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Positron annihilation from nearly localized Fermi liquids: A probe of pairing
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Based on a theory of positron annihilation from systems with strongly correlated electrons, it is

predicted that positron-annihilation spectroscopy (PAS) can be an extremely useful probe of pairing
and superconductivity in such systems. Specifically, it is shown that if the nearly localized electrons
form pairs which are small, then the annihilation characteristics are changed significantly from
those in the unpaired state, and the changes reAect both the amplitude and the symmetry of the or-
der parameter. This has obvious consequences for the high-temperature superconductors which
have small coherence lengths and where, it has been argued, the Hubbard-model description may be
appropriate.

Positron-annihilation spectroscopy (PAS) has long
been recognized as a powerful tool for studying the elec-
tronic properties of metals. ' In recent years, PAS has
been applied to the study of the Cu02-based superconduc-
tors. ' These are systems which are believed to fall
within the general category of nearly localized Fermi
liquids. '

PAS studies of the new superconductors yielded a few
surprises. It was observed that, unlike in earlier super-
conductors, the positron lifetime changes on going
through the superconducting transition. The nature of
this change was found to depend on the purity of the
samples, but the lifetime in the normal and superconduct-
ing states were always found to differ significantly.
Theoretical studies of positron annihilation have been
mostly focused on an electron gas. One of the predic-
tions of these theories is the insensitivity of PAS to the
BCS (Ref. 10) superconducting transition. " This could
lead one to speculate that the origin of effects observed in
the oxide superconductors lie in the intrinsically different
response of positrons to pairing in a system of nearly lo-
calized fermions as compared to a weakly interacting
Fermi liquid.

It is not difficult to envisage a simple physical system
in which positrons may respond to pairing. One could
imagine a solid made up of two different types of sites
with a small concentration of one type ("hole" sites) less
attractive to the positron than the other, and distributed
randomly among the others. The electrons that the posi-
tron annihilate with are imagined to be tightly bound to
these two types of sites. Because the hole sites are less at-
tractive to the positron, the overlap with the electrons
around "hole" sites is less than that for the filled sites.
As one increases the concentration of holes, therefore,
the total electron-positron overlap decreases. Keeping
the hole concentration fixed, one could change the nature
of the distribution from a random distribution of single
holes to pairs of holes. The electron™positron overlap is
still affected, because the positron would now be kept out
of a larger region containing more tightly bound elec-
trons. This is due to the difference between the repulsive

potential of a pair of holes as compared to two isolated
holes. ' The situation is very similar to the problem of a
divacancy versus a vacancy. Further, the pair can have
different shapes and the overlap would reQect the shape
of this pair. The electron-positron overlap would then be
a sensitive probe of the symmetry and amplitude of the
pairing of these holes.

Approximately, this qualitative picture emerges from a
model of "strongly correlated" electrons, and, in this
work, the positron-annihilation characteristics of this
model are calculated and shown to have essentially the
same features as discussed above.

The most important prediction of the present study is
that PAS would provide detailed information about the
nature of pairing in the high-temperature superconduc-
tors (cf. Fig. 1) if indeed, they fall within the category of
strongly correlated systems; if not, then PAS should not
exhibit any dramatic changes on going through the su-
perconducting transition. Current experiments ' indi-
cate that changes do occur but more detailed experimen-
tal studies have to be carried out before PAS can be used
to make any definite statements regarding the nature of
the oxide superconductors.

A positron interacts strongly with the electrons of the
system being studied. It is, therefore, crucial to take into
account the effects of electron-positron correlation on the
annihilation characteristics. There is an extensive litera-
ture on the subject of electron-positron interaction in a
homogeneous electron gas and its effects on PAS.
These studies have also been extended to inhomogeneous
systems within a local-density-functional (LDF) formal-
ism. ' ' In an electron gas, one is concerned with the in-
teraction of a delgcalized positron with a delocahzed elec-
tron. In contrast, in the nearly localized electron sys-
tems, one is closer to the atomic limit and the electron-
positron interaction is better described as a short-ranged
real-space interaction. The treatment of this problem is
beyond the realm of applicability of the LDF formalism.

In the present work, the t-J model ' is adopted for
describing the dynamics of the strongly correlated
valence electrons. These electrons make up only a small
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FIG. 1. Plots of R (p) |coming from all the core electrons (cf.
text) which dominate the electron-positron overlap] in the su-

perconducting state (s- or d-wave pairing) for a square lattice.
The parameters entering the calculation are chosen to be typical
of the CuO, -based superconductors; 5=0.10, pF (Fermi
momentum of holes)=~/Sa, where a is the lattice constant,
6 =Oe 10. (a) depicts R (p) along the (1,1) direction and p is in
units of pF. (b) R (p) along (1,0). R&(p) is taken to be Gaussian
with half-width equal to 2/a.

fraction of the total number of electrons is systems like
the CuOz-based superconductors. The remaining elec-
trons are relevant for positron annihilation since they
dominate the total electron-positron overlap. In the
present model, it is assumed that the relevant time scale
of motion of these electrons is much longer than the posi-
tron or the valence electrons, and are treated as frozen
core-like electrons. The interaction of the positron with
these core electrons can be incorporated into a periodic
potential. The interaction of the positron with the Hub-
bard electrons is modeled by a short-ranged potential.
The nature of the pairing interaction between the elec-
trons is left largely unspecified in this model. Various
mechanisms for pairing within the context of a Hubbard
model have been suggested' and different scenarios will
be considered.

There have been a number of studies of various aspects
of the t-J model' and only the features relevant to the
study of PAS will be noted here. The t-J Hamiltonian
acts on a subspace of states with no doubly occupied
sites. Close to the half-filled limit, the t-J model de-
scribes a few holes or empty sites propagating in the pres-
ence of a lattice of spins. The description of holes or
empty sites as particles is a valid concept only in the
nearly localized regime where the no-double-occupancy
constraint is enforced. It does not carry over to a nonin-
teracting gas of electrons. In the slave-fermion represen-
tations, ' the spins and holes are represented by bo-
sons and fermions, respectively, via a forrnal transforma-
tion of the electron operators: c; =f; b; . Here ft keeps
tracks of the holes, and b,- keeps track of the spins, and
there is a no-double-occupancy constraint enforced
through

In the half-filled limit, there are no holes and the posi-
tron moves in a periodic potential. The effects of the in-
teraction of the positron with the "core" electrons is in-
corporated into this potential. The residual interaction
to be taken into account away from half-filling is that be-
tween the positron and the holes or empty sites. This is a
repulsiue interaction which has the effect of keeping the
positrons away from the empty sites and leads to an "an-
ticorrelation" between the holes and the positron. It
should be stressed that this is a transformation, dictated
by convenience, of the original electron-positron interac-
tion problem to one that is more natural in the nearly lo-
calized regime.

In considering positron annihilation, the spins can be
ignored except for their role in renormalizing the hole
motion. In mean-field treatments, ' ' the effective hop-
ping amplitude t is found to be proportional to the hole
concentration for small doping. A model Hamiltonian
describing the holes and the positron can be written as

H=t g f f~+g Tjd; dj+ V QNn; . (1)
&Ij& i j

Here n, =ftf, and N, =d,. d, are the hole and positron
density, respectively. Wannier orbitals have been used as
the single-particle basis set for holes and positrons, with
the caveat that the positron Wannier orbitals are cen-
tered, not at an atomic site, but at an interstitial site. The
label i can therefore be thought of as labeling a unit cell
centered on an atomic site. The last term in Eq. (1),
describing the "on-site" repulsion between the holes and
the positrons, is the interaction term that can give rise to
interesting effects in PAS.

The central quantity in PAS is the electron-positron
pair momentum distribution function, R (p):

( P)=p(f dr I dr'exp[ —ip (r —r')]

Xdr, (r')der(r')d&, (r)@r(r)),
where N, and 42 are the electron and positron field
operators, respectively. The function R (p) measures the
probability of finding an electron-positron pair with a
momentum p. The integral of this over all momenta
gives the total overlap, the inverse of which determines
the positron lifetime. ' '

The overlap with the core electrons, i.e., all the elec-
trons except the ones in the t-J model, dominates the to-
tal overlap since these are the majority of electrons.
From the physical picture presented earlier, this is ex-
pected to be significantly affected by the interaction with
the holes, and it is, therefore, sufficient to consider only
this part of the overlap in analyzing the effects of pairing
on R (p). The calculations presented below will
a posteriori justify this assumption.

The repulsive term in the Hamiltonian has the effect of
keeping a hole and a positron from occupying the same
site. This does not lead to any localization effects because
the concentration of holes is small, and there is only one
positron in the system at a time. Taking a cue from the
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variational treatments of the Hubbard model, the calcula-
tion of R (p) will be based on a Gutzwiller-type wave
function for the hole-positron ground state:

q[=II;(1 g—n;N; )%0 . (3)

The state %0 is the ground state in the absence of any
positron-hole interaction. The correlation factor g is the
variational parameter, and serves to reduce the weights of
those configurations where the hole and the positron are
in the same unit cell. The value of the variational param-
eter g lies between 0 and 1. The effects due to the pairing
of holes can be investigated by allowing for a nonzero
pairing order parameter in %'o. The evaluation of the
core contribution to R (p) [cf. Eq. (2)] involves calculat-
ing this function for a giUen configuration of holes, and

then averaging over all possible hole configurations. '

This quenched average is difficult to calculate in general.
However, because of the short-ranged nature of the in-
teraction, the possible hole configurations can be divided
into two categories, one with no holes occupying the
same unity cell as the positron, and the other with a hole
and positron in the same unit cell. Then R (p) can be
evaluated by considering the two classes separately and
adding up their contributions. The projection into the
two classes can be conveniently carried out by using the
operator f;tf; since

f, f,

++blab;

=1.

This leads to

R(p)=z( f f +xb; b; f~f +xb bj d;d, x J dr 1 dr exp[ —ip '[r —r')]g;, (r p;([r p'&[(r')p," r')[.
I,J a

(4)

Here [)[[; and 1'; are the e+ Wannier state and the one-
electron core states, respectively. It has been assumed
that only electron and positron wave functions centered
in the same unit cell overlap. In the absence of any in-
teraction, the expectation value reduces to ( d;"d ) .

To calculate R (p), the Gutzwiller-type variational
wave function [Eq. (3)] is used. This task is further
simplified by noting that there are two small parameters
in the problem, the hole concentration 6 and the positron
density no. Keeping leading terms of the expansion in 6
and no, the function

where the pairs are large compared to the interparticle
separation.

In the normal state„+o contains no condensate frac-
tion, and therefore there are no anomalous expectation
values like (f; f )[[. Keeping only the leading terms in
an expansion in 5 and no, II(q) can be evaluated to be

II (q)II(q) =
I+gII (q)

It is the approximation of small 5 and no that makes it
possible to write down the closed-form expression for
II(q) and is not possible in general. 22

The superconducting ground state is characterized by a
nonzero expectation value ( c; c. )o. In the slave-
fermion representation, this would imply nonzero values
for both ( f;fi ) and (b; b~ ~ ). The latter is nonzero as
long as the ground state has some singlet correlations,
and the interesting question to ask is what effect, if any,
the pairing of the holes has on the electron-positron pair
momentum distribution. Allowing for the appearance of
the anomalous expectation values in Eq. (7), and retaining
only leading terms in 5, no, and (f,f ), leads to

F(q)=+exp[ —iq (R; —R )]

X, , +

can be rewritten as

F(q)=G (q) —gy(q')[ll (q+q') —II(q+q')]
q'

=6 (q) —5(II (q+po) —II(q+po)) . (6)

The functions appearing in Eq. (6), G, y II, and II, are
the discrete Fourier transforms of (d; dj )o, (f; f& )o, .

(f,~f )0(d;td )o, and (ftf d; d. ), respectively.
In writing down the last step of Eq. (6), it has been as-

sumed that the Fermi momentum of the holes, which
determines the length scale of y(q), is small compared to
the scale over which II(q) —II (q) varies significantly.
Since we are interested in studying the effects of pairing
on II —II, this implies that we are restricting ourselves
to pair sizes which are small compared to the interhole
separation. This is the opposite limit of Cooper pairs

[1+gll (q)]II(q)=II (q) —gS(q)+O(g ),
S (q) =& I

a(q') I'
I
6'(q —q') I'

Here b, (q) is the discrete Fourier transform of (f,f ), . .

the pairing wave function on a lattice. ' This modifies
the electron-positron pair momentum distribution to



43 POSITRON ANNIHILATION FROM NEARLY LOCALIZED. . . 381

R„„(p)= g f drexp( —ip r)g (r)P(r) (10)

where the forms f; =P (r —R, ) and P, =P(r —R;), have
been used, and P(r) is the wave function of the orbital
making up the lowest-lying positron band.

It is clear from the above equation that the pair
momentum distribution coming from the overlap of the
positron with the tightly bound electrons, which is the
dominant part of the overlap, is modified by the real-
space pairing of holes, and that it reAects the symmetry of
the pairing. Since this is the main conclusion of this
work, it is worth reviewing the assumptions which went
into deriving it. The main assumption was that the pairs
are small. This implies that ~b, (q)~ has to vary over
length scales large compared to the Fermi momentum of
the holes, since, otherwise, the convolution in Eq. (6)
would smear out the effect. One therefore needs both (a)
strong correlations under which the electron-positron in-
teraction can be transformed to a hole position interac-
tion, and (b) short-ranged pairs. The extreme short-
ranged pairing limit is nearest-neighbor pairing on the
lattice, and results for R (p), calculated for two different
symmetries of pairing, are presented in Fig.. 1. A square
lattice is assumed, which would apply to Cu02 systems if
R (p) along the C axis is a constant. The results have
been derived within a Gutzwiller approximation but
could have been derived using other perturbative tech-
niques. The actual expansion parameter in Eq. (8) is g5
and the terms left out are of order g 6 5 or smaller.
Even for g —1, these terms are small compared to the
leading ones.

As shown in Fig. 1, a nearest-neighbor pairing with ex-
tended s-wave symmetry on a square lattice with a lattice
constant a, which leads to

b(p) =b.[cos(p a)+cos(p~a)],

manifests itself in angular correlation experiments as
modulating the isotropic distribution R„„(p). Figure
l(a) shows R (p) along the (1,1) direction; along this same
direction, there would be no effect due to pairing if the
symmetry of the pairing was extended d wave
[(cos(p a) —cos(p~a)]. Along the (1,0) direction [Fig.
1(b)] both symmetries would modify R(p). This clearly
demonstrates that monitoring the change in the angular
correlation function as one goes through the supercon-
ducting transition temperature would lead to a direct
measurement of the symmetry of the order parameter.

g~(p+ po)
Rs(p)=R&(p) —5 R„„(p) .

1+gn'(p+p, )

Here R& is the distribution in the normal state, Rz in the
superconducting state, and

The effects occur over large regions in momentum
(large compared to pF) and are not expected to be washed
out by resolution effects, since typical resolutions are
comparable to pz. It should be remarked that any
effect expected in a BCS superconductor would occur
near p p

The positron lifetime measures the inverse of the total
overlap and, integrating R (p), it can be easily shown that
the temperature dependence of the lifetime measures

b, ( T). However, the valence contribution has been total-
ly neglected in this analysis and has to be added to the
core contribution before comparing to experiments. The
temperature dependence of the lifetime had been ob-
tained previously using qualitative arguments. ' A
different approach has been used in Ref. 25 to understand
the origin of this temperature dependence.

It should be stressed that throughout this paper it has
been assumed that the positron samples the Cu02 planes.
If this is not true, then the application of the present
analysis is dubious, since the core electrons probably do
not dominate the overlap when the positron is in the
chain. There are indications that the positron preferen-
tially samples the chains in YBa2Cu3O7 but samples the
planes in La2Cu04-based superconductors. The latter
would therefore be the ideal system to investigate.

The amplitude of the effect on R (p) depends on the
hole concentration, the amplitude of the pairing wave
function 5, and the variational parameter g. In the limit
of small 5 and large V, and t 5, g =-1—T5/V. Here T
is the nearest-neighbor hopping amplitude for the posi-
tron. Making the assumption that T and V are compara-
ble would lead to g =1—6, which is not a small number.
It is expected that the electron-hole repulsion has to be
comparable to the positron bandwidth before any in-
teresting effects occur. The amplitude of the pairing
wave function is roughly given by the ratio of the energy
gap to the Fermi energy. ' Since T, is large and the Fer-
mi energy is small in the oxide superconductors, this is
much larger than in conventional superconductors, and is
of the order of 0.1. This is the value used in Fig. 1.

In conclusion, it has been shown that, in a model of
strongly correlated systems, the positron can be a sensi-
tive probe of electron pairing. The model was construct-
ed to be on the opposite end of the spectrum from a delo-
calized electron gas to stress the difference between a
strongly correlated Hubbard-like system and a system of
weakly interacting delocalized electrons. One of the most
interesting unresolved issues in the high-temperature su-
perconductors is the nature of pairing and condensation.
The present work opens up the possibility of using PAS
as probe of the nature of pairing in these systems.
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