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Single-band model of normal-state transport properties of high-T, copper oxides
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In order to account for linear temperature dependences of the in-plane resistivity and Hall car-
rier density observed in YBa2Cu307 —,, and other high-T, oxides, we have proposed a single-band
model consisting of both extended states and localized ones, separated by a mobility edge. The
scattering of the extended holes, which carry the current, by the localized electrons is assumed to
be the dominant transport mechanism.

The normal-state properties of Cu-0 superconductors
are as perplexing as their high transition temperatures.
There are two striking anomalies in the "normal" trans-
port properties. One is the linear temperature dependence
of the normal-state resistivity p in all families of the high-
T, copper oxides, the other is the increase in the reciprocal
Hall coefficient 1/RH with temperature, and in particular,
the relation 1/RH =PT found in the metallic normal phase
of the YBa2Cu307 —~ (hereafter referred to as Y-Ba-Cu-
0) systems. Quite a few types of transport mechanisms
have been proposed to account for both linear relations:
p ec T and 1/RH =pT observed in Y-Ba-Cu-O, but neither
one to date can be considered generally accepted.

The remarkable linear p-vs-T behavior has been found
over a large temperature range. It was reported' that in
ceramic samples of Y-Ba-Cu-0 there is a linear law p& T
from T, ( =90 K) to 600 K, above which a deviation from
linearity is due only to the loss of oxygen. The transport-
anisotropy measurements on single crystals of Y-Ba-Cu-
0 show that the linearly T-dependent resistivity p, b

occurs in the a bplanes (b-asal Cu-0 planes). This linear
resistivity easily brings to mind the conventional electron-
phonon interaction of metallic conduction. According
to the Bloch-Griineisen (BG) treatment of electron-
phonon scattering, a linear temperature law for the resis-
tivity holds above a characteristic temperature T*, and
the nearly-linear regime can extend down to T*/4. For a
conventional metal with a high density of electrons, T* is
equal to the Debye temperature HD. But if the density of
carriers is low enough or the Fermi wave vector kF is
sufficiently small compared to the reciprocal-lattice vec-
tor, which is the case for Y-Ba-Cu-0 and other high-T,
oxides, T* =2pFs/k8 (pF denoting the Fermi momen-
tum and s the speed of sound) can be substantially smaller
than 6D. It was shown that the observed linear p-vs-T
behavior for Y-Ba-Cu-0 with T, =90 K is consistent with
a fit to BG theory using T* =200 K. However, the higher
T, and the lower T* would make it dificult to observe the
nonlinear behavior predicted by BG theory of electron-
phonon scattering.

Very recently, the resistivities of single crystals of
Bi2+ Sr2 —~Cu06+ q, with T, =6.5-8.5 K, have been mea-

sured. The striking behavior is that the in-plane resistivi-
ty p, b varies linearly with temperature from just above T,
(=7 K) to 700 K. This result, that the linear T depen-
dence remains still unchanged as the temperature de-
creases down to 7 K, seems to be unfavorable to the
electron-phonon mechanism. Although a BG fit for
T* =35 K can describe the experimental data well, it is
very difficult to explain such a small value of T* in terms
of electron-phonon scattering. Several non-phonon trans-
port mechanisms have predicted p, b ~ T, including the
resonating-valence-bond (RVB) model, ' the quantum-
percolation model, ' and the marginal-Fermi-liquid mod-
el. "

In the RVB theory, the T dependence of p, b arises from
holon-spinon scattering. One point of view is that the
scattering of the holons, which carry the current, by the
spinons would lead to a linear T dependence, while
another viewpoint is that the lowest-order process for
holon-spinon scattering should give p, b ~ T' . ' It was
reported'' that the marginal-Fermi-liquid model, which is
based upon a single hypothesis, can explain a series of
anomalies in the normal state, except for the temperature
behavior of RH(T). However, this model is phenomeno-
logical, and lacks a clear microscopic interpretation.

On the other hand, the linear temperature behavior of
the Hall carrier density nH (defined as 1/RHe) of Y-Ba-
Cu-O, has been observed in ceramic samples, ' thin
films, ' and single crystals. ' Experimental measure-
ments' ' on other high-T, oxides, including Bi- and
Tl-based compounds, and La2 — Sr Cu04, show that nH
increases with temperature in a manner similar to that ob-
served in the Y-Ba-Cu-0 systems. Furthermore, it has
been reported' that for each separate compound, the T
dependence of nH is suppressed whenever T, is reduced by
chemical doping, indicating a distinct correlation between
the characteristic nH-vs-T profile and high-T, behavior.
Thus, the T dependence of nH, together with the ubiqui-
tous linear p,b-vs-T behavior, should be regarded as prop-
erties intrinsic to the high-T, copper oxides.

Owing to the difficulty in explaining the Hall eA'ect in
terms of a simple single-band model, various two-band
models have been proposed to account for the nH-vs-T be-
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where mi, is the eA'ective mass of the extended holes, c is
the lattice parameter along the c axis, E, is the mobility
edge, and the chemical potential p is temperature depen-
dent. On the other hand, the localized-electron density n~

can be calculated by ni =f~ & ~ dEN(E)f(E), where
f(E) = I/[exp[(E —p)/kg Tl+ lj is the usual Fermi func-
tion, and N(E) is the localized-electron density of states.
Assuming that N(E) =N(E, ) is a constant, we obtain

ni =kg TN(E, )ln [I+exp[(p —E, )/kii T]j . (2)

The total number of electrons which occupy both the ex-
tended states below E, and the localized states above E, is
a constant, independent of temperature. The conservation
condition requires

n&(T) p(T) =n&(T =0) p(T =—0)—(3)

for all temperatures. This equation is used in determining
the chemical potential p (T).

havior. 2' These models, however, often depend upon
certain special band structures or need some particular
compensation conditions. The lack of universal applica-
bility to all high-T, systems is a principle weakness of
two-band models.

In this paper we propose a single-band model with a
mobility edge to account for both linear dependences:
p, i, ee T and nH =PT. Our model includes two basic as-
sumptions. One is that the single band contains both ex-
tended states and localized ones, separated by the mobility
edge; the other is that the scattering, by localized elec-
trons, of the extended holes, which carry the current, is
the dominant transport mechanism. Transport measure-
ments on single crystals and oriented films of Y-Ba-Cu-O,
as well as other high-T, oxides, have shown that there ex-
ists a metal-insulator transition with decreasing carrier
density by chemically doping' or by changing oxygen
content. Measurements of the Pauli susceptibility and
the electrical conductivity for Y-Ba-Cu-0 with substitu-
tion of Ni, Fe, and Zn for Cu indicate that the Fermi en-
ergy shifts towards the mobility edge with an increasing
degree of substitution. These experimental results un-
doubtedly support the first assumption in the present mod-
el. On the other hand, it is generally accepted that in the
high-T, systems strong Coulomb interaction between car-
riers would play an important role in both the normal and
superconducting states. The scattering between the ex-
tended carriers (holes), however, does not contribute to
the resistivity when the carrier density is small enough so
that umklapp scattering can be neglected, which is the
case for Y-Ba-Cu-0 as well as other high-T, oxides. So,
it is undoubtedly logical to consider the hole-localized-
electron scattering as the dominant transport mechanism.

In the single-band model under consideration the
charge carriers are the holes on the extended states, and
the hole density p is just equal to the Hall carrier density
nH. For a two-dimensional hole band with a quadratic
dispersion relation, the number of holes per unit volume
1S

20

p =nH = (mhks T/nh c)In[1+exp[(E, p)/k8 T]j, —(1)

Measurements on high-quality samples of Y-Ba-Cu-0
have shown that the linear nH-vs-T data have an extrapo-
lated intercept that approaches the origin at T=O, indi-
cating p =nH =PT. In order to make Eq. (1) satisfy the
relation p=/3T, the factor (E, p)/—ksT, which appears
on the right-hand side of (1), should be taken to be a fixed
constant y, i.e.,

p =Ep /kg T,
from which it is easily seen that the chemical potential
varies linearly with T and approaches the mobility edge at
T =0. In the ground state of the system, due to
p(T =0) =E„all extended states are filled by electrons
and all localized states are empty, i.e., p(0) =ni(0) =0.
So, at finite temperatures, the conservation condition (3)
reduces to p(T) =ni(T) On .combining it with (1) and
(2),

(mi/xA c)ln(1+e") =N(E, )ln(1+e '),
which is the equation determining the value of y. Making
use of Eqs. (1) and (4), we can obtain

with the slope as P = (mi, ks/irh c)ln(1+e'). This result
is suitable for the case of a stoichiometric Y-Ba-Cu-0 sys-
tem.

For oA-stoichiometry samples with oxygen deficiency or
substitution for Cu, the carrier density decreases when ei-
ther the number of oxygen vacancies or the degree of sub-
stitution increases. This decrease implies that p(0) in-
creases and goes away from the mobility edge [p(0)
& E, l, so that p(0) =0 and ni(0) =N(E, ) [p(0) E,] at—
T =0. In this case the conservation condition (3) becomes

k8T(mi, /nA, c)l (1n+e~)

=kg TN(E, )ln(1+e ~) —ni(0), (7)

where @=[[E,—p(0)]/ksTj is temperature dependent.
From (1) and (7) we have calculated y and nH as func-
tions of temperature for several values of ni(0). The cal-
culated result for the T dependence of nH is shown in Fig.
1, in which curve A is for ni(0) =0 [p(0) =E, l and curves
B-E are for the systems with successively higher value of
ni(0). We see that as nH decreases with increasing values
of p(0) or ni(0), the slope dnH/dT also decreases. This
behavior is consistent qualitatively with the experimental
data of Co-doped samples of Y-Ba-Cu-O, ' as well as
single-crystal Bi2Sr2CaCu208 with variable oxygen
content.

After considering the nH =PT relation, we now turn our
attention to the scattering of the extended holes by the lo-
calized electrons to account for the linear p c(- T behavior.
The resistivity due to the hole-electron scattering can be
calculated either from the Boltzmann equation using a
variational approach, or from the balance equation or
memory-function approach. Following the analysis de-
scribed in Ref. 12, easily modified for extended holes
scattering oA' localized electrons, we obtain the expression
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8 we finally obtain the expression for the resistivity as

pub =aTn((T)/p(T) (14)
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with a=rckqt mbN(E, )/(18e h ) as a constant. For the
stoichiometric Y-Ba-Cu-0 system, as discussed above,
ni(T) =p(T), so that from (14) the resistivity is given by
p, b =aT. This purely linear temperature dependence,
arising from hole-electron scattering, can extend down to
any low temperature so long as the condition y))1 is
satisfied. For the off-stoichiometry system the situation is
a bit diA'erent. Since ni(T) =p(T)+n&(0), as given by
(7), the expression (14) for the resistivity becomes

FIG. 1. Temperature dependence of the Hall carrier density
nH calculated from (1) and (7) with mb =5m, and N(E, )rrc/
mb =10 . Curves A, 8, C, D, and E refer to ni(0) =0, 4.5x 102',
9.0X 10 ', 1.g x 10, and 4.5 x 10 cm, respectively.

for the resistivity as

—h'c'
p.b =, , dcon ~(co)n+( co)—

2ce p kgT" o

x q d qg"—(q, co)g'- (co), (8)

where t is the matrix element for the hole-electron scatter-
ing, taken to be independent of momentum and energy.
n~( )co=I/[exp(hco/k~T) —1] is the Bose function at
zero chemical potential. g- (q, co) is the two-dimensional
Fermi polarizability for the extended holes,

g-(q, ~) =) [f(ek+q) —f(cg)]dk
(2n) '
x 8(h co+ Eg+& Eg), (9)

and g-(co) is the Fermi polarizability for the localized
electrons,

g'-(co) = g [f(E) f(E')]8(hco+—E E'), (10)—
EE +Ec

The two-dimensional Fermi polarizability g-(q, co) has
been calculated and its explicit expression can be found in
Ref. 5. For [E,—p(T)]»kiiT and co«vFq, the Fermi
polarizability has the following approximate expression:

g-(q, co) =(mbco/x h qvF)B(kF —q),
where vF =hkF/mb is the Fermi velocity of the hole gas,
and B(x) is the unit step function. At the same time, in
the case when [E,—p(T)]»kaT, f(E) for E & E, can
be approximated by the classical Boltzmann distribution
function so that

g- (co) =N(E, )nI(T) [1 —exp( —hco/kgT)] . (12)

Substituting (11) and (12) into (8), and taking into ac-
count that

p, b =aT+ani(0) [T/p(T)] . (15)

12

It is notable that besides the linear term aT, p, b in (15)
also contains a term proportional to T/p(T). For small
values of ni(0), nH(T) (curve 8 in Fig. 1) is still linearly
T dependent. So T/p(T) is independent of temperature,
and p, b is equal to aT plus a constant term, this constant
being proportional to ni(0). As is shown in Fig. 1, nH (T)
[or p(T)] deviates gradually from linearity with the con-
tinuous increase of ni(0). When fitting nH(T) cx: T to
curves C-E in Fig. 1, we find that 8=1 at higher temper-
atures and 8 & 1 at lower temperatures, and the lower the
temperature, the more obviously 6 deviates from unity. It
then follows that T/p(T), proportional to T', will in-
crease with decreasing temperature, and the second term
on the right-hand side of (15) will provide insulating (or
semiconductive) temperature behavior for p,b, particular-
ly at low temperatures. Furthermore, as n&(0)/p(T)»1,
the semiconductive behavior will dominate p, b (T).

Making use of the previous calculated results for y(T)
and nH (T), from (15) we have evaluated p, b as a function
of temperature for several values of n~(0); this is shown in

Fig. 2. We see that there is a transition from metallic-to-
insulating behavior with increasing values of ni(0) or
p(0). It is interesting to notice from Figs. 1 and 2 that as
the system is driven through the metal-"insulator" transi-
tion, nH decreases but continUes to have nearly linear T
dependence. This behavior has been reported by Briceno

h „~ dcocon+(co) =rr kn2T2/6,
'0 A I I

100 200
0

500

and

dq(q /vF)B(kF —q) =mbkF/3h
=2xcmb p (T)/3 h, (13)

FIG. 2. Temperature dependence of the resistivity at T =300
K and ni(0) =0 calculated from (15), together with (1) and (7),
for several values of n~(0). All parameters are the same as those
in Fig. 1.
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and Zettl on single-crystal Bi2Sr2CaCu20s, with
diferent oxygen content. The agreement with experimen-
tal data indicates the success of the present model in ex-
plaining unusual normal-state transport properties of the
high- T, copper oxides. It is expected that the hole-
electron interaction may also be correlated with the mech-
anism for superconductive pairing.

In summary, we have proposed a single-band model
consisting of both extended and localized states to account
for nH=PT and p, q =aT observed in Y-Ba-Cu-0 and
other high-T, oxides. The change of p, q (T) from

metallic-to-insulating behavior can also be explained in
terms of the present model.
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