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Magnetic susceptibility of the strongly correlated Hubbard model
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Using the linked-cluster expansion method, we have calculated the uniform and the staggered
susceptibility of a single-band Hubbard model. We make correction of previous results of Kubo
and Zhao et al.

The Hubbard model was introduced to study the eAect
of electron correlations. ' It has long been used in
describing the most essential part of itinerant magnetism
and metal-insulator transition. The model has also been
proposed to investigate the physical mechanism of high-
temperature superconductivity. The magnetism may
play an important role in the superconductivity of such
high-temperature superconductors. However, it is very
complicated to solve this many-body problem. Even the
simple single-band Hubbard model has the exact solution
of the ground state for one-dimensional system only. In
the strong-correlation limit, Nagaoka rigorously proved
the existence of ferromagnetic ordering with the number
of electrons one less than the total number of lattice sites
for the simple-cubic and body-centered-cubic lattices. In
the thermodynamic limit and in the region of strong
correlation, the magnetic properties were studied by Beni
et ah. , ' Kubo, and Zhao et al. using the perturbation
expansion for the single-band Hubbard model. The be-
haviors of the three-dimensional simple-cubic and body-
centered-cubic systems have been discussed from the
qualitative analysis of the perturbation series up to fourth
order. One of the major problems is that their calculated
series are in conAict with each other. The qualitative be-
havior shown by Zhao et al. is more reasonable. The
question is still whether the calculated results are really
correct. Actually, their methods of calculation are the
same. The evaluations of the fourth-order terms are all
lengthy. In this Brief Report we make a correction of
their results and present a linked-cluster series expansion
technique to obtain the perturbation series of the single-
band Hubbard. This method has been extensively used
on spin systems with crystalline potentials involved.
Since the multiple-site Wick reduction theorem ' au-

I

p, ; =p, +ct(o. )(h+g), (2)

where the sign +1 depends on whether the ith site be-
longs to the 3 or 8 snblattice and a(o. ) is +1 and —1 for
spin cr = t' and J, , respectively. We consider only those
lattices which can be seperated into two interpenetrating
sublattices.

The Hamiltonian is split into an unperturbed Hamil-
tonian Ho and a perturbation part H, as

Ho=Urn;tn, t
—gp; n; (3)

and

The free energy F can be written as

F =F0+AF,

where Fo is the free-energy term corresponding to the un-

perturbed Hamiltonian Ho and AF is expressed as"

tomatically makes the integration procedures saved, it is
more convenient to calculate all terms in the series ex-
pansion especially by using computer.

The Hamiltonian of the single-band Hubbard model
being considered is given by

H=U+n, tn, t
—gp, n, +t g (ctc +ct c, ),

i, o- (i,j ), o-

(1)
where U is the on-site Coulomb repulsion potential, t is
the nearest-neighbor hopping integral. The chemical po-
tential p, includes a uniform magnetic field h and a stag-
gered magnetic field g,

AF = ——$ I dr) . I dr„( T,[H)(r)) H, ( )r]), ,
1

-
( —1)" o is

n! o

where P=(ks T) ' and T is the r-ordering operator
which orders operators in the product with ~ labels de-
creasing from left to right. The subscripts c denote the
cumulant part of the ~-ordered product, or, in the dia-
gram analysis, the contribution of the connected dia-
grams. To compute AF we need a technique to calculate
the thermal average of the ~-ordered products of fermion
operators. In this report we adopt the technique
developed by Yang and Wang' and extend their con-

I

sideration to the fermion operators of Hubbard model.
We define four standard basis pseudofermion operators'
as

LI2 —= c, t(1 —n, &), L'» =—c;((1—n, t ),
T l

24 =;~;g& ~34 =n;$C;

and two standard basis pseudoboson operators as

l — T l~ 14 ci t ci g &
m 23 = ci 't ci g

*
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Adjoint operators are (L' ~) =L~
These operators satisfy the multiplication rule and the

commutation relation'

L'-r L'.=~nrL~.

[L' t/, L~~~ ],=6;,(ot/~L' „+eo„L't/), (10)

where e= —1 if one of the two operators or both are
pseudoboson operators and e= + 1 if both are pseudofer-
mion operators. So any single-site fermion operator can
be expressed as a linear combination of the standard basis
operators in Eq. (11):

Ci g
L ~2 +L 34& ~i $ L )3 I 24

0

n, &=Lz2+L44, n, &=L33+L44

The standard basis operators in the interaction picture
have the simple ~ dependence required by the Wick
reduction theorem

(,E —E~i~L /3(r)=e e L t/(0) . (12)

The multiple integrals using the multiple-site Wick
reduction theorem ' can be done by machine. A com-
puter program has been developed to calculate free ener-

gy F, uniform susceptibility

Bh
zF~h=g=o

and staggered susceptibility

(3g
, Fl/, =g=o

with the general symbolic manipulation program
SCHOONSCHIP.

The free energy per site up to the fourth order at
h =g =0 is obtained as

F =Fo +F2 +F4 ) +F42 +F4,3 +F44 (13)

with

Fo= —k//T in(, (14)

Fz= zt P(y——2y )+—(1—e ~ )y (15)

F, = zt P (y——2y )+4 (1+e ~ )y—1 8
(1—e ~ )yU3

(16)

2

F~z= —z(z —1)t —P (y —2y )+3 [y —2(1+e ~ )y ]

[ ( 2 e /3U)y2 6( 1 e /3U)y3 ] + ( 1 e /3U)y2
U2 U

(17)

F43
—— p~t~ —p [y —1—0y +(29—3e ~ )y —(26—14e ~ )y ]+8 [y —(5 —e ~ )y +6(1—e ~ )y ]

and

+8 [
—2y +(9+e ~ )y —10(1—e ~ )y ]+ (1—e ~ )[y —5y +5(1—e ~ )y ], (18)16

U2 U3

F4&=z(2z —l)t P'(y —2y ) +4 (1 —e ~ )(y —2y )+4 (1 —e ~ ) y (19)

F = —k~ T g ln( 1+e "—),1 (20)

where E/, =t g&e'"'s with 5 as nearest-neighbor vectors.
Through the Taylor series expansion in terms of pt, the

fourth-order term is

where g=(1+2e~"+e t"e ~ ) and y=e~"Ig. Compar-
ing with Kubo's result, only the F42 term contradicts
with Kubo's 0,+d term. Since all previous results of
such perturbation expansion are inconsistent with each
other and our calculated series is also shown a different
result, in order to prove that some errors exist in the pre-
vious results, we can consider a special case with the on-
site repulsion potential U equal to zero. The Hamiltoni-
an becomes trivial, and the exact solution for the free en-

ergy per site is

F4= ,'p4t~P (y —6y )+ ,
—', z—t P (y —6y )—

,' ' 'p'(y 6y—')—— (21)

where y=e~"/(1+e~") .
We find out that, in the U =0 limit, our results are the

same as the exact solution given above. The fourth-order
Kubo result becomes

F4" '= ,'p4t p (y —6y )+ ,
—', z—t p (y —14y )—

,'z t P (y —10—y—), (22)

which is incorrect. Excluding the "diagram f" of Kubo's
calculation, as suggested by Zhao et ah. , does not make
the result correct. As a matter of fact, the "diagram f" is
obtained when the "semi-invariants" (the connected dia-
grams) are expressed in terms of thermal moment prod-
ucts. ' The results of Beni et al. are also incorrect, as
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3 /32= —2zt4 —2 - n2,+u41 z
U2 U3

+u 42„42=—
—,'z(z —1)t 3

3

n 1 n) —2 n—(2—3n)

+2 n-
U

(26)

'/3 n (—1 —n)(8 —11n)+u43 I 4t

—2 n (1 n)(2 —3n)—U"

+2 n'(1 n)(4 —5n) ——4, nn (2 —5n)U2 U

(27)

=z 2z —1)t n (1 n)+ n-+u44 (28)

+u22 Z
2 4 n (1 —n)(l 2n)+—2

2
n ( 1 n)—
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y, o=pn, (30)

(32)

g,42=z(z —1)t —
—,', p n(1 —n)(2+n) —— n (1 n)—1

n (4—13n)+ n (5 —18n) —4 n
1 p' 2 p' p
3 U2 U U4

n (1 —14n)
U5

(33)

2 2 '
2g,q3 =p4t —3'op'n (1 —n)(8 —48n +47n )

—— n (1—n)(12 —19n)

2

+4 n (5 4n—)(2 —3n) —16 n (6—14n +7n )+- n (6—14n +7n )
U U U

(34)

y, 4&=z(2z —1)t —'P n (1 n) ——n (—1 n)+ —n (4—5n) —4 n (1 2n) —4— n" (35)

and

2 2 2y, ~2=z t ,'P n(—1 n)(1—2n) ——— n (1—n)(1—2n)+2 n (1—n)(2 —5n) —4 n (1—n)(1 4n) —8 —n (1 —n) .

(36)

In all the previous works qualitative analyses of
their results have been performed. Even though the per-
turbation series up to fourth order is a low series and may
not be convergent yet, it may still provide some qualita-
tive behavior of the model. We follow the way of Kubo
and Zhao et al. to estimate the critical temperature T&
and T~ from the vanishing of g„' and g, ', respectively,
with given values of electron density n and the ratio t /U.
In Fig. 1 the analysis of the uniform susceptibility shows
T~/t as a function of n for various values of t/U for the
simple-cubic lattice. It indicates that the ferromagnetic
ordering can only occur in the region —,', (n (1. The
critical temperature also decreases as the ratio of t/U is
increased for any fixed electron density. This behavior is
physically reasonable as mentioned by Zhao et al. The
Neel temperature T~ of the simple-cubic lattice is shown
in Fig. 2. At half-filling (n =1) Ttv/t=0. 34, 0.19, and
0.04 for t/U=0. 1, 0.05, and 0.01, respectively. Our re-
sults for T~/t versus U/t are qualitatively consistent
with the previous approximate results of the half-filled
Hubbard model. ' '' For each value of electron density
and t/U ratio, T& is higher than Tc which demonstrates
that no ferromagnetic phase is stable. The occurrence of

finite T& at low electron density is also difficult to under-
stand. Figures 3 and 4 are for the body-centered-cubic
lattice. Qualitatively the curves are similar to the
simple-cubic ones shown in Figs. 1 and 2. In a certain re-
gion, Tz can be higher than T~. We still presume that
the higher-order terms in the perturbation series may
alter the results analyzed here. It is very important to
obtain even higher-order terms to describe more correct-
ly the behavior of the single-band Hubbard model. The
calculation of the higher-order terms is complicated. The
linked-cluster expansion method with the multiple-site
Wick reduction theorem applied may be the best ap-
proach. We are in the process of developing more
efIicient computer programs to evaluate the high-order
terms of free energy of the Hubbard model.
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