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A single Abrikosov line is considered in a field perpendiciilar to the layers in superconductors
with josephson coupling of the layers. It is shown that the vortex line evaporates above some
critical temperature T in compounds with perpendicular superconducting correlation length

( (0) (( rl/tc where v. is the Ginzburg parameter and d is the interlayer distance. In a. system with
identical layers, T coincides with the critical temperature of the IKosterlitz-Thouless transition.

I. INTRODUCTION

The problem of thermal fluctuations in type-II su-
perconductors presents, in the case of layered struc-
tures, quite striking and fascinating features. For rather
strongly coupled superconducting layers, the anisotropy
confers on the three-dimensional (3D) Abrikosov vortex
lattice peculiar elastic properties: easy shear of the lat-
tice for fields perpendicular to the layers, that leads to
the possibility of a liquid vortex state. For weakly cou-
pled superconducting layers in the limit of Josephson
coupling, ~ other phenomena may occur due to the weak
superconducting coupling of 2D vortices in difkrent lay-
ers.

A first question is raised in comparison to thin. films
where bound vortex-antivortex pairs are generated by
thermal fluctuations below the Kosterlitz- Thouless (KT)
temperature TIq~, and free vortices above TKT. Such a
mechanism operates in layered superconductors if the in-
terlayer coupling is weak enough. In the limiting case
of vanishing Josephson interaction, the temperature TKT
is given by the usual 2D expression because electromag-
netic coupling of 2D vortices in diA'erent layers can be
neglected, see below. The eA'ect of Josephson inter-
actions on the KT transition has not yet been clarified;
the dependence of TyqT on the strength of such coupling
was estimated by use of heuristic arguments. Some
evidence of KT behavior has indeed been obtained in
copper-based layered superconducting oxides. 6

A second question concerns the validity of the concept
of a vortex line crossing the layers (the usual Abrikosov
3D vortex). For layered structures, the correct picture
is that of a linear chain of coupled 2D vortices, and one
should ask whether such an object is stable against ther-
mal fluctuations. This question concerns the stability of
the Abrikosov vortex line against less-ordered structures,
such as a gas of point 2D vortices. The answer to this

question, would help us to understand, at least in weak
fields, the nature of the irreversibility line (or melting
line) observed in superconducting oxides (for a review,
see Ref. 9).

We address in the following the second question and
show that the usual Abrikosov vortex line does not exist
in layered superconductors above some critical temper-
ature T' if the interlayer coupling is weak enough. In
a simple layered structure made of identical layers, T*
coincides with TKT. To obtain such a picture we start
from the interesting limit of vanishing Josephson cou-
pling, realized, for instance, in long-scale superconduct-
ing superlattices. In that case, the magnetic field is
screened only by currents flowing inside the layers, as in
the thin-film geometry. As a consequence, a long-range
coupling of 2D vortices through the 3D magnetic field
remains in the perpendicular direction. In such an
electromagnetic (EM) model a real evaporation of the
Abrikosov line happens, i.e. , a phase transition takes
place from a line to a gas of free 2D vortices. Joseph-
son coupling leads to confinement of these 2D vortices,
and as a result this gas fills the tube, the thickness of
which grows as the Josephson coupling diminishes.

II. ENERCY OF A VORTEX LINE

We consider a single vortex line in a field perpendic-
ular to the layers. In a weakly coupled layered struc-
ture, this line is indeed a chain of 2D vortices in each
layer. Thermal fluctuations introduce some distortions
along the line, and the final structure can be obtained in
the usual way, starting from the energy functional that
describes the coupling of 2D vortices in diA'erent layers.
The functional of interest is the Lawrence-Doniach free-
energy functional which depends on the phase of the or-
der parameter @„(r) = @oexp(iP„) and on the vector
potential:
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7'P„(r) . dl = 2~ (2)

for a path integral around some point defined by coor-
dinates r„(the center of a 2D vortex) in layer n The.
functional integration in the partition function involves
the integration over variations of the shape of vortices,
i.e. , the functions P„(r,r„) and the coordinates r„. The
set of equilibrium values ( r„)describes t,he Abrikosov
line if the correlations of r„and r„+~ are strong enough.

III. THE CRITICAL TEMPERATURE
OF EVAPORATION IN THE EM MODEL

Let us consider the limit of vanishing 3osephson cou-

pling, p = 0. The corresponding equation for the mean-
field phase reads EP„(r,r„) = 0 where A = 0 /Bz +
0 /Oy, using the gauge divA = 0. Thus, neglecting
unimportant fluctuations in the shape of 2D vortices we

get P„(r,r„) = arctan[(z —z„)/(y —y„)]. The vector
potential therefore obeys the linear equation

EA(Et) = —) (A(R) — ' ")b(z —nd),
n

where A = %21/d is the effective penetration depth of a
single layer. Solving (3) and calculating the free-energy
functional (1) for a given set of coordinates, r„, one ob-
tains the EM interaction energy of 2D vortices:~

where r = (z, y), R = (r, z), B = rotA, p = 2(, (0)/d2.
The z axis is perpendicular to the layers. H, o is the
thermodynamical critical field extrapolated to T=O, and

(T, —T)/T, . Here d is the interlayer distance,
(~~(0),(, (0) are, respectively, the parallel and perpendic-
ular correlation lengths extrapolated to T = 0, y„(r) =

R.P„(r) —(2vr/C)0) f& A dl is the gauge-invariant phase,
P„(r) is the phase of the order parameter, and 4o
hc/2e. The dimensionless parameter p describes the
strength of the Josephson coupling in comparison with
intralayer condensation energy. Josephson coupling of
the layers corresponds to the limit p && 1.

Considering one vortex in each layer we need to cal-
culate the free energy of the system with functional (1),
under the condition

FEM(ri, . . . , riv) = ) G „(r„—r») + FEM(0),
mgA

2

G„(r) =
4

'A

(4)
dq sinh(qd) e'q ' —1

(2~) 2Aqs G2 1

x(G~ — G2 —1

& (r„—ro)2 )
A~

32~2dT
@2 (5)

Since the dimensionless diffusion coefIicient in the right-
hand side of (5) is very small, essential deviations
((r„—ro)2) of order AL2 occur at a distance of the or-
der of 105 layers at T 100 E& (taking Al. = 1500 A and
d = 10 A). Such distortions are unimportant and can be
neglected. We note that the Josephson interaction gives
an additional contribution to the stiffness of line, that can
be neglected in comparison with the EM contribution if
p &( K 2, where x is the Ginzberg parameter.

We now consider the short-wavelength distortions.
They correspond to a relative motion of particles in
neighboring layers, i.e. , values of ~r„—r„+i ~

are of inter-
est. The Abrikosov line exists if values of /„= r„—r„+~

where Gz —— cosh(qd) + sinh(qd)/2Aq. The quantity
FEM(0) is the ground-state energy which corresponds to
the straight line r„=0.

The energy (4) describes the interaction of supercur-
rents associated with vortices in different layers m and
n via a magnetic field screened by currents in all other
layers. This screening gives a small value for the inter-
action (an additional factor of d/AL, in the limit d « Al,
in comparison with the intralayer interaction of vortices)
as well as an exponential decay of the interaction with
the distance between the layers m and n. At the same
time the asymptotic behavior of the interaction (4) at
large distances along layers ~r„—r

~
)) Al, is logarith-

mic as in the 2D case because only the currents inside
layers are counted in the limit p = 0. We now obtain a
system of point particles (one in each layer) with coor-
dinates r„, the particles interaction being given by (4).
Thermal fluctuations cause the displacements of these
particles from the straight vortex line.

We first consider small long-wave distortions in the
harmonic approximation. Due to the 1D character of the
system of vortices, such fluctuations remove long-range
order, preserving only the short-range one, which is ac-
tually suKcient to define a vortex line. We obtain in this
approximation the effective line stiffness with respect to
bending of the line, which is similar to that of a usual
bulk vortex line. As a result one finds a random wander-

ing of the line, described by a difRsionlike expression:
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that are small in comparison with AI. are the most proba-
ble. Fixing as a reference the position of the first vortex,
one can say that the line exists if the probability distri-
bution function P(rz, rs, . . . , r~) (for an N-layer system)
can be normalized, otherwise we get a gas of uncorrelated
particles instead of a line. This criterion is similar to
the normalization of probability density in quantum me-
chanics being the criterion for a bound (localized) state
to exist. The normalization condition depends on the
behavior of P(r„) for large l,„,which is determined by
the asymptotic form of the interaction G„at large

—r
~
)) AL, . This form is obtained from (4):

FFM(r, , r~) =
&As

ln
A

e " . (6)
—

l
—

I ~/&

16m 2%3 Al.

We note that the parameter Al. /d is very large and the
logarithmic interaction (6) is very weak. However, due
to the very slow decay of the interaction along the z axis
the number of eA'ectively interacting particles is large.

Using the same arguments as in the case of KT tran-
sition, we came to the conclusion that a critical tem-
perature T* should exist above which particles cannot
be localized near the line, the entropy gain being larger
than the energy lost if the line were to evaporate into a
gas of particles.

To obtain T* we use a scaling argument. Let us con-
sider the region of variables dr2 . dr~ with large values

Ir r I. The probability of finding the system in this
region is given by the expression

l I nd ~r~ —i~[
dp = p(rz, . . . , rN)dr2 driv = —exp — ln e '" ' ' dr2

Z ( 4AI. Al. )

where n = C2O/8+~AT. In (7), the quantity Z is the
partition function (for normahzation of P). Rescaling the
variables by a factor C, i.e. , r'„= Cr„, we get the new
region dr'„. drl~. One finds from (7) the probability
dP' = CsdP with g = (—n/2+ 2)N —2. For large N
and C ) 1 the probability grows with C if T )T', where

f (r) = ) dr'G „(r—r')p„(r'),

(i) Z-ie / (r}l&— Z = dr e /-~r&/

(9)

4od
82 zAz(T')

Thus for T & T* the probability cannot be normalized.
This means that the particles are delocalized above T*
and an Abrikosov line does not exist: we have instead a
free gas of 2D vortices. The temperature T' coincides
with TET in the model under consideration.

IV. DISTRIBUTION FUNCTION FOR THE
DISTORTIONS OF 2D VORTICES

Taking the line r„= 0 as the center of the vortex
line, we can calculate the distribution function p„(r) for
distortions of 2D vortices in layer n from the ground-state
position (straight line). Actually deviations exist due to
long-wavelength Quctuations; these are governed by the
diR'usion law (5). Such deviations are indeed very small

up to T': the dimensionless coefficient is of the order of
(d/AL, ) near T' and on the scale Al. of the interaction,
deviations from the ground-state line are less than d.

Due to the long-range type of the interaction between
vortices (of order AL, ), each vortex interacts with about
(AL, /d) other vortices. It is therefore reasonable to per-
form a mean-field (MF) calculation of the free energy and
assume the vortex positions in different layers to be un-
correlated. For a given distribution function p„(r) for the
vortex position at coordinate r in layer n, one can obtain
the energy f„(r) at coordinate r of a 2D vortex, and the
equations for self-consistency of the functions p„(r) as

The vortex line exists if all functions p„(r) can be nor-
malized to unity.

Inside the crystal (at distances z )) Al. from the sur-
face) all the f„(r) are similar and

dr'G(r —r')p(r'), G(r) = ) G„(r)

When p(r) is normalized, the asymptotic behavior of f(r)
and G(r) is the same. The latter has logarithmic behav-
ior at large distances r )& AL, .

@,2

G(r) = ln

Using (9) and (ll) we see that the distribution function
has a power-law behavior, p(r) oc r and exponent n
diminishes with temperature.

Near the surface the interaction (6) should be changed.
For layers n, m & 0 the factor e ~" ~~+~ in (6) should
be replaced by (e- In —

meed/&I.

+ e
—I&+~I~/~1. ) . So the

asymptotic behavior of the distribution function near the
surface is the same as in the bulk.

The distribution function is normalized below the tem-
perature TMF which is given by the equation n(TMF ) = 2.
Thus TMF is higher than the critical temperature ob-
tained by the scaling argument which gives the condition
n(T*) = 4.

The result is thus a power-law asymptotic behavior for
the distribution function of 2D vortices, as well as for the
magnetic induction B(r) in the model under considera-
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tion, while in the usual Abrikosov vortex the asymptotic
behavior of B(r) is exponential.

The lower critical field H, q above T* is given by the
expression

V. THE ROLE OF JOSEPHSON COUPLING

In contrast to electromagnetic coupling, Josephson
coupling is short range and couples only adjacent layers.
Let us evaluate the Josephson energy Fg(r) for two 2D
vortices of the same sign, each in one neighboring layer
and separated by r in the direction parallel to the layers.
Now although the form of vortices depends on r, they are
not cylindrical as in the case of EM coupling. The phase
dift'erence P = P„—P„+i obeys the equations i5

(~~(0) + psing = 0 . (12)

H~ r
F1(r) = ~p " d((((0)r. (14)

We see from (13) and (14) that Josephson coupling pro-
vides confinement and prevents the complete evaporation
of 2D vortices. At T ~ T* the vortices indeed evaporate
into a thicker tube of radius ro which is determined by
the condition Fg(rp) T. Such a picture is valid pro-
vided ro )) AL, . As a result the expansion of the line to a
tube of 3osephson radius ro ~rg )) Al. takes place in

compounds if p « ~

Thus P decays exponentially on a characteristic length
rJ —

(~~ (0)/~p. This allows us to evaluate FJ (r) in two
limiting cases. First, if r « vJ, the main contribution
comes from the region of integration r « rJ where vor-
tices are nearly cylindrical, which gives

H2 rF()= ' d 1
32vr min((~~, r )

On the other hand, if r &) rj, the phase is perturbed in
a one-dimensional region of length r & rJ, which yields

At T* we get

@0 1/2H, i — -In(ap' )

and H, i(T') is zero at that temperature, if p ( z
In conclusion we have proved that in multilayer com-

pounds with very weak Josephson coupling the vortex
line expands as temperature grows, and the distribution
of the field in a vortex has an asymptotic power-law be-
havior instead of the standard exponential one. The ex-
pansion of vortex lines can be observed experimentally.
The Bi- and Tl-based oxides are possible candidates for
such a study, together with artificial superlattices of
Y-Ba-Cu-0/Pr-Ba-Cu-0 type. In a system with iden-
tical layers, the vortex line evaporates into a gas of 2D
vortices at the temperature T' = TKT and at the same
point the lower critical magnetic field tends to zero as T
approaches T'.
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