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Multiple-scattering theory of magnetic x-ray circular dichroism
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Multiple-scattering theory is generalized to take into account the effects of spin-orbit interaction
and spin polarization of the photoelectron that are at the origin of the magnetic x-ray circular di-
chroism (MXD) effect observed in x-ray-absorption spectra where the final state of the photoelec-
tron is delocalized. The basic framework of this treatment is nonrelativistic and relativistic correc-
tions are considered as perturbations. The multiple-scattering approach sheds light on various as-

pects of MXD spectra: the relation between L»- and L»&-edge magnetic signals, the difference be-
tween E-edge and L» &»-edge spectra, and the analysis of spin-polarized extended x-ray-absorption
fine structure. The equivalence between multiple-scattering and band-structure formalisms is used
to show that useful information concerning the spin-polarized projected density of states of the pho-
toabsorbing atom can be obtained from an analysis of MXD spectra.

I. INTRODUCTION

The possibility of an interplay between magnetism and
x-ray absorption was searched many times since
Forman's experiments in 1914.' However, the first
unambiguous evidence for this effect was observed only in
1986. This discovery spurred the investigation of related
phenomena, such as the magnetic Kerr effect and Fara-
day rotation, which were observed very recently. The
sensitivity of x-ray absorption spectra to the magnetic
state of the sample appears as a major new opportunity
for x-ray-absorption spectroscopy and magnetism. Many
applications of magnetic x-ray dichroism (MXD) have al-
ready been proposed (circular x-ray detectors and filters,
investigation of magnetism in transition metals, rare
earths' ' and alloys, ' ' ' ' thin films, ' multilay-
ers, ' etc.).

Since the early successful experiments, it was clear that
the theoretical interpretation of MXD is much different
when the magnetic orbitals probed by the x-ray-
absorption process are localized or delocalized.

The case of localized orbitals such as M,v v edges of
rare earths (probing 4f states) or, to a lesser extent, L«&«
edges of light transition metals (probing 3d states), was
investigated with great success by the Dutch
group. ' ' ' The theoretical interpretation of the effect
is now clear: MXD is due to the efFect of selection rules
governing transitions from the ground state to the multi-
plets obtained by coupling the ion state with the core
hole and the localized photoelectron. If the influence of
the crystal field is taken into account, the agreement be-
tween experiments and theory is very satisfactory.

The case of delocalized final states (L&& &&& edges of rare
earths and heavy transition metals, E edges of light tran-
sition metals) is not so clear. On the one hand, interpre-
tation of experimental spectra in terms of spin-polarized
density of states was proposed by the German
group, ' ' "" following the ideas put forward by
Erskine and Stern. ' It has a great heuristic value, and

was very useful to understand early experiments, but its
validity is not clear. On the other hand, a fully relativis-
tic theory of MXD was carried out by Strange and co-
workers. We should like to propose in this paper an
alternative description of the MXD effect based on a non-
relativistic description of the electrons. We consider this
treatment to be a viable alternative to that of Strange and
collaborators for two reasons. Firstly, the nonrelativistic
descriptions of magnetic materials and x-ray-absorption
process are now well tested, and their range of validity is
known. Secondly, nonrelativistic concepts are more fa-
miliar, and results given in terms of them are more intui-
tive. Our purpose is mainly to cast the heuristic ap-
proach in a rigorous framework, so that our conclusions
can be used to understand experiments and envision new
ones.

In this paper we use the spin-dependent local-density
approximation and the multiple-scattering theory to in-
vestigate MXD at L, »,» edges, then at K edges. This
part is valid over the whole energy range, down to the
edge. Then we carry out a series expansion which leads
us to a theory of spin-polarized x-ray-absorption fine
structure (SPEXAFS). The case of K-edge spectra is
more delicate since MXD observed is due to the action of
spin-orbit coupling on the photoelectron states. Finally,
we state our results in the band-structure language, so
that experimental spectra can be analyzed in terms of
spin density of states. The main physical results of this
presentation are summarized in the conclusion.

This is a methodologic paper, its purpose is mainly to
understand the physical principles underlying the MXD
effect in delocalized orbitals. Therefore we treat the sim-
plest (and most common) experimental situation where
samples are powders. Moreover, since magnetic dipole
transition probabilities are negligible in the x-ray range,
we consider only electric-dipole transitions. Sometimes,
electric-quadrupole contributions can be large at the
I &I &&, edge of rare earths; we shall not treat this addi-
tional complication here.
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II. BASIC NOTIONS AND NOTATION

First of all, the question we would like to address is
that of the origin of MXD effects in delocalized orbitals.
As was shown in a preliminary account of this theory, it
cannot be due to a direct polarization of the final-state
space orbitals by the external field, because the order of
magnitude of this effect is p, ~B (where p, ii is the Bohr
magneton and 8 the applied field) which is typically 10
eV and too small to be observed. By a time-symmetry ar-
gument it can be shown that, with spin-orbit coupling or
spin polarization alone, MXD does not exist in the x-ray
range (with delocalized final states). Therefore, the
MXD effect is due to an interplay of spin-orbit and ex-
change interactions, as emphasized in Refs. 14, 21, and
28.

Knowing that spin-orbit coupling and spin polarization
are necessary for MXD, we immediately observe that
there is a basic difference between x-ray-absorption spec-
tra corresponding to core holes which are spherically
symmetric (K,L, ) or not (essentially L„,L», ). ' ' In
the latter case, spin-orbit coupling exists in the initial
state, and MXD is directly sensitive to the spin polariza-
tion of the final state, via geometric factors (combinations
of Clebsch-Gordan coefficients) that do not depend on en-
ergy. In the former case, spin-orbit coupling is absent in
the initial state, and MXD effects are due to spin-orbit
couplings in the final state, which are much weaker since
the photoelectron is much less localized than the core
hole (the order of magnitude of spin-orbit coupling is 100
eV for 2p states of rare earths, and 0.05 eV for 3d states
of first row transition metals. This is the basic reason
why MXD effects are much weaker at K edges than at
L», L», edges. This is also why K-edge MXD is more
difficult to interpret, as we shall see in Sec. IV. Since this
is a first approach to MXD phenomena, we have neglect-
ed spin-orbit coupling in the final state for the calculation
of MXD effects at L»», edges.

The basic concepts we shall use are as follows. We
consider that a single electron description of the initial
and final states is possible. The initial states are described
by spin-orbitals

~ j,m ) where m varies from —j to j
(j =

—,
' for an L» edge, j =

—,
' for an L», edge). When we

do not consider the effect of spin orbit in the final state,
the final states

~f t ) and
~f ) are described, within the

local-density approximation, as eigenstates of the Ham-
iltonians

Q2H" = — b, + V"(r),
2m

$2H(= — b+ Vi(r),
27?l

where Vt(r) and Vi(r) are energy-dependent potentials
(we restrict the present treatment to real potentials, the
generalization to complex potentials can be carried out
along the line described in Ref. 31). Moreover, we con-

sider Vt(r) and Vi(r) as a sum of spherical nonoverlap-
ping potentials embedded in a constant interstitial poten-
tial Vo and Vo. According to the spherical muffin-tin ap-
proximation, the potentials can be written

$2
V'(r) = g V,'(r, ),

Zm

fiVi(r)= g Vi(r, ),
201

(4)

where V,'(r, ) is a spherical potential centered at nucleus i
in the cluster, and r; = ~r —R, ~, R; being the coordinate
vector of site i. The factor A /2m will simplify the fol-
lowing notation. From now on, the superscript s will
stand for 1' or 1, or for —,

' or. —
—,'.

If we take the example of Lii iii edges, Eqs. (1) and (2)
mean that we consider dipole transitions towards d

&
and

d) final states, and not d3/2 and d~/2 final states. We
made this choice because, since the crystal potential is
not spherically symmetric, d3/2 and d~/z are not eigen-
states of the crystal, whereas up- and down-spin states
are. Consequently, there is no transition from up- to
down-spin states, and the Green function of the crystal is
diagonal in spin coordinates (it can be considered as a
Green function acting on up-spin states and a Green
function acting on down-spin states).

Within the framework of multiple-scattering theory,
we introduce two Green functions G'(r, r') defined by

H' G'(r, r') =5(r, r'),s2 2' s

where v'i=(2m /vari )(E, +A'co —Vo ). Because of exchange
splitting, Vo W Vo so that ~ and K are different for a
given final-state energy E&=E;+Au. We also introduce
the scattering path operators defined by

r' = V'5 + V'G'V' .lJ 1 1 J I J

From this definition, scattering path operator r,'. is
simply the t matrix of the whole system restricted to sites
i and j. Physically, r,' transforms an empty space wave
function ~$0) (for instance, a plane wave or a spherical
wave) coming from site j into r,' ~$0), which is the corre-
sponding crystal wave function around site i.

The basic output of multiple-scattering calculations is
the matrix elements of the scattering path operators:

r';l, l.= f d r; f d r'j, (~'r, )YI*(r;)r,', (r;, r,')

Xj ((~'r') Yl (r' ),
where YI (r)= YI (0,$) for r=(singcosg, sinosing, cosg)
are spherical harmonics, the collective index L stands for
(I, m), and j& are spherical Bessel functions. The impor-
tance of the scattering path operators stems from the fact
that they can be used to write the Green function:

G'(r, , r,') =a' g R,', (r, ) YYIL(r;,z,z R( ~'&r,') Yl* (r~ )+5;,~'g R, (r, ' ) Yl (r;)J,'&(r, ) YI*(r,'),
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where R, i(r, ) and J,'i(r, ) are two real solutions of the radi-
al Schrodinger equation

d2

dp2 74 dp p2

m=-2 m=-1 m=2

dl T)

d I l)
The former is regular at the origin and matches smoothly
toj &(ic'r, )cot(5';i )

—ni (ic'r; ) at the radius of the muffin-tin
sphere i, the latter matches smoothly to j &(ic'r, ) at the
muffin-tin radius. 6,1 is the lth phase shift for potential
V,'(r, ), r, (r, ) is the larger (the smaller) of r, , r,

Using the scattering path operators and the Green
functions, we shall investigate MXD in L»», -edge spec-
tra of magnetic materials. The case of the K edge will re-
quire the spin-orbit coupling in the final state.

Left

Right

I1/2, -1/2 ) I1/2, 1/2 )

FIG. 1. A11owed transitions towards d states at an L» edge
(see text).

III. MXD IN Lii iii-EDGE SPECTRA

First, the general formulation of MXD spectra at the
L&, », edge of rare earths is given. Then we consider the
case of the EXAFS region.

cr(e, co)= 4iv2ahco g (l(f ale rljm
f, m.

+
l (f 'l E rl jm, .) l')5(Ef E, fico) . ——

A. General formulation

The absorption cross section may be written as

y l&fl~rlj, )l'~(E, —E, —~ ),
f, m.

(1O)
where e is the polarization vector of the x-ray beam.

As stated in Sec. II, in the case of L&&», edges, the final
states f ) can be written as the product of a wave func-
tion f'(r) by a spin state ls), and the absorption cross
section is

The initial states can be written

ljmj ) =g (lm ,'sjlm )P—& (r) Yi (r)ls ),
m, s

(12)

where (Im —,'sl jm ) is a Clebsch-Gordan coefficient and

P&~(r) is the radial part of the core hole state. P&~(r) does
not depend on spin, because H ~ and H ~ are almost iden-
tical near the nucleus.

Writing the sum over final states in terms of the Green
function, the absorption cross section becomes (with im-

plicit summation over space variables and selection of
spin ls ) in the initial state for G'):

cv(e', co) = 4ivakco—
g2 g Im[( jm, l(e.r)*G "(r,r')e r'l jm ) + ( jm, l(e r)*G "(r,r')e r'l jm, ).] . (13)

We assume also that the spin quantization axis is along
the x-ray beam direction. This simplifies the calculation,
and at the end of this section, we shall specify the
changes that come when the two axes are not aligned.
We use the optical definition of circular polarization.
Therefore a left- (right-) circular polarization corresponds
to the photon helicity +Pi ( fi). The corresp—onding
electric dipole interaction is

2l +1
2A. + 1

M~—=+

Xg (lm —,'s jm )(lml+1 Ap, ),

with

I

where 0 is the photoabsorbing site, and
1/2

M;„(ioiol xo)

1/2
MU =j R'oi, (v)P,~(v)v dr .

0
(17)

To make the following calculation clearer, we start by
considering the (model) case of the L«edge of an isolated
spin-polarized atom. The initial states are given by Eq.
(12)

l —,', —
—,
' ) =Pi i»(r)I ( I/&3) Yi(r)l J, )

—(&2Z3) Y (r)11)],

e r= ——(x+iy)=+ rY+'(r)—(14)

for left and right polarization, respectively.
Introducing the expression of the Green function and

of the initial states in the absorption cross section, and
writing the integral of a product of three spherical har-
monics in terms of Clebsch-Gordan coefficients [Eq.
(3.192) of Ref. 35], we obtain the absorption coefficients
for left- and right-circular polarization:

2f7Z

f2
A, A', s

M ~~M A Im( ra~0~ )

(15)

l-,', —,') =y»»(v)[ —(1~&3)Y', (".)l t)
+(&2~3)YI(r) l

& ) ] .
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m = ——'~(m =0 I =+—'):—'atj 2 f » 2 S

m, = + —,
' ~ ( mf = 1,m, = + —,

' ):—', o t,
m, =+—,'~(m =2, m, = —

—,'):—", cri,f P 5' 2 5

(19)

where crt (o i) are reduced transition probabilities pro-
portional to the square of Mz»/z (Mz»/z). ThereforeT

we see that the main contribution to the absorption cross
section is the transition from m =+—,

' to the d state with

mf =2 and down spin. Because of this term, left-circular
x rays make preferential transitions towards down-spin
states. Summing over initial and final states, we obtain
the absorption cross section:

o-+ =o-'+3o-' . (20)

Conversely, right-circular x rays make preferential transi-

The d orbitals are split by exchange (we neglect transi-
tions towards s states) and the transition rules for left
(right)-circular polarization are mf = m, + 1

(mf =I;—1), where m, is the magnetic quantum num-
ber of the spherical harmonics in the initial state. The al-
lowed transitions are shown in Fig. l. Using Eq. (16) we
have the following partial transition probabilities for
left-circular polarization:

pl = —~ ( mf = 1,mq —
~

):
~

cT

tions towards up-spin states and we have

ro~m =g roo(~, ~', &, y)( —1)' "(~S ~'1 'lcy) .
c, y

(22)

The terms roo(A, , A, ';c, y) contain the same information
as the original scattering path operators; they can be used
to obtain all the one-body physical quantities concerning
the central site 0. They have the properties of transform-
ing under rotation as spherical harmonics and are very
useful for investigating powders since, in that case, all the
terms roo(X, k'; c, y ) are canceled by the spherical average,
except for the isotropic component roo(A, , A, ;0,0):

roo(X k 0 0)
noAQA' ~2~+ 1

A, A' (23)

and the absorption cross section for powders can be writ-
ten

(21)

This preference of circularly polarized x rays for transi-
tions towards definite spin states is the essence of the
magnetic x-ray circular dichroism.

After this treatment of a simple atomic model, we shall
see that analogous results are obtained for the general
case of a powdered sample. It is shown in Ref. 36 that
the scattering path operator matrix elements can be ex-
panded as a sum of (c,y )-spherical tensors

o.—= 4rrafico — gv' (M'3& ) (1010lAO) Im[roo(R, A, ;0,0)]g (lm —,'sl jm+s) (lm 1+llkm+1)
3, (2A, +1)

The sum of products of Clebsch-Gordan coeKcients
have been evaluated for an Lii edge (1 = 1,j =

—,
' ), and for

an L„, edge (1 = 1,j=—', ). The results can be written
conveniently as follows. For an L» edge,

o L„=o21/2+3o 21/2+2o 01/2
+ (25)

~L&& 32 1/2+ 2 1/2+ 2~0 1/2 (26)

edge,

L))) 2 3/2 2 3/2 0 3/2 0 3/2
+

L)I) 2 3/2 2 3/2 0 3/2 0 3/2
T

where

(27)

o.
(
= —4~a.%co

2m
g2

1 (Ir'M' )
9&21 +1

Xlm[roo(11 0 0)] (29)

B. Discussion

The physical meaning of the above coe%cients is, for
instance, that o.

2 represents a transition probability to-
wards d final states (A. =2) with spin up (i.e., spins orient-
ed parallel to the x-ray beam direction). Since the spin
polarization of s states can be neglected when compared
with that of d states, Eq. (25) shows that, at an L» edge,

I

left-polarized x rays make preferential transitions to-
wards down spins. The reverse is true at an L», edge.
The coeKcients that rule the spin preference are purely
geometrical. They are a consequence of angular momen-
tum coupling and do not depend on energy. Therefore,
MXD experiments carried out at L» «I edges give an
unambiguous identification of the spin polarization of the
d final states (or more precisely of the d projection of the
final states). Equations (25) —(28) have been obtained by
Erskine and Stern' for the case of fcc nickel. Our results
are more general, since they are valid for any crystallo-
graphic structure, provided the sample is a powder. Ad-
ditional terms would be present in Eqs. (25) —(28) for non-
cubic single crystals.

The present results can easily be compared with experi-
ment. It was shown by Schiitz et al. that, in many cases,
the quantity (o + —cr ) /(cr +o. ) is approximately
twice as large at the L» edge as at the L»& edge and that
the sign of the eAect is reversed. We can assume, as is
usual, that the transitions towards s states are small.
Then, if o.p3/p —(Tp i/3 (which corresponds to the fact that
the radial wave functions of the j =

—,
' and —,

' core holes
are not very different), we have, at an L» edge,
o.++o. =4o.T+4o. ~, o. + —o. = —2o. T+2o. ~. At an
L», edge, o.++o. = 8o. T+ 8o. ~, o —o. =2o. T —2o. ~.

Therefore we see that the magnetic eFects o. + —o. are
reversed at the L» and L»& edges, and that
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(30)

Notice that, since o.
z is dominant, the MXD effect at

I,„», edges probes the spin polarization of the d final
states of the photoabsorbing atom. This is an attractive
feature of MXD in x-ray-absorption spectra: the spin po-
larization is probed selectively for each value of I.

Another important point is the understanding of what
happens when the x-ray polarization is fixed, and the
direction of the applied magnetic field is reversed. It can
be shown by a time-symmetry argument that the MXD
effect observed when reversing the external field is identi-
cal with the effect obtained by reversing the circular po-
larization or the spin-quantization axis. In other words,
cr "(—B)=o ~(B) and o+( —B)=cr (B), where B is the
external field. Therefore the spin orientation of the final
states relative to the external field direction can be de-
duced from the sign of o. +(B)—o+( —B) obtained from
experimental spectra. This conclusion is very important
in practice, since MXD spectra give the spin orientation
of the d electrons of the photoabsorbing species. For in-
stance, assume that you send left-circular x-rays on a
magnetic sample in an external magnetic field. Let
o+(B) [cr+( —B)] be the spectrum observed when the
external magnetic field is parallel (antiparallel) to the x-
ray beam direction. At an L» edge we have

b cr =o +(B)—o +( —B)
=o.+(B)—o (B)
=2( o. ~ —o. t

) . (31)

1/2

r g D~, ( Q, H, 0 ) I'f ( r ), (32)

If, experimentally, Acr )0, we have o. ~ )o ~ and, from the
band-structure interpretation discussed in Sec. V, this
means that we have more down-spin final states, in other
words the photoelectron spin is polarized preferentially
antiparallel to the applied field. Neglecting the effect of
the core hole, we can conclude that if Ao. )0 for a certain
energy range above the edge, the density of down spins is
larger than the density of up spins for the same energy
range above the Fermi energy.

We would like to complete this section by describing
how the results are modified when the final-state spin
direction is not aligned with the x-ray beam. This can
occur either in helimagnetic or not saturated samples, or
by not aligning the external field along the x-ray beam.

If the x-ray wave-vector coordinates are
(k sinHcosg, k singsing, k cosH) in a reference frame
where the z axis is along the spin-quantization axis, then
the electric-dipole matrix for left-circular polarization is
obtained by rotating e+. This gives us

o.l. (H)= (2—cosH)o. 2, /2+(2+cosH)o2, /2

+(1+cosH )o 0, /z+ (1—cosH )o 0(, /2

a dfo a L777 dg

( H ) —(4+cosH )o p 3/p+ (4 cosH )o 2 3/p

+ ( 2 c OSH) crQ 3 /2+( 2 +c os H) cro 3/p, (34)

where 6 is the angle between the spin-up direction and
the x-ray wave vector, for left-circular polarization.

If the incident x-ray beam is not fully circularly polar-
ized, its state of polarization can be described by P, the
degree of polarization IP =0 for purely natural (unpolar-
ized) light, P =1 for fully (elliptically) polarized light],
and by g which describes polarization ellipticity. These
Poincare parameters are described in Ref. 34. To take
account of this general polarization state, we can use the
coherency matrix of the beam to show that the factor
cosO should be replaced by the factor —P cosO sin2g in
Eqs. (33) and (34). This gives us the L&»&& absorption
coefficient of an x-ray beam with the most general polar-
ization state by a magnetic material where the spins have
any orientation. If the spins of the final states of the ab-
sorbing species have not always the same orientation, as
in helimagnetic materials, a proper average must be car-
ried out over 0.

C. SPKXAFS at Lit i&i edges

The presence of a spin-polarized extended x-ray-
absorption fine structure (SPEXAFS) in the magnetic x-
ray dichroism spectra was observed first at the L77777
edges of gadolinium in G13Fe&O&z. ' This effect was
confirmed at the L77, 777 edges of cerium in CeFe2. ' At
the E edge of transition metals the fine structure is much
weaker.

In this section, we show how the standard expansion of
scattering path operators in multiple-scattering series can
lead us to an understanding of the fine structure observed
experimentally. From this study, it will be possible to
state which characteristics of the system can be drawn
from an analysis of the fine structure of magnetic x-ray
dichroism.

Formula (29) gives effective transition probabilities to-
wards up and down spins. They are essentially the prod-
uct of an atomic factor (lc'M&'&/), which varies smoothly
without oscillation, by the imaginary part of a scattering
path operator roo(l, l;0,0) which represents the infiuence
of the whole crystal. In SPEXAFS, as in standard
EXAFS, this latter term is the origin of the fine structure.
EXAFS oscillations are due to photoelectron backscatter-
ing by neighboring atoms. We obtain them by expanding
the scattering path operator in a multiple-scattering
series up to second order (single scattering). It is shown
in Ref. 36 that, to second order, the multiple-scattering
series is

where D ', ($, H, O) is a Wigner rotation matrix
parametrized by the Euler angles P, H, and 0. Then the
previous calculation can be repeated, and we obtain for
an L77 edge

Boo(l, I;0,0) = — OI+roo '(l, l;0,0)+ . , (35)
K

where the second term is the usual EXAFS contribution
due to single scattering by neighboring atoms:
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F00' '(l, l;0, 0)= (r0( ) g (2l'+1)t~'(, g (lOl'O~aO) [h,+(a'RDJ )]
a

(36)

with t'&. =sin5'& expi5'&. . h, is a spherical Hankel function and Roj is the distance from the photoabsorbing site to site
j.

Since, at this stage, we do not need the accuracy of spherical wave EXAFS formulas, we shall use the plane-wave EX-
AFS approximation obtained by taking the asymptotic limit of spherical Hankel functions. This yields

o& =4rrafico —a'(M, '& ) sin (50&) 1+(—I)'g Im exp[2i(v'R0 +50&)]g ( —I)'(2l'+ lit'& . (37)
I'

(38)

As expected, Eq. (37) would be identical to the standard EXAFS formula if there were no spin polarization. It is possi-
ble to test experimentally the validity of this expression. Measuring the L» and L», edges of an element, we can obtain
o z &/2 and a/3/p from Eqs. (25)—(28). Then, the ratio o 2]/p/(7/3/p should be structureless.

We assume, as usually, that the "atomic" contribution has been removed by the normalization procedure (which can
be quite delicate in practice), and that we work on the quantities

+= 1+(—I )'g
~

Im exp[2i (a'RD, +50& )]g ( —1)' (2l'+ 1)t'&,
(~ RD, )~ 1'

Since the effect of spin polarization is small, we can write

~'=~+s A~, 6,'(=6 )+s A6 ) .

This gives us the SPEXAFS formula:

(39)

(40)

(
—I)'(2l'+1)sin(5J& )

( —I)'g ( —2ba/a. +65 &,cot5 &. ) sin(2~R0 +250~+5/~ )
jl' (~R0, )

( —1)' (2l'+ 1)sin(5 &, )+( —I)'g (2b,~RD +25,50(+b,5 ( ) cos(2&R0 +250(+5)( ) .
jl' (~RD, )

(41)

This SPEXAFS formula has an interesting structure.
The first line of Eq. (41) contains terms that are in phase
with the EXAFS signal. Its first term is small at EXAFS
energies since 2 A~/~= AE/E and AE =0. 1 eV, its
second line depends on the spin-polarization of the back-
scattering atoms. The second line of Eq. (41) contains
terms that are in quadrature with the EXAFS signal. For
the case studied in Ref. 12, SPEXAFS signal seems to be
mainly in quadrature with the EXAFS signal, so that this
latter term is dominant. Schiitz et al. state that SPEX-
AFS probes the local magnetic environment of the ab-
sorbing atom. ' This is supported by our present results.
A part of the SPEXAFS signal depends on the spin polar-

I

ization of the neighbors, which is zero for nonmagnetic
species. Moreover, in the case of Gd3Fe~O&2 studied in
Ref. 12, the d orbitals of iron are strongly polarized, and
their contribution to SPEXAFS oscillations is noticeable.
However, another part of SPEXAFS oscillations depends
on the neighbor distances and on the spin polarization of
the absorbing species. This part contains contribution
from all the neighbors, so that the SPEXAFS signal is
due, not only to the magnetic neighbors, but also to the
spin polarization of the absorbing species.

Notice that Eq. (41) can also be written in a somewhat
more familiar form

y&
= ( —1) ( —2bx/~) g sin(2~R0 +250&+P )+( —I)'(2haRD +2550&) g cos(2gRD +250&+/ )

vRo Og 01 g Og Ol

+( —I )'g b.5«si (n2&R 0+250&+25 &, ),(
—1) (2l'+I)

(~RD )
(42)

where /I and P are the standard amplitude and phase
factors of the jth neighbor used in the EXAFS formula
and defined as

(43)(
—1)' (2l'+ 1)/I. exp(ig )=g sin(5

&
)exp(i5 &) . .

I' K

Notice that, since the factor A6
&

in the last term of Eq.
(42) is due to the spin polarization of the phase shift of
the jth neighbor, SPEXAFS can be observed also when
the absorbing atom is not spin polarized, or more pre-
cisely when the photoabsorber atomic potentials for up
and down spins are equal.
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IV. MXD IN K-EDGE SPECTRA perturbed state, and we obtain the first Born approxima-
tion:

If, for a K edge we carry out the same calcUlation as in
Sec. III, we find that the absorption by left-circularly po-
larized x rays is not different from that by right-circularly
polarized x rays. Therefore, as explained in Sec. II,
MXD at the K edge is due to spin-orbit coupling in the
final state. In magnetic materials, the spin-orbit coupling
is the origin of magnetic anisotropy and is treated as a
perturbation of the pure spin states. This is valid here
since spin-orbit coupling is much weaker than magnetic
band splitting ' ' and experimental resolution of x-
ray-absorption spectroscopy. Moreover, this retains the
familiar language of spin-polarized electron states.

f"i(r, )=g f d r Gi(r, , r )g (r )l~+g. t(r. ) .
J

Doing the same for the unperturbed state gi gives

f it(r;)=g f d r G (ir;, r )g (r )I. P((r. ),
J

(47)

f t "(r, )=pi(r, . )+g f d r 6 (r;, r )g (r.&)IJ&"(rz),
J

A. Perturbation of wave functions by spin-orbit coupling

Let g' be the unperturbed magnetic states. The spin-
orbit coupling is written g, g, (r, )I; cr;, w. here g;(r, )is the.
spin-orbit operator at site i, I, =(I, , lf, I,') is the local an-
gular momentum (divided by iri), and o; =(o', cr~, o') are
Pauli matrices. Since the spin-orbit term is a function of
the derivative of the potential, it is spherically symmetric
around each site and zero in the interstitial region. One
could wonder whether we should use a spin-dependent
spin-orbit potential g, (r, ), since this parameter is calcu-
lated from the potential V'(r, ), which is spin dependent.
A full answer to this question is difficult since spin-orbit
coupling is deduced from a relativistic Hamiltonian
which is not spin dependent. For the present purpose,
the eventual spin dependence of the spin-orbit parameter
is a higher-order effect that can be neglected safely.

Within the scattering formalism, perturbations are tak-
en into account by expanding the Lippmann-Schwinger
equation. Let f i=f t(r)ll)+f ti(r) 1) be the per-
turbed state corresponding to the unperturbed state
g (r)l 1 ). The Lippmann-Schwinger equation is written
(with an implicit sum over sites)

f i((r;)=g((r;) —g f d r Gi(r, , r g' (r )I;gi(r ) . (48)
J

QL (r~)= —gB,'~(Lo)RJ'i(rj) Y~(rj), (49)

where the amplitudes B'„(Lo) can be expressed in terms
of the scattering path operators as

B~'w(Lo) =a' g HjwiL, JiL, oL,
i, L'

(50)

These equations mean that, when you send a pure up-
spin state g (r, ) in the crystal, the spin-orbit coupling at
each site sends back a component without spin Hip

f it(r; ) and a component where the initial spin up was
fiipped f ti(r; ). The components with spin fiip do not
contribute to first order, and MXD comes from the fact
that the action of spin-orbit coupling is reversed for a
spin up and for a spin down.

The different unperturbed final states of a given energy
are indexed by Lo. A sum over Lo amounts to the sum
over final states in the absorption cross section (10). Ac-
cording to Ref. 43, the unperturbed state within the po-
tential sphere of site j can be written

G+ 0 I' I fbi
0 G I+ —I' fbi

(44)

where l—=I +il~. Since the perturbation is small, we re-
place the perturbed state in the right-hand side by the un-

The matrix J,.LOL is defined in Ref. 43 but will not be
0

used in the final results. For the present work, it is
sufficient to consider R'i, (r ) as restricted to the muffin-
tin sphere j.

Using the expression (8) for the Green function, we can
write the Lippmann-Schwinger equation to first order
around the photoabsorbing site i =0. In terms of these
perturbed final states, the absorption cross section is

o(e)=4irahco(2m/A' ) y (ii'"l&fL I& rjlm, ) I'+&'l &fL le rl jinni, &I')&(Eg —&; —&~) .
Lo, m.

(51)

This formula could be used to calculate the inAuence of spin-orbit coupling in the final state of any edge, but we shall
limit ourselves to the K edge. In that case, and keeping only the terms up to first order in the spin-orbit coupling we
find the absorption cross section for left- and right-circular polarization:
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o=.—4~afirp(2mlh' )(I/3) ~'Mp'P y IBp",+, (Lp)l'+~'Mp", ' & IBp)+)(Lo)l
Lp Lp

+2& Mp)M())" g IBp&+&(Lp)I +2& Mp]M()& & IBp&+](Lo)l
Lp Lp

+2' 'Mp, g g, ,"m ReI[B,I (Lp)]*Bp, +](Lo)(rp&+],I )*]
jLLp

2' M pl p PJI m Re I I B&L ( Lp ) ]*By] +&( Lp )(101+ 1jL )

jLLp

(52)

Reduced matrix elements of the spin-orbit operator have
been defined as

more delicate to evaluate. First we introduce Eq. (57) to
obtain

Pj
dr& v)~R&'( (r~ )(J(r& )R)'(..(r) ),

0

Z&" (r) = f dr' r' R p&(r )Jp&(r )gp(r')R'p(Ir'), (54)
IC Im(dp& I rip& )

(53) 2 g ReI [B&'~(Lp)]*Bp)q(Lo)(+oipqi. )*]
Lp

(60)

where p is the muffin-tin radius of atomic sphere j, Jp~(r)
is the same as in Eq. (8). We have also defined atomic
matrix elements:

Since we consider absorption by a powder, we must take
the spherical average of the last two terms of Eq. (52). A
lengthy but straightforward calculation yields

Pp

Mp, = dr r R p(r)l lo/ (2)r
0

(55)

Pp
(56)

M0, is the atomic K-edge dipole transition amplitude,
Mz&" is an atomic contribution to the eAect of spin polar-
ization on x-ray-absorption spectra.

(a)

B. Green-function interpretation

Before discussing the physical meaning of expression
(52), we shall rewrite it in terms of the scattering path
operators. The optical theorem for scattering path
operators is

(b)

LKg IB; (Lo)]*B;, (L, )= I'~,', , (r,' „)*]. —(57)

For the first four terms of expression (52), this gives us

Bp~~(Lp)]*Bp&I, (Lo) = —~s™
Lp

(58) (c)

Since we study powdered samples, we must take the
spherical average of (58), which is (see Ref. 36)

(59)

Notice that the sum does not depend on the polarization
of the incident beam. The last two terms of Eq. (52) are

FIG. 2. The different ways spin-orbit coupling generates
MXD at K edges. The action of spin-orbit coupling is a
modification of the spatial part of the photoelectron state which
depends on the photoelectron spin direction. The photoabsorb-
ing atom is white, the neighbors are gray (see text).
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a=i+1
6p~ (

—1)' g [(I —a)(l+a +1)+2]g (
—1)' ro (11;aa)ro, (ll;a —a) .01p gL gL01p 12 p, p

a =~l —1I A

(61)

Gathering all the above results, the absorption cross-section for left- and right-circularly polarized x rays, Eq. (52),
takes the final form

1m[ron( 11;00)] 1m[ron( 11;00) ]
o +—= 4rra—fico(2m /fi )(1/3) a.t M — +Ir" Mt01 01

{1 1;00)] „„I [ oto(11;00
+2lr Met, Mo, " — + 2' Mo, M(),

3 3

1)1 a =1+1
+fr Mo) g g~t g [(l —a)(l +a +1)+2]

l j a=/l —11

Xg (
—1) 1m[rot (1l;aa)r"o(ll;a —a)]

( 1)I a=1+1
+/c Mo~ g g ~ g [(l —a)(l +a +1)+2]

a =1l —1l

Xg (
—1) 1m[rot (Il;aa)rto(ll;a —a)] (62)

As for L»»& edges, if the incident x-ray beam is only
partially polarized and if the spin-quantization axis is not
along the x-ray beam, then replace + by —P cos0sin2g
in Eq. (62).

The physical interpretation of the terms is now clearer.
The first two terms represent the absorption cross section
without taking into account spin-orbit coupling in the
final state. As already stated, they do not present any
dependence on the sense of circular polarization. The
third and fourth terms are dichroic contributions where
the up and down channels are separated by spin-orbit
coupling on the photoabsorbing site. The fifth and sixth
terms are dichroic contributions where the up and down
channels are separated by spin-orbit coupling on all the
sites (including the photoabsorbing site). An image of the
last two terms would be as follows: the

~
Ip ) wave of the

photoelectron ejected by absorption of a p =+1 circular
x ray is transported to the site j by the scattering path
operator ro, . At site j the

~
lm ) component of the photo-

electron wave function is scattered by the spin-orbit po-
tential. This scattering depends on the sign of m, which
itself depends on the sign of p. Then the modified wave is
transported back to the absorbing site by the scattering
path operator ~ 0. The third and fourth terms come from
the second (atomiclike) term of the Green function (8)
while the fifth and sixth terms come from the first term of
the Green function which corresponds to specific proper-
ties of the crystal. This is the reason why scattering path
operators appear twice in the fifth and sixth terms. A
pictorial representation of the various contributions to
MXD at K edges is summarized in Fig. 2 (which should
not be taken too literally). Processes (a) corresponds to
the third and fourth terms of Eq. (62), processes (b) and
(c) correspond to the fifth and sixth terms.

The difference between MXD at 4 edges and at L, »»,
edges is apparent. In the latter case, the effect is related
to the spin-up and spin-down states through coefficients

which depend neither on energy nor on atomic species.
The analysis of K-edge MXD spectra is much more deli-
cate, because the coefficients weighting the spin-up and
spin-down states (Mo, M~,"and g'& ) depend on energy, on
the photoabsorbing species, and on the neighbor atom
species.

C. Evaluation of atomic matrix elements

We give now the results of approximate calculations
carried out for K-edge spectra of iron. We also made cal-
culations for cobalt and nickel, but since the results are
qualitatively similar, we show only the case of iron. Fig-
ure 3 shows the electric-dipole transition probabilities
M0~1 and M0~1 from the 1s core hole to the spin-polarized

0.30

0.20

0.15
O

0.10

0.05

0.00
0 20 40 60

Energy (eV)

80 100

FICx. 3. Electric-dipole atomic transition probabilities for
iron [first two terms of Eq. (62)]. Dashed line, Mot, ; solid line,
Mo~, . Up spins are majority spins.
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multiple-scattering expansion of ~pp and ~p up to second
order confirms that the intra-atomic terms (j =0) are
dominant. Therefore Figs. 4 and 5 represent the main
contributions to the MXD effect at K edges. Comparison
with Fig. 3 shows that their order of magnitude is 0.5%,
which is consistent with experiment.

We noticed that SPEXAFS was weak at E edges of
transition metals. This can be understood by looking at
Figs. 4 and 5 which show weighting factors of the fine
structure. Contrary to the case of L»», -edge spectra
where these coefficients are constant, the E-edge weight-
ing factors decrease with energy and tend to zero at high
energy. At 100 eV, SPEXAFS osciHations are already
decreased by a factor of 5.

FIG. 4. Atomic spin-orbit matrix element of the first kind for
iron [third and fourth terms of Eq. (62), i.e., process (a) of Fig.
2]. Dashed line, Mot, Molt t; solid line, Moi, Ma|it. Units are ar-
bitrary but consistent with those of Fig. 3.

p states of iron. There is a noticeable difference for the
transitions towards up and down spins; however, this
difference cannot be reached experimentally as in the case
of L»»&-edge spectra, because there is no spin-orbit cou-
pling in the initial state. The terms that cause the MXD
effect at K edges are shown in Figs. 4 and 5.

The atomic contributions to the third and fourth terms
of Eq. (62) are drawn in Fig. 4. These terms correspond
to process (a) of Fig. 2. The atomic contributions to the
fifth and sixth terms of Eq. (62) for the central atom
(j =0) and I = 1 are drawn in Fig. 5. These terms corre-
spond to process (c) of Fig. 2. It was shown by Parlebas
that nondiagonal Green functions are generally smaller
than diagonal ones. In terms of scattering path opera-
tors, this means that ~pp is generally larger than

Gpss

A

1.8x10

1.5

V. CONNECTION TO BAND-STRUCTURE
FORMALISM

+1&fi',„l~ rl jm, & I')

X5(Ei,„E;—A'co) . —(63)

We can expand the final-state wave function fi,„corre-
sponding to the energy Ek„=E;+A~ over spherical har-
monics

The theoretical studies of magnetic materials are usual-
ly made within the band-structure formalism. In this sec-
tion, we shall use the equivalence between multiple-
scattering and band-structure calculations to give an in-
terpretation of our results in terms of density of spin-up
and spin-down states, which is more familiar. Up to now,
all published comparisons of MXD spectra with band-
structure calculations have neglected the effect of the
core hole on spin density of states. If this effect is impor-
tant, the multiple-scattering formalism or more sophisti-
cated band-structure methods should be used.

The formal manipulations we shaH use in this section
are drawn from Ref. 47. In band-structure theory, the
final states are indexed according to the Bloch vector k
and the band index n. Therefore the absorption cross
section (11)becomes

o(e, ro)=4.n'aAro g ( l&f,"„le rljm, &l'
k, n, m.

2

O
O

1.2

0.9

0.6

0.3

fi,„(r)=gfk„(r,L)I'I (r) . (64)

Inside each atomic sphere, the potential is spherical, so
that ft,„(r,L) is a regular solution of the radial
Schrodinger equation (9). All regular solutions of the
Schrodinger equation (9) are proportional. Thus there
exist constants ak„(L) such as

0.0
20 40 60

Energy (eV)

80 100

FICx. 5. Atomic spin-orbit matrix element of the second kind
for iron [fifth and sixth terms of Eq. (62) for central atom, i.e.,
process (c) of Fig. 2] for 1 = 1. Dashed line, Mot|2(&i»t, solid line,
Mo, got,i. Units are arbitrary but consistent with those of Fig. 3.

f f,„(r,L)=a'i,„(L)Roi(") (65)

1
o'I = m. aA'co (Mi', ) ¹i(E), (66)

where Roi(r) is the absorbing atom radial wave function
for energy E =E; +Acu defined in Sec. II.

With these notations, we can repeat the calculation of
Sec. III and we obtain, for L» „, edges, equations identi-
cal to (25)—(28) with the new definition:
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where iVt'(E) is an l-projected density of states around the
photoabsorbing site, defined as

(67)
k, n, m

Equation (66) is the basic formula used to analyze most
magnetic x-ray dichroism spectra obtained up to now. It
is similar to the expression derived by Schiitz
et al. ' '' "" Since the atomic factor M&'& is smooth,
information concerning the spin polarization of the l-
projected density of states can be obtained from MXD
spectra. For example, when measuring MXD spectra at
the L&, », edges of rare earths, one probes the spin polar-
ization of the d states of the absorbing rare-earth atom.
MXD is thus a unique tool to investigate magnetic con-
tributions, since it is selective in atomic species and in or-
bital symmetry. The same kind of analysis is not
rigorously valid for K-edge MXD spectra, as seen in Sec.
IV. However, an investigation of the spin polarization of
p orbitals may be possible, using carefully chosen refer-
ence compounds. Furthermore, calculated spin-orbit ma-
trix elements can be helpful. For instance, we saw in Sec.
IVC that these matrix elements are positive for iron.
Therefore a discussion analogous to that of Sec. III B
shows that, when the MXD signal is positive, a majority
of spins are down (with the provisos made at the end of
Sec. IVB). This leads to the well-known conclusion that
4p spins are coupled ferromagnetically to 3d spins in iron.

In Eq. (66), the atomic transition probability MI', can
be calculated from atomic potentials, and does not de-
pend strongly on the position and nature of the neighbor-
ing atoms. The spin-polarized projected density of states
Xl (E) can be obtained from ab initio or tight-binding cal-
culations. Therefore it is possible to take advantage of
band-structure calculations to interpret experimental
spectra, as was done in Ref. 7.

VI. CONCLUSION

We have tried to give an account of magnetic x-ray cir-
cular dichroism in itinerant magnetic materials that syn-
thesizes the heuristic qualities of the model developed by
Schiitz et al. and the quantitative approach of the theory
presented by Strange and collaborators.

According to the present work, MXD is due to an in-
terplay between spin-orbit interaction and magnetic spin
polarization. At I-&& &&& edges, a large spin-orbit coupling
exists in the initial state, and MXD spectra supply infor-
mation concerning the spin polarization of the unoccu-
pied d states. The driving mechanism for this is the mix-
ing of spin and space variables in the initial state that im-
plies preferential electric-dipole transitions towards

definite spin states (see Fig. I). For the example of an L„
edge obtained with left-circular x rays, the strong dipole
transition

~j=
—,', m, =

—,
' ) ~~1=2,m =2, m, = —

—,
' ) im-

plies that, at an I.„edge, left-circular x rays make prefer-
ential transitions towards down-spin states. This allows
for an experimental determination of the spin orientation
of the d orbitals of a given atomic species in the sample
relative to the external magnetic field direction. Thus
MXD spectra yield very simply the coupling (ferromag-
netic or antiferromagnetic) of the spins of the d orbitals
of each atomic species relative to the total magnetic mo-
ment. Together with magnetic diffraction studies, this al-
lows for the determination of the spin and orbital contri-
butions to magnetism. Moreover, by using our formula
describing the spin-polarized extended x-ray-absorption
fine structure, it is possible to investigate the spin polar-
ization of the photoabsorbing atom and of its neighbors.
In that case, we switch from a density-of-states approach
to the multiple-scattering theory which describes the spin
polarization of each atomic potential in the sample.

The case of MXD at K edges is more involved because
spin-orbit coupling interacts directly with the photoelec-
tron.

In Sec. V, we have described how band-structure re-
sults can be used within our multiple-scattering ap-
proach. This makes clearer the validity of the usual
analysis of experimental results, where MXD spectra are
directly compared with spin-polarized density of states.

The purpose of the present paper was to study the
physical principles underlying magnetic x-ray circular di-
chroism. Practical calculations of MXD spectra are
based on the local spin-density approximation (LSDA).
However, the range of validity of the Green-function ap-
proach we used in this paper is broader than that of
LSDA, since it is a consequence of optical potential
theory. ' Therefore the physical principles we em-
phasized may be correct even when the LSDA breaks
down.
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