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We show that in a disordered superconductor near the superconductor-to-insulator transition,
the local superfluid density N, fluctuates from point to point in sign as well as magnitude. We
demonstrate this explicitly with a simple model in which correlation effects produce a negative

Josephson coupling between two superconducting grains.

We argue more generally that both

correlation effects and resistance fluctuations will produce random signs of N;. This implies that
a disordered superconductor is more like a quantum XY spin glass than a disordered Bose liquid.

INTRODUCTION

The nature of the superconductor-to-insulator transi-
tion has been studied extensively for many years.' =7 It
has been argued that the transition can be described in the
context of the superfluid-to-insulator transition in a
charged, disordered Bose liquid.>"-

Experimentally, there is an apparent distinction be-
tween granular'> and homogeneously disordered>* ma-
terials: In the granular materials there is reasonable evi-
dence that a gap opens up in the quasiparticle spectrum at
the bulk 7.9 when a local order parameter develops on
each grain, although the actual superconducting 7, can be
much smaller than 7., or can even be 0, depending on the
magnitude of the normal-state resistance; in these materi-
als it is clearly reasonable>® to imagine that at tempera-
tures less than 7., the only important long-wavelength,
low-energy physics is captured by a model in which the
only relevant dynamical variable is the phase of the order
parameter on the grains (with possible renormalizations
of the effective parameters due to quasiparticle excitations
across the junctionsS(a)'g). By contrast, in the homogene-
ous materials,>* there is no sign of any remnant of the
bulk T, in high-resistance samples, and there is good evi-
dence? that as the normal-state resistance is increased,
both T, and the quasiparticle gap A vanish together in
such a way that 2A/kT. =3.5; a priori it seems unlikely
that the superconducting transition in these materials can
be described in terms of fluctuations of the phase of the
order parameter alone.

In this paper we shall ignore the complications due to
quasiparticle excitations discussed above (e.g., imagine we
are considering a granular material), and shall treat the
phase fluctuations in terms of the well-known effective
Hamiltonian

H=—2¢23 n,(C ™ Vyn;+ 2 p;n;
ij J
_ZJUCOS(B,""GJ'), (1)
ij
wherce n and 99 are canonically conjugate variables,'°
[n;,e”*1=6,e"*, C; is the capacitance matrix, y; is the

site energy on grain j, and J;; is the Josephson coupling
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between grain i and j. Here, n; is the number of Cooper
pairs on grain j. In all previous discussions,> 8 J; j was as-
sumed to be positive. Since it is a fundamental feature of
a Bose liquid in the absence of a magnetic field that the ki-
netic energy is unfrustrated (i.e., the ground state is node-
less), it is necessary that each Jj; be positive if Eq. (1) is
to be interpreted as a model of a Bose system.
Specifically, since J;;sin(6; — ;) is the Josephson current
across the junction between grains i and j, we recognize
that J;; is the lattice version of the local superfluid density
N, (r), i.e., the proportionality constant between the su-
percurrent and the superfluid velocity,

Js(r) =eN;(r)v,(r) . )

Our aim here is to show that in a disordered superconduc-
tor, it is possible that N,;(r) (or, equivalently, J;;) can be
negative. In this sense, the disordered superconductor is
unlike a Bose liquid. The idea that N,(r) can be negative
has been discussed previously.!' However, here we present
a clear demonstration that this behavior does, in fact,
occur in equilibrium, even in the absence of magnetic or-
der.

SOLVABLE MODEL

Consider a simple solvable case in which the phase
description in Eq. (1) is clearly applicable, namely the
case of two Josephson-coupled grains. In the usual case,
in which direct single-electron tunneling between grains is
responsible for the Josephson coupling, J, is guaranteed
to be positive in the absence of spin-orbit coupling. How-
ever, the situation is somewhat richer if we consider the
case in which the tunneling is indirect, through a localized
state between the two grains, as shown in Fig. 1(a). We
consider the simple model problem

H=H,+H,+ ZZkZ T (chscos+H.c.)
Jj=12k,s

+gono+U(ng) %, 3)
where H; is the Hamiltonian of grain j, cjxs annihilates an

electron with spin s and other quantum numbers k on
grain j, cos annihilates an electron of spin s in the local-
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FIG. 1. (a) Schematic picture of the system modeled by the
Hamiltonian in Eq. (3). (b) Schematic picture of the sequence
of intermediate states that leads to the expression from fourth-
order perturbation theory for the Josephson coupling in Eq. (4)
in the case in which the impurity spin is up. The first box repre-
sents the initial state and the pair of electrons in a circle is a
Cooper pair on grain 1, i.e., two electrons which are a part of the
superconducting condensate. The first intermediate state is
reached when the electron is transferred from the impurity to
grain 2. Next an electron with spin down is ripped from the
condensate on grain 1, and transferred to the impurity, leaving
behind a spin-up quasiparticle in grain 1. It must be a spin-
down electron that is transferred since it must ultimately form a
Cooper pair with the initial electron that was transferred to
grain 2. Indeed, next, the spin-down electron is transferred to
grain 2 and forms a Cooper pair with the spin-up electron that is
already there. In order that the electrons be in the cannonical
order, it is necessary in this step to permute the order of the two
electrons that have been transferred to grain 2. This exchange is
responsible for the negative sign, hence we have enclosed this
state with a heavy box. Finally, the remaining unpaired electron
is transferred from grain 1 to the impurity, restoring the impuri-
ty to its original state. (c) Same as (b), except this time for the
case in which the impurity spin is down. Again, the boxed step
involves the interchange of order of two electrons.

ized state, and no=0, 1, or 2 is the number of electrons in
this localized state. T is the hopping matrix element,
which we will treat as a small perturbation, & is the ener-
gy of the localized state, and U is an interaction energy,
which we assume is very large. When the unperturbed
ground state is such that the localized state is singly occu-
pied, i.e., when g < 0 and U+2gy > 0, then the Josephson
coupling J can be easily computed to lowest order in | T/,
with the result that it is negative. For simplicity, we write
the expression for J in the limit U+2g> —g >0, and
zero temperature

J= —kZ (T14T29) 2 [u14v29) 2+ (g0 14) %]
q

1
Gor —50) erg — 80) Grx Fo2g) | @

are the usual BCS coherence factors for state g on grain j,
and g, =(¢%,+A?) "2 and ¢, are, respectively, the corre-
sponding quasiparticle energies in the superconducting
and normal states, and A; is the superconducting gap on
grain j.

The important point is the negative sign of J; it follows
directly from the anticommutation rules of the fermion
creation operators. To see this, consider the BCS wave
function for one of the grains,

ly;> =TT (uy+evgc}yic)-41)10) . 6)
q

It is necessary to define a phase convention (i.e., the order
of the spin-up and spin-down creation operators) which is
arbitrary but being once defined must always be main-
tained; we have chosen to put the up spin to the left of the
down spin. In the case of direct tunneling between grains,
the transfer of a pair from one grain to the other preserves
the spin ordering. However, in the case of indirect tunnel-
ing, due to the prohibition against double occupancy of
the impurity state, the ordering necessarily gets permuted,
as can be seen in the sequence of intermediate states pic-
tured in Figs. 1(b) and 1(c). Note that this result applies
independently of the initial orientation of the impurity
spin. 12

It is important to stress that the sign of J is not sensitive
to details of the model, as it is based only on the existence
of strong correlation which leads to the prohibition
against double occupancy of the impurity state. It does
not depend on the existence of a static spin moment in the
localized state: Since the result in Eq. (4) is independent
of the orientation of the impurity spin, thermal averaging
over spin orientations has no effect on J at all. Quantum
fluctuations also have little effect. For instance, consider a
simple generalization of the model in Eq. (1) in which the
impurity spin is antiferromagnetically coupled to another
spin a,

H'=H+ISa‘chs0'ss'COs’, (7)
5,5

so that they form a singlet in the unperturbed ground
state. When we repeat the perturbative evaluation of J as
in Eq. (4), the result is

= _kE(TIkTZq)Z[(quDZq)2+(quv[k)Z]
9

1
(eix —eotD(eyg— g0+ (eix+eg+1) |

(®)

Note that so long as I is small compared to |0l this re-
sult differs only to order It/h from the result in Eq. (4),
where h/t~min(|g|,A;,A;). The physical meaning of
this is transparent: One should interpret 7 as the tunnel-
ing time, i.e., the typical duration of the tunneling process
in imaginary time. So long as I < h/z, the impurity spin
does not fluctuate substantially during the imaginary time
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interval over which the tunneling occurs. This is why the
result in Eq. (8) is essentially the same as that in Eq. (4).
The tunneling Hamiltonians in Egs. (1) and (7) are de-
rived in the context of an approximation in which the tun-
neling time between a grain and the impurity is zero, so
the total tunneling time is determined entirely by the time
the impurity spends in an excited state. For a more gen-
eral treatment, the tunneling time will include a contribu-
tion from the tunneling events between the impurity and
the grains. We expect that more generally Eq. (4) will be
little changed so long as the spin fluctuation rate is slow
compared to 7. However, even if the fluctuation rate is
fast compared to 7, we simply expect a change in the mag-
nitude of J, not its sign. For instance, J in Eq. (8)
remains negative even for 1> | ol.

MESOSCOPIC FLUCTUATIONS

Another effect that is likely to produce a locally nega-
tive superfluid density in systems near their insulating
state is related to purely one-electron resistance fluctua-
tions. For kg/>1, the fluctuations in the average
superfluid density have been computed using standard di-
agrammatic techniques.'? The result is

((6Ns)2)~ et
(6N hXop?’

)

where o; is the conductance of a normal-metal sample the
size of the superconducting coherence length £. For small
krl, the fluctuations are small, but they become of order 1
as krl approaches 1. This is certainly highly suggestive,
although not a proof, that the superfluid density has a
high probability of taking on locally negative values.

IMPLICATIONS

We have shown that in disordered superconductors
there will occur regions with locally negative superfluid
density. There are a number of interesting implications
that follow directly from this observation. (i) In a small
superconducting ring, if there is a segment with negative
superfluid density (e.g., a Josephson junction between two
pieces of the ring with a negative coupling), the ground
state of the ring will spontaneously break time-reversal
symmetry. The ground state will have nonzero super-
current and magnetic flux. The ground state will thus be
twofold degenerate, reflecting the broken time-reversal
symmetry. Of course, at longer times, this symmetry will
be restored due to thermal activation or macroscopic
quantum tunneling14 between the two states, but for all
except the most minute rings, these rates can be made so
slow as to be experimentally irrelevant. We would expect
that for dirty metal rings with conductance of order e /A,
there is a roughly 50% chance that the ground state will
break time-reversal symmetry. (ii) For disordered granu-
lar superconductors, in which a superconducting gap
opens up at a temperature well above 7, so that phase
fluctuations are the only relevant excitations, the low-

energy properties of the system should be describable by
the Hamiltonian in Eq. (1), but with random signs of the
J’s. Far from the superconductor-to-insulator transition,
we expect that the concentration of negative J;;’s will be
small, but near the transition, of order 50% of the J;;’s will
be negative. (iii) The Hamiltonian in Eq. (1) has been
studied extensively as a model of the superconductor-to-
insulator transition. In the absence of disorder and for
J >0, a Bose-liquid Mott transition occurs as a function
of the magnitude of the capacitance.® Another mecha-
nism that has been considered ' is a transition for random
u; as a function of the strength of the disorder for large
enough C and J > 0; this is analogous to an Anderson
transition in a Bose liquid. Our previous discussion im-
plies that the random sign of J is an unavoidable feature
of disordered superconductors. That negative J’s are a
relevant perturbation, at least in two dimensions, can be
verified by noting'’ that the long-range order of the
ground state of the classical XY model is destroyed by
even an arbitrarily small concentration of negative J’s.
Thus, we feel that to understand the superconductor-to-
insulator transition in granular superconductors, it is
necessary to study the problem of the quantum XY spin
glass. This is a fascinating problem about which very lit-
tle is known. However, two common features'® of a spin
glass which may have important experimentally accessible
ramifications are (a) broken time-reversal symmetry in
the ground state (i.e., the existence of random, trapped
fluxes in the ground state) and (b) long-time tails in the
dynamics of the system associated with a broad distribu-
tion of relaxation rates.

DISCUSSION

We would like to conclude with a few qualitative re-
marks. First, we note that in any highly correlated system
with a superconducting ground state, the present effects
are likely to be particularly pronounced. In particular, it
is generally accepted that the high-temperature supercon-
ductors are characterized by a large Hubbard U. Thus,
whatever the nature of the ground state in the absence of
disorder, we expect disorder will produce quantum XY
spin-glass-type behavior in the ground state. In particu-
lar, this means that in the presence of disorder there may
be no way to absolutely distinguish between an anyon su-
perconductor!” and a conventional superconductor.
Second, we feel that the superconductor-to-insulator tran-
sition in homogeneously disordered superconductors is
likely to have additional features which distinguish it from
the Bose liquid. In particular, as mentioned before, there
is experimental evidence® that the gap-to-quasiparticle
(fermion) excitations vanishes at 7T, even as T. tends to
zero. Of course, these fermions can be integrated out,
leaving an effective interaction between phase fluctuations
which is nonlocal in time. Such interactions can change
the nature of the transition entirely. ®

Note added. After the completion of this paper, we
found that a sign anomaly was noted by Glazman and
Matveev '® in the course of a study of the effect of a Kondo
impurity on the magnitude of the Josephson coupling.
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