz2) — (222)],
(D, = 22 [022) + G2) + (e29) 5

—(yzz) — (zyz) — (zzy)),

65 = f [(z22) + (z22) + (222)

—(zyy) — (y2y) — (yy2)].
The geometrical factors that transform as the two-

dimensional representation I'y are

(1) _
31 =

ﬁ—g[(my) + (zy2) — (ya2) — (292)]

+%[(xzy) ~ (ye2)], (B5)
§2 = 3l(yzz) — (22y) — (2yz) + (2y2)),
62 = 2}[(zyx> + (22y) — (y22) — (22)]
ﬁ(zyz) (yz2)], (B6)
853 = tl(yzz) — (2yz) — (22y) + (z2v)),
D = L(zyy) - (yyz) — (222) + (z22)),
¢ = L{(y22) — (22y) — (zzy) + (yaz)], (B7)

86 = 3l(ze2) ~ (z22) = (wy2) + (zww)],
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D = L(zyy) — (yzy) — (222) + (222)],
¢<” $(yzz) = (2y2) — (zyz) + (yaz)], (B8)
@ = L{(zz) — (222) — (y2) + (29w)),
¢, = H(zyy) — (yyz) + (222) — (222))],
&) = H(yzz) — (229) + (zay) — (yaz)], (B9)
¢, = (zz2) — (z22) + (yy2) — (299)],
¢ = L(zyy) — (yay) + (222) — (222)),
&), = L(yz2) — (zy2) + (zyz) — (yaz)],  (B10)
¢$2, = L[(zaz) — (222) + (y2y) — (zyy))-

The only geometrical factor that transforms as the anti-
symmetric representation I'T is

f [(zyz) + (22y) + (y22)

~(2y2) - (y22) — (229)]. (B11)

In the case of the Ty point group the polarization
dependence is the same as for the Op group, only the
nomenclature is different: the 'y, I';, I';, 'y, and T'5
of Oy correspond to the I'y, Ty, 'z, T's, and Ty of Ty,
respectively.

For the point group Cs,, we use the shorthand nota-
tion, for example, (0 + —) for €¢,0,0_, where o4 cor-
respond to the circular polarizations q:(l/\/i)(c, + tey).
The components of the polarization vectors are taken as

in Ref. 19. The symmetric geometrical factors are given
by

# = (000), (B12)
¢ = %[ (0+ =)+ (+0-) + (+ - 0)
+O0—+)+(-0+)+(—+0)], (B13)
4,3:%[(— — )+ (4 ) (B14)
¢1= 7{(— - =)= (+++)], (B15)
B2 = Tl = =)+ (= + =)+ (= =+,
‘/f (B16)
¢ = Fle+H+E=H+ =+
#2 = 7[( 00) + (0 — 0) + (00-)],
(B17)
¢ = 7_[(+00) + (0 + 0) + (00+)],
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¢ = 7[(0 + 4) + (+0+) + (+ + 0)],

o_ 1 B (B18)
$o+ f(O )+ (=0-) + (= - 0)].

The geometrical factors that transform as the T, repre-
sentation are

$P=1[(+-0)—(0=+)+(=+0)—(0+-)], (B19)
¢V = 1[(+0-) = (04 =) + (—0+) = (0—+)],  (B20)
¢ =1[(+-0)— (0—+) = (—+0)+ (0+ )], (B21)
¢ = 1[(+0-) — (0 + —) — (—=0+) + (0 —+)],  (B22)
¢ = —00) — (00—
f[( ) = (00-)], (B23)
6 = %{(4-00) — (00+)],
@_ 1 o0y

¢5” = ﬁ[( 00) — (0 - 0)],

(B24)

$$) = f[(+00) —(0+0)),
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(5) —_ [ _ _
= \/—[( +)—(+--),
(B25)
§?=f[( +4) - (++ ),
(6)
——[( + =)= (+--)
V2 (B26)
(6)
\/—[( ++4) = (+—-+)],
6D = S ((++0) = 0+ )],
V2 (B27)
¢ = 7[(— —0) = (0--)],
O = —=[(+04) - 0+ +)],
\/—[( )—( ) (B28)

ésﬁ:T[( 0-) = (0 — -}
The only antisymmetric geometrical factor is given by

¢ = f[(0+ =) = (+0-) + (+ = 0)

—(0—4+)+(=0+) = (—+0)].  (B29)

1F. Beerwerth and D. Fréhlich, Phys. Rev. Lett. 57, 1344
(1986).
2F. Beerwerth and D. Frohlich, Phys. Rev. B 36, 6239
(1987).
3F. Beerwerth, D. Frohlich, P. Kéhler, V. Leinweber, and A.
Voss, Phys. Rev. B 38, 4250 (1988).
*A. 1. Bobrysheva and S. A. Moskalenko, Fiz. Tverd. Tela
8, 2730 (1966) [Sov. Phys.—Solid State 8, 2177 (1968)).
5A. Pasquarello and L. C. Andreani, Phys. Rev. B 41, 12230
(1990).

SE. Doni, R. Girlanda, and G. Pastori Parravicini, Solid
State Commun. 17, 189 (1975).

"D. Fréhlich and B. Staginnus, Phys. Rev. Lett. 19, 496
(1967).

8D. Frohlich, B. Staginnus, and S. Thurm, Phys. Status So-
lidi 40, 287 (1970).

9D. Frohlich and H. Volkenandt, Solid State Commun. 43
189 (1982).

10D. Fréhlich, E. Mohler, and P. Wiesner, Phys. Rev. Lett.
26, 554 (1971).

11F. Beerwerth and D. Frohlich, Phys. Rev. Lett. 55, 2603
(1985).

12D, Fréhlich, St. Kirchhoff, P. Kohler, and W. Nieswand,
Phys. Rev. B 40, 1976 (1989); Phys. Status Solidi B 158,
267 (1990).

13E. Doni, R. Girlanda, and G. Pastori Parravicini, Phys.

Status Solidi B 65, 203 (1974).

%M. Inoue and Y. Toyozawa, J. Phys. Soc. Jpn. 20, 363
(1965).

15T. R. Bader and A. Gold, Phys. Rev. 171, 997 (1968).

16See, for example, A. Messiah, Mécanique Quantique
(Dunod, Paris, 1964), Tome II, and references therein.

17N. Bloembergen, in Nonlinear Spectroscopy, edited by N.
Bloembergen (North-Holland, Amsterdam 1977), p. 1.

18M. M. Denisov and V. P. Makarov, J. Phys. C 5, 2651
(1972).

19G. F. Koster, J. O. Dimmock, R. G. Wheeler, and H. Statz,
Properties of the Thirty-Two Point Groups (MIT, Cam-
bridge, 1963).

20A. R. Hassan and R. Raouf, Phys. Status Solidi B 104, 703
(1981).

21D. L. Andrews and W. A. Ghoul, J. Chem. Phys. 75, 530
(1981).

22D. L. Andrews and P. J. Wilkes, J. Chem. Phys. 83, 2009
(1985).

23]. R. Cable and A. C. Albrecht, J. Chem. Phys. 85, 3145
(1986).

24G. D. Mahan, Phys. Rev. Lett. 20, 332 (1968); Phys. Rev.
170, 825 (1968).

25D. Frohlich, B. Staginnus, and Y. Onodera, Phys. Status
Solidi 40, 547 (1970).



