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A simple theory of the eftect of monatomic steps on the local density of surface states and on the
conductance of a scanning tunneling microscope (STM) has been developed. This theory is based
upon reAection and transmission amplitudes for surface electron waves. It is assumed that a step
acts as a repulsive barrier, which is entirely consistent with experimental observations on the (111)
surface of a Au single crystal. Comparison to experiment has been made for a Oat surface to estab-
lish that the model for the tip and barrier is adequate. The theory for the conductance with the
STM tip near a single step and in the center of a pit is shown to agree well with experiment.
Theoretical results are also presented for a periodic array of steps for which one-dimensional
Kronig-Penney bands should be observable, especially at reduced temperature.

I. INTRODUCTION

The scanning tunneling microscope (STM) has two dis-
tinct attributes: (1) topographical imaging and (2) spec-
troscopy. The first pertains to the determination of the
surface height as a function of location. Features such as
monatomic steps' and marks made on the surface of met-
als by a controlled tip touch can be observed easily and
even followed as a function of time. The second attribute
is the ability to infer information about the surface densi-
ty of states from the voltage dependence of the current,
or the conductance dI/dV. A good example is the sur-
face state on Au(111) observed with the STM by Kaiser
and Jaklevic. It is also possible to obtain spectroscopic
images of a surface —that is, a scan based upon the value
of dI/dV at a fixed voltage related to an electron energy
level. This has been demonstrated for semiconductor sur-
faces by Hamers, Tromp, and Demuth and for metal
surfaces by Everson, Jaklevic, and Shen.

To appreciate fully the information from a spectro-
scopic scan it is useful to analyze a simple, well-
characterized sample. A convenient choice is the
Shockley-type surface state near the Fermi level on the
(111) surface of Au. These states have been studied ex-
tensively on Au, Ag, and Cu by photoemission (see Ref. 6
and references therein).

The details of the experimental parts of this work have
been described previously. ' Briefly, the experiments are
performed in an ultrahigh vacuum on a single-crystal
Au(111) surface prepared by ion-bombardment cleaning
and thermal annealing. The tunneling tip is usually made
from tungsten or platinum. Both topographic and spec-
troscopic data can be taken simultaneously; the former is
taken in the constant current mode where the altitude of
the tip is recorded and in the latter the amplitude of the
dI/dV (conductance) signal at constant height is taken.

Plots of these can be made over the entire scanning area.
In addition, complete dI/dV versus tunneling voltage
curves may be taken at various points on the surface to
measure the position, shape, and intensity of the surface-
state peak. These effects are weak, typically about 1% of
the background resistance, thus requiring an averaging
procedure. Hence, some time is spent at each point on
the surface so that repetitive sweeps of the voltage can be
made and the resultant conductance can be averaged over
20 to 100 sweeps to achieve adequate signal-to-noise ra-
tio. Semiconductor peaks reported previously, by con-
trast, have as much as one hundred times greater intensi-
ties. For the energy range of interest, the tip voltage is
scanned in the positive direction up to 3 V.

In order to have both a good signal-to-noise ratio and
small drift during dI/dV acquisition, modulation volt-
ages of 100—200 mV peak to peak were required. The
broadening of the surface-state conductance peaks caused
by this large modulation voltage must be accounted for
when comparing experimental results with theory.

Effects of the Au(111) 23 XV3 reconstruction have
been imaged in these experiments in both topographic
and spectroscopic modes. The reconstruction has an
effect on the surface-state conductance which is smaller
than that measured at a monatomic step (see Sec. III A).
Additionally, the magnitude of the surface-state conduc-
tance change at a step is independent of whether or not
the reconstruction corrugation can be imaged for that
particular region. The data suggest that the effect of the
reconstruction is only a perturbation of the basic reduc-
tion in surface-state conductance measured at a step.
Thus we model the Au(111) terraces as Aat, even though
this is clearly an approximation for reconstructed surface
regions.

In Sec. II, we present a simple theory for the current,
or dI/dV, as a function of voltage for a band of surface
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over a limited range that is relevant to sharp tips. [For
further discussion of the validity and limitations of the
approximate tip function (3), see Refs. 11, 12, 13, 14, and
15. If the tip wave function were a d 2 function as sug-

gested by Chen, ' the modification of the results, in par-
ticular, Eq. (5), is insignificant. ] Substituting (5) into Eq.
(4a), we have

I- I dE exp —2 I E(z)dz—
0 0

X [f(EF Eo—+E) f(EF—Eo+—E+eV)], (6a)

(6b)

fi ~

2' Q
(6c)

In principle, the tip density of states should appear in
(6a). However, since we have no knowledge of its energy
dependence, we treat it as a constant.

For a qualitative understanding, we can expand

fK(z)dz for small V and E to obtain the simplified ex-

pression

I= Go exp( V/ Vo )

X J dE exp[(EO E)/E, ]—
X [f ( EF —Eo +E ) f ( EF E—o +E+—e V )],

(7a)

2(g Ey/2m )
~

Vo=
ed

we plot the conductance (in units of Go) for two different
temperatures. In the numerical calculations, we use the
more accurate form (6), instead of (7). For low T (essen-
tially T=0), the conductance is just the surface-state den-
sity of states (DOS) distorted by the voltage and E depen-
dences of the tunneling probability. Recall that the DOS
for 2D free electrons is uniform above the bottom of the
band at EF Eo—[Fig. 1(c)]. At room temperature, where
all the experiments discussed in this paper were per-
formed, the discontinuous change in dI/dV at V=Eo/e
that occurs at T=0 is smeared out giving the appearance
of a peak. The position of the peak depends on T and is
always less than Eo /e. For the parameters chosen
(a =20 A, d=9 A, 4=4 eV, and T=300 K), the peak
occurs at 0.34 V. Two typical experimental conductance
curves are displayed in Fig. 3. Since the assignment of
background (due to bulk states) is not unambiguous, it is
dificult to normalize the spectra. Here, for comparison
to theory, we have normalized the diA'erence in conduc-
tance between the peak and the subsequent minimum to
the theoretical value. The calculated curve shown in Fig.
3 is the 300-K curve of Fig. 2, which has been broadened
to account for the 200-mV (peak-to-peak) modulation
used in the experiment and has had a linear background
term added. It is clear that the general shape and loca-
tion of the experimental peaks agree well with theory.
The calculated peak position (with modulation and back-
ground), at 0.31 V, compares favorably with experiment.
Results from 24 trails spanning many diff'erent large (111)
terraces give an average peak position of 0.317 V with a
standard deviation of 0.043 V. However, the calculated
minimum (0.54 V) differs somewhat from the observed
values —0.62 to 0.64 V for the examples shown in Fig. 2.

E, =E, /[1+d(1 —m /m *)/a ], (7c)

where Go is the surface-state conductance at zero bias
and T=O.

A typical result of this theory is shown in Fig. 2 where
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FIG. 2. Surface-state conductance, dI/dV vs V, normalized
to unity at zero bias voltage. Solid curve, T=300 K; dashed
curve, T=4 K.

FICx. 3. Conductance dI/dV vs bias voltage V. Solid and
long dashed curves are typical experimental results at room
temperature where the peak to minimum difFerence has been
normalized to the calculated value. The curves have been offset
by one unit for clarity. The short dashed curve is the calculated
curve of Fig. 2 for T=300 K, which has been broadened to ac-
count for the 200-mV modulation in the experiment and has
had a linear background added.
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One possible explanation for the difference is the effect
of the electric field on the energies of the surface states.
The field is V/d directly below the tip and, from pertur-
bation theory, would be expected to produce a shift of ap-
proximately —e V/2'. For typical parameters, this
shift is of order 0.02 eV and could explain the small
differences in the peak voltage between theory and exper-
iment. The position of the minimum is more sensitive to
background and is not thought to be as significant as the
peak.

Qualitatively similar results for the surface-state con-
ductance have been calculated by Modinos, Aers, and
Paranjape' in metal-insulator-metal tunneling. They in-
cluded lifetime broadening, but restricted their calcula-
tion to T=O.
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In this section we consider the effects of surface struc-
ture on the surface-state energies and tunneling conduc-
tance, especially as a function of lateral position. We lim-
it our attention to a single monatomic step, periodically
spaced steps, and to isolated pits, which are easily formed
on the Au(111) surface and show interesting effects. We
are not concerned with the direction of the step because,
experimentally, results for different directions are indis-
tinguishable.

The approach used for this analysis assumes that the
perturbation due to a step is confined to the immediate
vicinity of the step. That is, in the region between (or
away from) the steps, the surface electron travels freely
(in two dimensions). From the work of Thompson and
Huntington, ' who have calculated the potential near a
step in a jellium model, it appears that the principal dis-
tortions of the potential occur over a range of a few
angstroms on either side of the step. This assumption of
a local perturbation then leads to the notion of reAection
and transmission of an electron wave impinging on the
step (see inset on Fig. 4). If we neglect any coupling to
bulk states, then we can define a transmission coefficient
T and a reflection coefficient R for an electron impinging
normally on a step at the origin:

(x)= e 'q +Re'~, x )0
Te '~, x (0

(8a)

(8b)

A. Single step

In this subsection we calculate the conductance for the
tip near a single step of height s. Since the surface is
translationally invariant in the y direction (parallel to the
step), the wave function will have an exp(ik y) depen-

Conservation of Aux requires that T
~

+
~
R

~

= 1. Time-
reversal symmetry then demands that an electron imping-
ing on a step from the left [Eq. (8) corresponds to an elec-
tron coming from the right] must have the same
transmission coefficient T and the same magnitude of
reAection coefficient ~R, although the phase of the
reAection coefficient could be different. It must, however,
satisfy R'= —R*T/T'. Throughout this paper, we as-
sume that R'=R.

FIG. 4. Normalized conductance vs bias voltage with tip
directly over monatomic step. Solid curve, q0=0 (same as flat

o

surface); short dashed curve, qo =0.02 A, long dashed curve,
o —1

q =0.05 A . T=300 K. Inset: monoatomic step of height s.
Surface plane wave impinging normally from the right has a
reAection amplitude R and a transmitted amplitude T.

dence. The total wave function is then

4(x) =exp(ik y )g(x )d&(z —g),
where

(9a)

s, x(0
C

0, x)0'
(9b)

(9c)

E=iri (q +k )/2m* . (10)

The tip wave function is given by Eqs. (3a) and (3b),
but with r referred to a tip at position (xo, O, zo):

r=[(x —xo) +y +(z —zo) ]'

The primary dependence of the tip wave function on po-
sition is given by expanding r and it (r ) about the apex at
the tip (xo, O, zo —a ) on the plane z =zo —a:

r =a —[(x —xo) +y ]!2a (12)

and

P„(r)-(~/2~ )aex[ p—a[(x —xo) +y ]] . (13)

(This approximation gives the same results for small k
as obtained by using the expansion of Ref. 9. The nor-
malization is chosen for convenience. ) The dominant fac-

and g(x ) is given by Eq. (8) for an electron impinging on
the step from the right. A similar expression holds for an
electron impinging from the left. The nature of N(z) is
discussed by Kevan and Gaylord and by Zangwill. ' Its
detailed form is not of interest here, except that it decays
as exp( —Kz) into the vacuum. The energy of the state
given by Eq. (9) is (relative to the bottom of the surface-
state band)
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tor in the matrix element (4b) is a surface integral (on the
z =zo —a =d plane) of g„(r ), as written in Eq. (12), and
%'(x) from Eq. (9). The y portion of the integral is

&ir/2~a f dy exp(ikey —i~y /2a)=exp( —k a/2x. ) .

(14)

The x portion for an electron impinging from the left in-
volves the following factor:

IL= f dx e '(e' +Re ' )(ir/2&ra)'

Xexp[ —i~(x —xo) /2a ]

+ f dx Te' (ir/2rra )' exp[ —ir(x —xo) /2a ].

CO
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O

a
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/

(15)

A similar factor Iz is obtained for an electron impinging
on the step from the right. The current is

I—J dk f dq exp( —2Kd —k~a/ir)(~II
~

+ ~I& ~
)

X [f(EF—Eo+E)

I I I I I I I I I I I I I l I

+400 0 —500 —1000
SAMPLE VOLTAGE {~V)

FIG. 5. Experimental conductance vs sample voltage at room
temperature. Solid curve, Oat surface; dashed curve, same tip
positioned over isolated monatomic step. The tip resolution of

0—10 A causes steps to be rounded. For this case the tip was po-
sitioned half way (in Az) up the step profile.

f(EF—Eo—+E+e V) ] . (16)

For xo~ ~, this expression goes to Eq. (6a), aside from
multiplicative constants.

As this point, we must introduce a functional form for
the transmission and reflection coefficients. We shall
think of the electron attempting to go across the step as
tunneling through an effective barrier. For simplicity, we
take that barrier to be Uos5(x ). Borland' showed that
one can always replace a barrier potential by a suitably
chosen 6 function, although the strength Uo depends on
the energy E. Since we are primarily interested in a small
energy range, taking Uo as constant should be a good ap-
proximation. The resulting coefficients are

values chosen. At the Fermi level, the reAectivity ~R
~

has dropped to 0.013 and 0.076, respectively —rather
weak scattering, yet this order of magnitude for qo ap-
pears to reproduce the experimental results shown in Fig.
5 reasonably well. The experimental conductance curves
could also be affected by a broadening due to coupling
(induced by the step potential) of the surface states to the
bulk continuum states, which is not included in our cal-
culations. We do not believe that such a broadening
would be strongly dependent on position and, therefore,
could not explain the observed variation of the conduc-

T=q/(q+iqo) (17)
2.2

and

R = —iqo/q+iqo)

where

qo =I *
Uos/A (19)

This is the simplest form that a tunneling barrier can
take, involving only one adjustable parameter qo. In the
long-wavelength limit (q —+0), common barrier potentials
give the forms (17) and (18). Further justification for this
approach is given in the Appendix.

In Fig. 4 the calculated, normalized conductance
(dI/d V divided by its value at V=O) is shown for the tip
just above the step (xo =0). The results pertaining to two
values of the parameter qo, 0.02 and 0.05 A ', are
displayed. These values correspond to UO=0. 23 and

0
0.58 eV, respectively, for s =2.31 A. The conductance
above 0.3 V is substantially reduced compared to the flat
surface. The energy at which

~
T

~

=
—,', namely,

A qo/2m*, is remarkably small, 0.005 and 0.034 eV
above the bottom of the surface-state band for the two
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monatomic step; dashed curve, periodic array of monatomic
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B. Periodic array of steps

In this subsection the conductance for an array of steps
is determined. Let us first calculate the surface-state en-
ergies for a periodic array of monatomic steps, equally
spaced a distance L apart. Since the surface is periodic in
the x direction (one step is the same as another), the wave
function must obey Bloch's theorem:

g(x+L )=exp(ik„L )f(x ) . (20)

In the region between the steps at 0 and L, the wave
function can be written as

tance with position. A calculation of the normalized
conductance at V=0.3 V as a function of tip position xo
is shown in Fig. 6 for qo=0. 02 A '. Also shown is a
similar curve where the tip moves between steps in a
periodic array (to be discussed in Sec. IIIB). In both
cases, after an initial rise near the step, oscillatory behav-
ior reminiscent of Freidel oscillations occurs.
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FIG. 7. Local density of states for periodic array of mona-

0
tomic steps spaced 30 A apart in units of the Aat-surface density
of states. Solid curve, midway between steps; dashed curve, im-

o

mediately over step. qo =0.02 A

1t (x ) = A e 'q +Be (21) (2m e )1/2 k„(E)
n(X, E)= f It//k (x)I2

mh 0

In any other region, 1t(x ) can be determined by Eq. (20).
Note that, in general, q and k differ. Applying matching
conditions such as Eq. (8) to the step at L, we find

Be '~ = T exp(ik„L )8 +R Ae''i

A exp(ik L)=TAe'q +R exp(ik„L)B .

(22a)

(22b)

E (k„)=, [cos '(ITIcosk„L) —0]
2m *L2 (24)

where we have written T=
I
TIe'~. Likewise, the

coefficients A and B can be determined from Eq. (22) and
the normalization.

The dispersion curve E„(k„)computed from Eq. (24)
has the behavior expected of a 1D Kronig-Penney model.
It is also useful to calculate the two-dimensional local
density of states for later comparison to the conductance.
Taking account of the motion in the y direction, we must
evaluate

Since q=(2m*E, )' Ifi (the energy is E=E
+A' k~ /2m*), the solution of Eq. (22) gives the disper-
sion relation E (k ) for motion in the x direction:

cos(qL+P)=ITIcosk L,
or in terms of energy,

X[E E(k )] ' d—k, ,

(25)

where k„(E) is defined as the value of k„ in the extended
zone scheme that satisfies E (k„)=E. gk„(x), given by
Eq. (21), implicitly depends on k through q and the rela-
tionship (23). A typical local density of states (LDOS) is
shown in Fig. 7 (qo=0. 02 A ' and L =30 A). For com-
parison, the units are chosen such that the Aat surface
LDOS is unity (independent of x) for E )0. As expected
for a repulsive step potential, the LDOS at the midpoint
exceeds that near the steps. The small gap (0.03 eV)
which opens up at k„=sr IL (A ir /2m *L =0. 15 eV) is
clearly visible. In a separate calculation (not shown), we
find that the oscillatory behavior (as a function of tip po-
sition) of the conductance at fixed voltage noted in Fig. 6
is a distorted version of oscillations in n(x, E) with x
varying and E fixed. It can be shown that in the limit
a =0, T=0, and 4~ ao, the conductance is proportional
to the LDOS at E =EF—e V, as Fig. 1(c) suggests.

The current for the stepped surface is obtained in a
manner similar to the evaluation for a single step, except
that we use the expansion of the tip wave function of Ref.
7 and the relevant surface for the dS integration in Eq.
(4b) is a plane tilted at an angle 8=tan '(s/L) with
respect to the xy plane. The result is

I—f d~k[f(EF Eo+E) f(Ef Eo+E—+e—V)]e—
X g exp[ —[cos 8(k +G„) +k ] a/2m+i(k„+G„)(xo —a sino)]

X [ A F(Ks, (q —k„—G„)L)+BF(Ks,—(q+k„+G„)L)] (26)



THEORY OF THE LOCAL DENSITY OF SURFACE STATES ON. . . 3827

where

and

G„=2~n /I (27)

which has been omitted from the theory, may obscure
such an observation. ) At present, the data at room tem-
perature are too preliminary to present and do not exist
for lower T.

F(u, v)=(e" "—1)/(iu —v) . (28) C. Pit
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FIG. 8. (a) Normalized conductance vs bias voltage for
0

periodic array of steps in Fig. 7. T=300 K, qo=0. 02 A
Solid curve, tip positioned midway between steps; dashed curve,
tip positioned over step. (b) Same as (a) except T=77 K.

The normalized conductance curves with the tip at the
midpoint (terrace center) and over a step (terrace edge)
are shown in Fig. 8(a) for T=300 K (qo=0. 02 A
I.=30 A). The conductance with the tip placed over the
step is nearly the same for the array of steps as for a sin-
gle step (Fig. 4), whereas the conductance at the mid-
point is increased and shifted towards zero bias relative
to the liat surface. At lower temperature (T=77 K),
effects of the gap in the LDOS are evident [Fig. 8(b)]. An
observation of these features in a low-temperature experi-
ment would constitute an important verification of the
theory. (Note that the effect of a finite mean free path,

As a further test of the theory, these concepts can also
be applied to monatomic pits which can often be found
after sputtering the Au(111) surface. Although the actual
shape of the perimeter is polygonal due to crystallograph-
ic effects, for simplicity we approximate it as a circle of
radius R. In the s-wave approximation, only pit states
with s-wave symmetry will be involved in the tunneling
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FIG. 9. (a) Normalized conductance vs bias voltage for a 20-
0
A-diam. pit, one atomic layer deep, tip positioned at center of
pit. T=300 K. Solid curve qo=0 (Hat surface); short dashed
curve, qo=0. 02 A; long dashed curve, qo=0. 05 A . (b) Ex-

0
perimental conductance vs bias voltage for a 19-A-diam. pit at
room temperature. Dashed curve, tip over center of pit; solid
curve, Aat surface with same tip. Scale for conductance is the
same for both curves which have been vertically aligned at zero
bias.
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current if the tip is located over the center, which is the
only case we consider. Within the pit, the wave function
is proportional to a zero-order Bessel function:

P(p)=C(k)JO(kp) . (29)

+[vrqoRJO(kR )] I

The local density of states is (E =A' k /2m *)0)

(30)

Matching at the boundary p=R to a linear combination
of Jo(kp) and No(kp) and representing the effective po-
tential at the step as Uos6(p —R ), we find

C2(k)= —,'k/I [I rrqo—RJO(kR )No(kR )]

LU
(3
Z',

V
I-

Cl
Z',0

2
O
LU
N

tX.0 ay=0. 02
~a 4 m m m I m m w w

qo=o o5

30 A PIT

n (p=0, E ) = m *C (k )/vrA k .

The total wave function is

%'(p, z ) = Q(p)C (z —g),
where

s, p&R
0, p(R

(31)

(32a)

(32b)

0
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FIG. 11. Normalized conductance vs bias voltage for a 30-
0
A-diam. pit with tip positioned at center if pit. T=300 K.
Solid curve, qp =0 (Oat surface); short dashed curve,

o o
qp=0. 02 A; long dashed curve, qp=0. 05 A

Ip—-C(k)exp( —k a/2a)e (34)

The current is

I dk Ip EI Ep+E EF Ep+E+eV

(35)

In Fig. 9(a) the normalized conductance is presented

2 ' 5

The matrix element (4b) for the pit wave function con-
tains the surface integral

Ip = f p dp(v/a )exp( —
p a/2a )+(p, d ) . (33)

If R ~ &&2as,

0
for a small pit (R = 10 A). The reduction at the center of
the pit relative to the Aat surface is substantially greater
than for either the single step or an array of steps with
the tip positioned over a step. The qualitative agreement
with experimental data in Fig. 9(b) is good.

For a larger pit (R =15 A), the first resonance of the
pit can fall below EF as indicated in Fig. 10. Only for the

0

stronger scattering (qo=0. 05 A ) is the resonance fair-
ly well developed. Consequently, the conductance (Fig.
11) shows a large peak which is shifted toward the Fermi
level. Preliminary experiments on three diA'erent sputter
pits of approximately 15 A radius all show significant
shifts of the peak to lower voltage. The average shift in
peak position with respect to values for nearby large pla-
nar regions is 113 mV, about the size of the shift calculat-
ed for qp=0. 02 A ', as shown in Fig. 11. Significant
peak size enhancements have not been observed for these
pits.
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FIG. 10. Density of states at the center of a 30-A-diam. pit in
units of the Oat-surface density of states. Solid curve,
qp =0.05 A; dashed curve, qp =0.02 A

IV. CONCLUSIONS

The most significant result of this paper is that we have
demonstrated that, at least for Au(111), a monatomic
step can be treated as a repulsive barrier for free-
electron-like, two-dimensional surface states. There is no
experimental evidence that steps have an attractive po-
tential or bind surface-state electrons in their vicinity.
This is in contrast to a simple model of the surface pho-
nons on fcc (111),where modes localized near a step are
found. We have made plausible a simple form for the
transmission and reAection amplitudes and have found
that a step weakly reAects electrons at the Fermi level.
Only within —10 mV of the bottom of the surface-state
band (408 mV below EF in Au) does the refiection
coe%cient become significant. From our comparison of
experiment to theory, we have been able to extract a pa-

0
rameter qp =0.02 A ' that measures the strength of the
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barrier. This experimentally determined quantity could
be compared to more detailed calculations of the surface
electronic structure near a step.

Experiments on small pits can be explained using the
same description of the repulsive barrier as appropriate
for a single step. The conductance with the tip over the
pit center is decreased for small pits (e.g. , 20 A diameter),
but should be increased for larger pits where the first res-
onance can occur below EF.

Theoretical results also indicate that interesting effects
due to 1D Kronig-Penney bands can be observed on a
surface consisting of a periodic array of steps. To ob-
serve such effects clearly, it will probably be necessary to
go to low temperatures to escape thermal broadening of
the spectra. In general, we find that at room temperature
the conductance resembles the local density of surface
states, but with considerable broadening. At low temper-
ature, the similarity is much stronger but the energy and
voltage dependences of the tunneling still cause the con-
ductance to be a distorted version of the LDOS.

Shapiro, Muller, and Chiang ' have measured the
surface-state dispersion (F. vs k) on a stepped surface of
Cu, namely, the (332) surface which is tilted 10 from
(111) and consists of terraces spaced about 12 A apart.
Using angle-resolved photoemission, they found that the
minimum in the dispersion occurred at the zone bound-
ary and not at the center (I ) as found on a flat (111)sur-
face. Based upon the analysis given in Sec. IIIB, we
would expect the minimum to fall at I for wide terraces„
suggesting that the potential changes substantially when
the steps are close enough to interact.

If g(x ) changes from 0 to s over a distance l and ql «1,
then a sufliciently weak U, tr(x ) can be replaced by
Uos6(x ) with

Uos = f dx U,s.(x ) . (A4)

T Io /(1 qo/iq ), (A5)

where

Io= f dz 4(z —s)4(z) (A6)

with

[If qol «1, which appears to be satisfied for reasonable
values of the parameters, we expect U,z to be sufficiently
weak for Eq. (A4) to hold. If not, then Eqs. (17) and (18)
still hold for small q, but the relationship of Uos to U,z is
more complicated than Eq (A4).] The form of T then fol-
lows from the continuity of 1it at x =0 and the discon-
tinuity in dg/dx obtained from integrating (A2) over the
singularity at the origin.

If g(x ) changes abruptly, higher lying states y„(with
energy E„), such as the Rydberg series of image states,
can be excited virtually. For an abrupt, but small change
in g(x ), it can be shown that
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Q„=[2m„(E„E)/A' ]'— (AS)

APPENDIX

In this appendix we attempt to make the form of T, Eq.
(17), plausible. For a step with a potential that varies in
the x direction as

U(x, z )
—U(x, z —g(x ) ),

where g(x ) varies from 0 to s, we can write the wave
function as

+(x,z ) =g(x )@(z—g(x )) . (A 1)

Schrodinger's equation can then be written as

d g+ U, tr(x )Q=FP,
2m dx

where the effective potential is

U,s(x ) = [fig'(x )] /2m* f dx [d@(z)/dz]

(A2)

(A3)

The authors would like to thank L. Elie for technical
assistance and C. B. Duke, M. F. Thorpe, and D.
Tomanek for useful discussions.

I„=f dz N(z —s)y„(z) . (A9)

Equation (A5) is the same as Eq. (17) except for the factor
Io, which is close to unity for small s and weak energy
dependence of Q„. Thus, we expect that Eq. (17) is an
adequate approximation for T.

The nature of the potential near a step on the surface
of a jellium metal has been discussed by Thompson and
Huntington. ' ' The principal feature is a small dipole
potential localized at the step, which is responsible for
the lowering of the work function where there is an ap-
preciable density of steps. ' lf the electron follows a
smooth contour that goes up (or down) the step, it should
see regions of both positive and negative potential (rela-
tive to the flat surface) due to the dipole. From the work
of Ref. 17, it appears that this potential variation is small.
Thus the dominant factors in the effective barrier poten-
tial are the kinematic effects discussed above.

Finally, it should be mentioned that this analysis
superficially resembles effective range expansions in
three-dimensional scattering theory. Because of the
differences between one and three dimensions, however, it
is difficult to make a direct comparison. In three dimen-
sions, the strength of the scattering (cross section at zero
energy) is determined by a scattering length, whereas in
the present case, the measure of the barrier potential
strength, qo, has dimensions of inverse length.
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