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Real and imaginary parts of the dielectric function e(m, q) of YBa2Cu307 are calculated in the
random-phase approximation, based on a parametrized tight-binding band structure. Only the con-
tribution to the dielectric function from electronic interband transitions is considered. Prominent
optical absorption peaks are found at 3.0, 2.3, and below 0.6 eV. For energy in the range 0.2—1.5 eV,
we find that e, is negative in a very large region inside the q, q~ plane. Detailed studies on these
low-energy absorption peaks reveal that they are mainly associated with the interband charge exci-
tations involving orbitals within the Cu-0 plane. For optical properties (q =0), our results are com-
pared with experimental data and previously reported theoretical calculations. There is a reason-
ably good agreement.

I. INTRODUCTION

We present in this paper a theoretical investigation of
the dielectric function of YBazCu307 as a function of
both the frequency (co) and the wave vector (q). When a
weak external potential is applied to a solid, the electrons
readjust their distributions, thus giving rise to a screening
potential. This response is described by the dielectric
function. The dielectric function is needed in the study
of, e.g. , optical properties, electron energy loss, electron-
phonon interactions, and transport phenomena. It may
also be of particular importance in regard to high-T, su-
perconducting materials. The dielectric function can be
used directly to investigate possible pairings mediated by
electronic charge excitations (generally termed excitons'),
and it can be used in a calculation of the transition tem-
perature T, . The effective interelectron interaction is
reasonably approximated by 4ne /q e(co, q). It is clear
that in order for pairings to occur, e(co, q) has to be nega-
tive in certain regions of the cu, q space. In a simple mod-
el, the effective interelectron interaction is averaged over
the wave vector q as in the case of the BCS theory. In
this case, the transition temperature is directly related to
the range of frequencies over which the effective interac-
tion is attractive.

A realistic evaluation of the dielectric function requires
a reliable set of energy bands and wave functions. The
work presented here is based on an accurate tight-binding
parametrization of the first-principles, linearized-
augmented-plane-wave (LAPW) band structure for
YBa2Cu3O7. The adequacy of band calculations as a
basis for the description of the electronic structure of
high-T, superconductors in their normal state is a matter
of serious concern and has been the subject of much de-
bate. However, as a result of improvements in the experi-
mental techniques and better sample preparation, there

now exists a growing body of evidence indicating that
many of the electronic properties predicted by band-
structure calculations are in good agreement with experi-
ments, especially for YBa2Cu307 and the Bi-Sr-Ca-Cu-0
compound. By effectively controlling the oxygen loss and
through other technical improvements, experimentalists
can now get a valence-band photoemission spectrum that
is in agreement with the theoretical results within 0.5 eV
with respect to locations of the peaks, while in the earlier
works, the discrepancy is as large as 2 eV. At low fre-
quencies, the dielectric function is very sensitive to the
shape of the Fermi surface. Results of the positron-
annihilation experiment are in quite good accordance
with the Fermi surfaces predicted by band-structure cal-
culations. For YBa2Cu307 and the Bi-Cu-0 compound,
photoemission experiments have confirmed the shape of
the Fermi surface as predicted by the theory in several
directions. '

The most important issue for YBa2Cu307 is, of course,
to understand the cause (or causes) of superconductivity
at 90 K. Many of the current theoretical efforts are fo-
cused on effects of spin fIuctuations. Models associated
with charge fluctuations have also been proposed. The
knowledge of the dielectric function is uniquely useful to
further elucidate charge fluctuations. In the present
work, we demonstrate that below 0.5 eV the dielectric
function for YBa2Cu307 is very rich in structure. We
find that within the q, q plane, due to strong interband
transitions, e, is negative in a large region of the co, q
space. The effect of these interband excitations on super-
conductivity is presently being studied. In this work, we
will explore the co, q dependence of the dielectric func-
tion.

Previously published theoretical studies of the dielec-
tric function of YBa2Cu307 have only considered the
q =0 limit which describes optical properties. The work
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reported by Zhao et al. ' was based on a band structure
calculated by the orthogonalized-linear-combination-of-
atomic-orbitals method, and emphasized gross features at
relatively high energies (up to 8 eV). The work of Chui,
Kasowski, and Hsu" concentrated more on structures of
the optical conductivity in the low-energy range 0—1 eV,
which was computed from first-principles bands that
were obtained by the pseudofunction method. These pa-
pers concluded that interband transitions should dom-
inate the whole frequency range above the far-infrared re-
gion. In this paper, we will present results of the dielec-
tric function calculated for both q =0 and q&0 cases. In
the case of q =0, our results agree well with previous cal-

I

culations. And in this case, we will also make compar-
isons with the experimental measurements recently car-
ried out by Schlesinger et al. ' Electron energy-loss ex-
periments, ' ' which involve e(co, q) for nonzero q have
been performed over a wide range of energies (0—40 eV)
but the structure in the loss spectrum in the energy range
of primary interest here has not been resolved.

II. METHOD

Our calculation is based on the formulation of the
random-phase approximation (R PA). The dielectric
function is given by

e(co, q)=1 —
2 g f„(k)[1—fi(k —q)](n, k~exp(iq r)~l, k —q)(l, k —q~exp( —iq r)~n, k)

q XQ „(~
1 1

co+E„(k)—E,(k —q)+i5 co E„(k)+—E,(k —q)+E'5

where 0 is the volume of the unit cell, N is the number of
unit cells inside a macroscopic volume, E„(k) and ~n, k)
are the energy bands and corresponding wave functions,
and f is the Fermi function. In Eq. (1), the summation
on the band index n does not include the index for spin.
The real and imaginary parts of the dielectric function
can be separated by the identity 1/(x+i5)=P(1/x)

in 5(x ), where —P(1/x ) indicates the principal part. In
a crystal, the dielectric function is actually' a matrix e, „
with indices corresponding to the reciprocal lattice vec-
tors K, and K, . In the present work, this lattice eFect is

ignored and we only consider the element E'p p.
We evaluate Eq. (1) by using realistic band structure

and wave functions obtained from a tight-binding fit by
DeWeert, Papaconstantopoulos, and Pickett. The quali-
ty of the fit appears to be very good for bands around the
Fermi level. This band structure is shown in Fig. 1. Ma-
jor pieces of the Fermi surface are well reproduced by the
fit except for the small hole pocket around the S point. It
is clearly seen from Fig. 3 of Ref. 3 that this pocket is due
to a band associated with the Cu-0 chains. Several bands
just below this feature are also associated with the chains.
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FIG. 1. Band structure of YBa2Cu307 calculated by a parametrized 36X 36 Hamiltonian. Emphasized portions of the band struc-
ture make important contributions to the dielectric function and optical conductivity for energies less than 1 eV.
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This error in the band fit will thus not affect the impor-
tant low-energy features in the dielectric function which
are connected with the excitations within Cu-0 planes.
It is also clear that bands around the Fermi level (within
1 or 2 eV) are predominantly composed of Cu d and 0 p
orbitals. In the current calculation, we therefore neglect
all orbitals associated with Y and Ba and use the band

structure calculated using a reduced Hamiltonian
(36X36). The reduction is furnished by Papaconstanto-
poulos' based on their original fit using a Hamiltonian
of dimension 82X82. This reduction does not cause fur-
ther significant changes of bands around the Fermi level.

To calculate the matrix elements in Eq. (1), we use the
following tight-binding formula:

(n, k~exp(iq r)~l, k —q) = g exp[i(k —q) R„]g C;*„(k)C&(k —q) I U;*(r)exp(iq. r) UJ(r —R„)dr . (2)

C;„(k) is a normalized eigenvector component deter-
mined by diagonalization of the tight-binding Hamiltoni-
an. U, is the ith orbital basis function. Some choice of
wave functions has to be made in order to enable an eval-
uation of matrix elements. It is assumed in this approxi-
mate treatment that the functions used implicitly in
fitting the band structure actually are suitably chosen
atomic wave functions. In this work, we have used a
Gaussian atomic basis' so that integrals in Eq. (2) can be
evaluated analytically. Detailed expressions are given in
the Appendix.

The k summation of Eq. (1) can be converted into a
Brillouin zone (BZ) integral: +&=NO/(2m) fBz. The
integrations are carried out numerically by the linear
tetrahedron method in the whole BZ. For e&, the
principal-value integrals are evaluated following the pro-
cedure given by Rath and Freeman. ' The integration for
ez is similar to the standard computation of the density of
states. The total number of grid points used inside the
total zone is 2023. The numerical integrations were test-
ed by comparing with the exact values of E'& for the free-
electron model. ' The uncertainties are around 1—3%.
A similar magnitude of uncertainty is also found when we
change the total number of integration points. Since e&

and e2 are both calculated directly from Eq. (1), it is
desirable to see how well they obey the Kramers-Kronig
relations. Such a check is shown in Table I, in which
we compare the e, calculated from direct BZ integration
with that obtained through the Kramers-Kronig (KK) re-
lation,

2 Pe2(P)
e, (co)=1+—Pf dp .

VT 0 p Q)
(3)

Good agreement exists, indicating a high degree of accu-
racy of our numerical computations. In Table I we also
list values of e& calculated using the Slater-type atomic
orbital basis involving on-site approximations. It is
seen that there is also a good agreement between the re-
sults calculated using a different orbital basis. The com-
parison is made at q=(0, 0,0.5). Throughout this paper,
we will use a reduced unit for the momentum vector q in
(m. /a, vr/b, m. /c ). We take the lattice constants
a =7.224 95 a.u. , b = 1.016 55a and c =3.055 99a.

The RPA formula is we11 known to produce undesir-
able results at large q—corresponding to the interelec-
tron distance less than the Thomas-Fermi screening
length: q

' &x'[Ir =4rre D(EF)].. The calculated den-

sity of states per unit volume at the Fermi level [D(EF)]
for YBa2Cu307 is ' around 0.0512/Ry a.u. (v= l. 134
a.u. ). We can study the correction to the RPA by the
Hubbard formula,

V, (q )y(co, q)
e(co, q) = 1—

1 —G(q) V, (q)y(co, q)
where V, (q)=4me /q, y(co, q) is the susceptibility, and
G(q)=0. 5q /(q +v ). Evaluation of Eq. (4) indicates
that for the wave vectors we' re interested in this paper
(q (1 a.u. ), the Hubbard correction is very small (less
than a few percent).

(4)

~ (eV)

0.105
0.205
0.305
0.405
0.505
0.605
0.705
0.805
0.905
1.005
1.105
1.205
1.305
1.405
1.505
1.605
1.705
1.805
1.905
2.005
2.205
2.405
2.605
2.805
3.005

Direct
calculation
(Gaussian)

86.599
65.168
24.475
22.163

6.493
12.254
13.047
10.256
13.951
16.530
18.311
16.103
14.143
13.284
12.642
12.003
12.736
11.391
10.041
11.096
10.806

—16.355
—12.378
—7.429
—9.319

83.464
62.790
24.160
22.575
8.086

12.509
13.027
10.775
13.961
16.408
18.017
16.077
14.161
13.266
12.611
11.978
12.568
11.377
10.059
10.745
9.478

—16.381
—12.248
—7.462
—9.828

Direct
calculation

(Slater)

84.068
63.225
23.040
20.503

5.159
10.857
11.460
8.599

12.338
14.765
16.417
14.172
12.126
11.195
10.622
10.225
10.926
9.801
8.629
9.495
8.716

—15.630
—13.009
—8.240
—9.175

TABLE I. Results for e& obtained by direct calculations are
compared with those obtained from e, by a Kramers-Kronig
transformation of Eq. (3) at q=(0, 0,0.5). The calculations of
columns 1 and 2 were made with Gaussian wave functions.
Column 3 contains the results when a. basis of Slater orbitals are
used (additional approximations are necessary in this case).



386 H. CHEN, J. CAI.I.AWAY, N, E. BRENER, AND Z. ZOU 43

III. RESULTS AND DISCUSSION

A. qAOcase

We begin with a general overview of the dielectric
function in the energy range 0—2 eV. Figures 2(a)—2(d)
show contour plots of e, along four symmetry lines: (a)
for (1,0,0); (b) for (1,1,0); (c) for (0,1,0), and (d) for (0,0, 1),
where heavy lines represent contours of positive values,
and values of adjacent contours di6'er by a factor of 2.
From Figs. 2(a)—2(c), it is seen that ei becomes negative in

a substantially large region of the q, co space roughly
defined by 0(q„» (0.5(m/a); 0.2 &co&1.5 eV. Figure
2(a) looks fairly similar to Fig. 2(c), but subsequent stud-
ies presented below show that the dielectric function in
the x and y directions are rather strongly anisotropic.
There are structures in Fig. 2(d) at 0.5 and 1.2 eV. They
appear to be dispersionless as q is increased along the
(0,0, 1) direction, which is expected from the quasi-two-
dimensional nature of the electronic structure. In Fig.
2(d), there is also a small region in which e, is negative at
q )0.8(m /c ) and 0.4 & co & 0.6 eV. From these contour
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FIG. p. Contour plots of e, in four symmetry directions: (a) (1,0,0), (b} (1,1,0), (c) (0,1,0},and (d) (0,0,1). Values of adjacent con-

tours differ by a factor of 2. Heavy lines indicate the positive value.
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'
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FIG. 5. Imaginary part of the dielectric function for three
different q values in the q, q~ plane: so i ine,i ine 0.1,0.1,0); hort-
dashed line (0.15,0,0); long-dashed line, (0,0.15,0).

lots it may seem that e& decays more y
'

slowl in the z
direction. This actually is not the case becausese the wave
vector q is expresse ind in terms of the reduced units
(~/a, m/b, ~/c ).

Figure 3 shows the imaginary part of the dielectric
function or q, =
It is seen here that in addition to those strong low-energy
peaks below . e, e0 5 V th re are two additional peaks cen-
tered at 2.3 an . ed 3.0 eV. The absorption peak at 2.3 eV is
quite strong. xperimenE imentally a 2.5-eV electronic transi-
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FIG. 7. Imaginary part of the dielectric function for
q=(0. 1,0. 1,0). The effect of turning off the contribution from
orbitals centered on different copper sites is shown: solid line,
total e2, short-dashed line, turning off Cu(1); long-dashed line,
turning off Cu(2).

We have investigated the origin of these interband
transitions. To do this, we take advantage of the tight-
binding formulation of the matrix elements in Eq. (2) and
arbitrarily let the matrix elements associated with one, or
a set of, specific orbitals to be zero. This effectively
"turns off" the contribution to the dielectric function
from those orbitals. Several curves corresponding to
turning off orbitals centered on different atoms are given
in Figs. 7 and 8. From these two figures, it can be ob-
served that lower-energy transitions ( (0.25 eV) are more
strongly affected by turning off orbitals centered at Cu(2)
or O(2), indicating the importance of the Cu-0 plane.
Turning off O(1) (the chain oxygen) gives the smallest
effect, but it is evident from Figs. 7 and 8 that Cu(1) also
contributes to the low-energy excitations substantially.
We can also turn off orbitals associated with a specific
atomic symmetry. We find that oxygen p and p orbitals
affect the results most. In addition to the above studies
on the atomic orbital effect, we have also compared the
interband-transition matrix elements between bands im-
mediately above and below the Fermi level. In Fig. 1, the
emphasized bands give relatively larger values of inter-
band transition by about a factor of 10 in comparison
with those not emphasized.

tric function is quite evident even within the q, q plane.
From these figures, it is seen that the strength of inter-
band transition is the weakest in the q direction and the
strongest in the (1,1,0) direction. Comparison between
Figs. 5 and 6 indicates that while the greatest strength of
interband transitions is concentrated at lower energies
( (0.5 eV), the electron energy-loss function starts to rise
after 1.0 eV, implying a relatively higher plasmon fre-
quency (1.5—2.5 eV).

400—

B. q=Ocase

We now present the results of our calculation in the
case of q=0, corresponding to the optical excitations.
We evaluated e& and e2 after taking the q =0 limit in Eq.
(1). The dielectric function is a tensor. In Fig. 9, we
present calculated e&" and e~ in comparison with the ex-
perimental data by Schlesinger et al. ' The experiment
measures the (a b) plane r-eAectivity directly. The
Kramers-Kronig relations are used to convert this data
into e& and e2. There is a rather good agreement between
theory and experiment for energy greater than 0.5 eV.
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FIG. 8. Imaginary part of the dielectric function for

q=(0. 1,0. 1,0). The effect of turning off the contribution from
orbitals centered on different oxygen sites is shown: solid line,
total e2,' short-dashed line, turning off Q(1); long-dashed line,
turning off O(2); dotted and long-dashed line, turning off O(3);
dotted line, turning off O(4).

~(ev)

FIG. 9. Real part of the dielectric function for q=0: solid
line, ej, long-dashed line, e& . Crosses are experimental data of
Ref. 12.
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The calculated dielectric functions above 0.5 eV are
slightly lower than the measured values. For energies
less than 0.5 eV, experiment data and theoretical curves
diverge. The calculated e& begin to rise while the experi-
mental data continue to decrease.

Our present calculation includes only interband contri-
butions to the dielectric function and does not incorpo-
rate the effect of relaxation. We have ignored the contri-
butions of lattice vibrations which should strongly
influence ez(co) for energies less than a few hundred wave
numbers (co h (0.1 eV). Other sources of relaxation may
also be present involving impurities, electron-electron
scattering, and possibly magnetic excitations. Due to the
Kramers-Kronig relation, a change in ez at low frequen-
cies will affect the shape of e&(co) in a wide range of fre-
quencies. In particular, as can be easily noted from Eq.
(3), an increase of e2 below some coo causes the real part of
the dielectric function to decrease in proportion to
1/(co —coo) for co larger than coo. Experimentally, ' it is
found that the relaxation rate ~ ' is rather large for
YBa2Cu307 (r '-0. 1 eV at co=0). And r '(co) in-
creases almost linearly with co. A frequency-dependent

'(co) is difficult to incorporate into the calculation
since the Kramers-Kronig relations may no longer apply.
The most obvious effect of a large relaxation rate is to ob-
literate sharp structures. Additionally, in the present cal-
culation, we have not considered the singularity of e2 at
co=0 corresponding to a finite dc conductivity. This con-
tribution to conductivity is usually added to the inter-
band term phenomenologically by including a Drude
term which is centered at m =0 with a width determined
by the relaxation rate (-0.1 eV). Apparently, the in-
clusion of such a term will also improve the agreement
between theory and experiment in a similar way as the in-
clusion of a phonon term does.

Instead of showing e2, we present in Fig. 10 the ele-

ments of the interband optica1 conductivity tensor,
o =(co/4n. )e2, o ", o~~, and o". There is a large conduc-

tivity peak in the xx and yy components for co from 0.2 to
0.6 eV. The size of the yy component of conductivity is
nearly twice as large as that of the xx component, indi-
cating that there is a substantial contribution to the opti-
cal conductivity from Cu-0 chains. The zz component is
drastically different from those in the xx and yy com-
ponents. The zz component peaks at a lower energy: 0.1

eV, and it is the weakest of all three. Both the position
and the averaged conductivity peak strength of 1900
(0cm) ' are in excellent agreement with previously re-
ported theoretical calculations of Chui, Kasowski, and
Hsu. " However, the experimental situation with regard
to this low-energy conductivity peak is unclear at the
present stage. An earlier experiment on the ceramic
samples showed a conductivity peak at 0.4 eV with a
strength of 1200 (Qcm) ', but other experiments' '

have not been able to show such a peak clearly.
The existence of low-energy structure in the optical

conductivity is an inevitable consequence of the complex
band structure of Fig. 1. Unfortunately, experiments
cannot isolate the interband contribution from the mea-
sured conductivity uniquely. In Ref. 12, it is demonstrat-
ed that the infrared conductivity does not diminish with
frequency as rapidly as 1/co, which is expected from the
Drude model for the dc conductivity. Instead there is a
very strong and broad background conductivity persist-
ing throughout the infrared range. If the reciprocal re-
laxation time is 0.1 eV or larger-„ increasing with the fre-
quency, ' the interband structure will be significantly
broadened. The inclusion of a broad dc term plus the
contribution from other sources of relaxation may easily
overshadow the interband term, which is then difBcult to
observe. Perhaps the strongest evidence for the existence
of the interband conductivity as proposed in Fig. 10 is the
recent measurement of the difference between o.~~ and o
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FICx. 10. Low-energy optical conductivity: solid line, o.
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perimental data of Ref. 28.
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reported by Schlesinger et al. on single-domain
(untwinned) crystals of YBa2Cu307. In Fig. 11, we com-
pare the calculated o. —o." with the experimental data
of Ref. 28. There is a good agreement between experi-
ment and theory for the strength and position of the
peak. It is also evident from Fig. 11 that the relaxation
effects are very strong.

IV. SUMMARY

In this paper we have studied both real and imaginary
parts of the dielectric function for YBa2Cu307 as func-
tions of the wave vector and the frequency. Our calcula-
tion is based on the random-phase approximation and we
have used a set of tight-binding-band parameters based
on the local-density functional LAP%' bands. In addition
to high-energy absorption peaks at 3.0 and 2.3 eV, we
find very strong absorption peaks for energies below 0.5
eV. Our study shows these absorption peaks are associat-
ed with the rich Cu-0 band structure adjacent to the Fer-
mi level.

The presence of low-energy interband excitations as
evidenced by large peaks in e2 is significant since they
cause the existence of large regions of negatively valued
t.

&
in the q, co space which may then lead to an effective

attraction between electrons. It appears that the energy
range in which the dielectric function is negative may be
high and large enough in order to lead to a high T, .
However, in order to estimate T„band renormalization
and contributions to e from other kinds of elementary ex-
citations must also be carefully considered. In addition,
conventional procedures in which the q dependence of
the effective interaction is averaged over directions will
not be appropriate in this highly anisotropic case.
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APPENDIX

This appendix gives the general expression for the in-
tegrals defined in Eq. (2):

I= U; r —A U- r—8 exp iq. r dr, (A 1)

where the two Gaussian functions are expressed as

U, (r —A)=(x —A„) '(y —3 ) '(z —&, )
'

X exp[ —a;(r —A) ] (A2)

and

U. (r —B)=(x—8 ) '(y —8 ) '(z —8, )
'

Xexp[ —a, (r —B) ] . (A3)

Defining a =a; +a and P = ( a; A+ a~ B) /( n; +a, ), it
&s easy to show

(x —A„) '(x 8)'—
I

)
+ I~

I), I~d ' '(n )a" H„(a„(x P, ) ), —(A4)

where II„ is the Hermite polynomial and
—n /2 11 l2

i =0 j=O

(P 8 )
2 ~ —(i+J)/2 ( +J).

2' '[(i +j n) /2]!—

(A5)

C/ and C& are binomial functions. Using Eq. (A4), we
'2

can obtain the final result,

National Science Foundation under Grant No. DMR-
8810249. We are indebted to D. A. Papaconstantopoulos
for providing the computer code of the tight-binding
bands.

I=exp (A —B)
CXp

3/2

exp( —
q /4a )exp(iq P)

I]+l2 m/+m2 n(+n2
d ' '(r)d~ ' '(s)d, ' '(t)(iq„)"(iq )'(iq, )'. (A6)

r=0 s=0 t=0
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