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Path-integral approach to the Hubbard model
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A path-integral approach to the Hubbard model is developed for the whole range of the cou-
pling strength U. At half filling, the strong-coupling results are readily reproduced within the
simple Gaussian fluctuations. The low-lying spin wave is shown to be described by the nonlinear
a model. The

effective

coupling of the doped hole with the background fluctuations also agrees
with that obtained from the t-J model in the small-doping limit. At finite doping, such a formal-
ism may provide a starting point for investigating the short-range spin-liquid state.

The single-band Hubbard Hamiltonian has been pro-
posed by Anderson' as a simplified model describing the
basic physics of the Cu02 layers of the copper oxide high-
T, superconductors. The Hubbard repulsion parameter U
is usually considered to be close to its value in the inter-
mediate- or strong-coupling regime. In the case of strong
coupling, a I/U expansion could be employed, which leads
to the well-known t-J model in the reduced Hilbert space,
the double-occupancy states being projected out. At finite
doping, both the diSculties and the plentiful features of
the t-J model turn out to be associated with the treatment
of such a single-occupancy constraint. On the other hand,
it is known that projecting out the state in large charge
energy scale could be naturally realized in the itinerant
approach by lifting an upper band from the lower one.
But the problems with the itinerant approach are related
to getting the correct low-energy behavior at strong cou-
pling and more importantly, how one can go beyond the
saddle point of the spin-density wave (SDW). For the
latter problem, an attempt has been made to find the
short-range spiral instability at finite doping.

In the present paper, the approach in Ref. 3 will be gen-
eralized by the path-integral method such that the formal-
isin could be applied to the whole range of the coupling
strength U. At half filling, along with the effective actions
for the charge and amplitude Iluctuations, a nonlinear o
model describing the low-lying spin Iluctuations has been
derived in this approach which in the case of strong cou-
pling is in agreement with the well-known results from the
Heisenberg model. The Lagrangian determining the one-
hole-doping and few-holes-doping problem is obtained and

H = —t g (c;t~~ +H.c.) +Ug n; t n; i .
& .i&

We shall develop a path-integral formalism for Eq. (1).
For this purpose, the density-density product in the in-
teraction term of Eq. (1) could be rewritten as a charge
part and a spin part,

p
2

n;tnti = ' —(S')',

where p; =n;t+n;i and S;= —,
' P c; cr, c; . Usually, one

introduces the Hubbard-Stratonovich transformation to
the right-hand side of Eq. (2), which is formally not
SU(2) invariant, although the left-hand side is obviously
SU(2) invariant. In such a formalism, it is hard to get the
saddle point beyond the rotational-symmetry-broken state
(i.e., the SDW state).

We note the fact that for spin- 2 fermions, the follow-
ing relation holds for arbitrary unit vector n

(2)

S,'=S„=S'=(S.n) (3)

where S —,
' g c (ts) c and 8is the Pauli matrix. By

using the equality of Eq. (3), one can write down the fol-
lowing SU(2)-invariant Hubbard-Stratonovich transfor-
mation of Eq. (2)

it also agrees with the t-J-model result. The present
method provides a starting point to approach the finite-
doping problem.

The single-band two-dimensional Hubbard Hamiltoni-
an is given by

Ugn;tn;~
e

dtAdhd n; P; . 4
exp+ +iy;p;+ ' —2&;n; S;

4g2U ] U
' '

U
(4)

in which the integration of the unit vector n; makes the right-hand side explicitly SU(2) invariant. Then by the standard
procedure, the partition function Z =Tr(exp pH) could be expressed in—the path-integral formalism as

dctdc, dp;dA;d'n;

3790 1991 The American Physical Society



PATH-INTEGRAL APPROACH TO THE HUBBARD MODEL 3791

where

L(z) =pc;t8~; t—g (c;~, +H.c.)
io. (i,j &Cr

p
2 Q2

+g '
+(iiti; —p)p+ ' —2an; S; . (5)

In L(z), the spin of the electron will couple with both the
amplitude field b„as well as the unit-vector field n; simul-
taneously, and generally the Auctuations of the latter
could lead to a strong scattering of the electrons as the

cia g Uiaa'aia' r
l, O'

where U; is an SU(2) transformation such that

U~n" crU a

(6)

Then the Lagrangian (5) is transformed into the following
form:

presence of a large amplitude field 6; in this term. But
one can introduce an SU(2) transformation to eliminate
the n; field from such a coupling:

2

L'(z) gitr; B,itr;+gitr; (U; 8,U;)y; —tg [yt(U; UJ)y +JH.c.]++ +(ip; —p)p;+ 6;itrtc—r, y;

where the spinor y; is defined as
I

canonical transformation:

ag =ukak —crvgpg

a;)

&,'-(U/2)&pter, y;) -(—I)'a, iy,'=(U/2)&p;), (1O)

and U; UJ 1 which is stable at the half filling.
The Lagrangian L'(z) at the saddle point is

Lo-ga.B,a;.—t g (a.a,.+H.c.)
i,a &ij ),O

—gd( —I)'cra; a; —P N.
l, O'

The corresponding Hamiltonian is the well-known mean-
field SD%' Hamiltonian which can be diagonalized by the

According to Eq. (7), the Grassmann variable a; is
defined in the spin representation with n; as the spin-
reference axis, and the path-integral measures for a; and
a;~ will not be changed because U; is a canonical transfor-
mation. As n; is the spin-reference direction for the fer-
mion y;, such a particle will always see a fictitious mag-
netic field polarized along its z direction with an ampli-
tude of 6; as shown in the Lagrangian (8). But the true
local dynamical spin structure will be determined by U;
which enters the on-site and the hopping terms in L'(z)
through the quantities Ut8, U; and UtU~, respectively.
The real physical quantities and the correlation functions
should be calculated under the original electron operator
c; through the relation (6). We note that the role of U; is
similar to the Schwinger boson in the slave-fermion ap-
proach of the t-J model, but without an additional con-
straint (U; always satisfies U;tU;=1). According to Eq.
(7), Ui is determined only up to an SU(2)/U(1) transfor-
mation which leads to a local U(1) gauge freedom of the
Lagrangian (8). At finite doping, U; UJ could have vari-
ous spiral, chiral spin structures, or Auctuations. There-
fore, this formalism provides a possible way to approach
the strong short-range magnetic fluctuations by mapping
the problem into some long-range fictitious field with the
fluctuations treatable as perturbations.

In the following, we shall show how to apply this
formalism to study a simple saddle point of L'(z):

ai, +q crvi, ag +ui,pka,

where g (iz, iz) and Ic is defined in the reduced or mag-
netic Brillouin zone. ui, [ —,

' (1 —ei,/Eq)t', vi, =[2 (1
+ei,/Ek)]', where eq= —2t(cosk a+cosk~a) and
Ei, (& + ei, ) ' . The operators ai, and pi, describe the
quasiparticles in the lower band and the upper band, re-
spectively, the two bands being split by a SDW-gap 2A.
At half filling, with the lo~er band filled by the electrons
while the upper band is einpty, the low-lying fluctuations
within the gap will dominate the low-temperature behav-
ior. In the strong-coupling limit, the SDW state just be-
comes the localized Neel state.

The eff'ective Lagrangian for the spin, charge, and am-
plitude fluctuations could be derived after the fermion de-
gree of freedom has been integrated out. The spin fluc-
tuations are related to the quantities U; B,U~ and U; U~—1 in the Lagrangian (8). If n; has a small deviation
from the z axis, U; 8,U; and U; U, —1 could be expanded
in the power of B,n; and n; —n~. According to Eq. (7), U;
could be expressed approximately as exp[ —i(zxn;). (cr/
2)]. But because of the U(l) uncertainty of U; mentioned
before, one may not be able to calculate U; 8,U; directly
by this expression. Instead, the relation U; (z) U; (z+ 8)

exp( —i&cr, /2)U;(z, z+8) should be employed. Here
P is the solid angle subtended by n;(z), n;(z+8), and z,
and U;(z, z+b') is the rotational transformation between
n;(z) and n;(z+b). We carry out the integration of the
fermion degree of freedom up to the one-loop approxima-
tion. The long-wavelength and short-wavelength part of
n; will have different behaviors and we separate them in

an explicit way:

n; Q;+ ( —1)'L;,

~here both 0; and L; are slowly-varying fields on the lat-
tice satisfying Q; L; 0 and )L;~&&~Q;~ —1. Then in the
limit of long-wavelength ~q~ &&g

' (( is the SDW coher-
ence length), and low-energy ~co~ &&5, effective Lagrang-
ian for the spin fluctuations could be obtained using the
one-loop approximation, which is decoupled from the
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charge and amplitude fluctuations:

g( —1)'z (o, xa, o;)+g+L;+ —,
' pg, (a,n;)'+(Vn, )' .

i i C
(14)

In the above Lagrangian, the long-wavelength staggered
field 0; and the short-wavelength ferromagnetic field L;
are decoupled, with a redefined field L=L; ih/—2Ug
x (0;xB,Q;) which still satisfies the conditions below Eq.
(13). This procedure is similar to the derivation of the
nonlinear a model from the Heisenberg model. In Eq.
(14), the first term on the right-hand side agrees —in the
large-U limit (such that 6/U 2 )—with the spin- —,

' to-
pological 8 term, which has been argued as making no
contribution in two dimensions. For finite U with the elec-
tron being more itinerant, the coefficient of this 8 term be-
comes more general than that in the Heisenberg model.
At large U/t, the coefficients c, p, and g in Eq. (14) in the
expansion of J=4t /U are

c =J2aJ+O(J ),
p= +O(J2),

4 (is)
g=J+O(J ),

which are in agreement with the nonlinear o. model de-
rived from the Heisenberg model by the large-S-expan-
sion method. It is interesting to note that for the co-
efficients in Eq. (15), the one-loop corrections all come out
in higher orders of J, not in the leading terms shown in
Eq. (is).

In the weak-coupling limit h&&t, the SOW coherence
length g —vf/A»a. In this case L; has not the simple
form of Eq. (14) because the separation into long-wave-
length and short-wavelength parts in Eq. (13) becomes
less meaningful. In order to get a correct long-wavelength
behavior, one needs to integrate out all the short-
wavelength Auctuations between a and g. But in this lim-
it, the long-wavelength spin wave has a comparatively
small weight and we should consider the whole excitations
within the gap h, .

For the charge and amplitude Auctuations, 8p; =p; —
p,.

and 8h; =6; —( —1)'6, their actions under the one-loop
approximation are given by

Lt', = d(z' z)gbyq(z)bEEE —q(z') 8(z z') g (q, z' z)
q

I

LP = d(z' z)pa~, (z)S—~,(z') S(z z')+—g'(q, —z' z)—
q

(16)

where the coupling between Bp and Bh is negligible only at half filling. g in Eq. (16) is the SDW susceptibility func-
tion. These charge and amplitude fluctuations all have the energy scale -h.

If only one hole or a few holes dope the antiferromagnetic background, presumably they will not really change the
background Auctuations described by the effective Lagrangians (14) and (16). The coupling between the doped holes
and these Auctuations could be deduced from Eq. (8) as follows:

LE = —,
' g [Dz 8, — + (i8&q —a8&q)8, ] le& l+(k, q)+e +kzom(k, q)]

k, q, cr, o'

x Qk+qatxkc, '+ H.c.

+2i( —1)'sE,L;x ~; U;t —U;. (i8)

We note that in the large-U limit the first two terms of D;

Here only the lower band is retained in the hole-doping
case which is equivalent to the enforcement of the non-
double occupancy condition at large U. ek and ek are
step functions which restrict k to be completely within or
be completely outside the reduced Brillouin zone, respec-
tively. The definitions of the coherent factors l(k, q) and
m(k, q) are l(k, q) =u~+zu&+vk+zvk and m(k, q)
=uE, +~vE, +vk+~uk which tend to unity in the U ~ lim-
it. The matrix Dq is from the leading term of U; U~ of Eq.
(8) (U;"B,U; will contribute at higher orders) whose ex-
pression in the lattice representation is

1I

D; = (Vs„VO;xn;) — ( —I)'sk8, n;

I

in Eq. (18) just recover the efl'ective coupling between the
doped holes and the long-wavelength, low-energy spin
Auctuations derived by Shraiman and Siggia, ' where the
single-occupancy constraint has been introduced in a
semiclassical way. The third term in Eq. (18) represents
the coupling of the holes with the short-wavelength,
higher-energy spin fluctuations.

Therefore our path-integral approach to the Hubbard
model easily reproduced the strong-coupling results of the
t-J model at the zero-doping limit, within simple Gaussian
fluctuations, and there is no actual restriction on the cou-
pling strength U when using the path-integral method.
With decreasing U, the energy scale of the charge and
amplitude fluctuations determined by the eA'ective La-
grangian (16) may become comparable with that of the
spin fluctuations. One would expect a transition from a
Mott insulator with a large charge gap to an ordinary
itinerant magnetic insulator. It will be interesting to
study this strong-weak coupling transition regime of U
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through this approach.
The present path-integral formalism provides a starting

point for approaching the finite-doping problem. The
SU(2) transformation (6) and (7) explicitly separate the
spin and charge in the original electron operator such that
the charge carrier described by a; may be more coherent
and thus possibly be treated perturbatively. The obtained
Lagrangian L' has an explicit local U(1) gauge freedom
as a SU(2) subgroup. While the saddle point of the La-
grangian L' for a; could still relate to some long-range
fictitious magnetic ordering which represents the local
spin structure of the real system, the true physical correla-
tion functions should be calculated using the full electron
operator c; which wouM lead to the quite diA'erent behav-
iors. The discussion of a possible new ground state in the

finite-doping case will be presented as a separate paper.
Note added. After this work was finished, we received

a copy of work by Schulz' who also developed a very
similar path-integral approach to the Hubbard model.
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