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Kinetics of ordering for correlated initial conditions
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Nonequilibrium domain growth in a system with a nonconserved order parameter is considered
for power-law correlated initial conditions, [P(r)P(0)]—r ' ', appropriate to, e.g. , a quench to
the ordered phase from the critical point (o.=2—g). The long-range correlations are shown to be
relevant (in the renormalization-group sense), and lead to a new scaling function for the structure
factor, provided that o. exceeds a critical value. In this regime (which includes o =2—q) the auto-
correlation function 3 (t) —= [P(r, t)P(r, 0) ] has the asymptotic behavior 2 (t ) —t

The kinetics of domain growth following the quench of
a system from the disordered to the ordered phase has
generated a vast literature. ' For a conserved order pa-
rameter this is the phenomenon of phase separation or
"spinodal decomposition. " Here we will be interested in
the case of a nonconserved order parameter, appropriate
for the order-disorder transitions observed in many
binary alloy systems. We will show that when the initial
conditions exhibit power-law spatial correlations of
sufficiently long range, a new universality class is ob-
tained, with a time-dependent structure factor and tem-
poral correlation functions which depend explicitly on
the exponent characterizing the correlations in the initial
conditions. A special case of experimental relevance is
when the initial condition is the equilibrium critical state.
The present study complements the recent investigations
of scaling behavior following a quench from the high-
temperature phase to the critical point, and completes
the "triangle" of possible quenches (high-to-low, high-to-
critical, critical-to-low).

A central quantity in the study of domain growth is the
time-dependent structure factor Sk(t) = [Pi,(t)P k(t)],
where Pi, is a Fourier component of the (scalar) order pa-
rameter and square brackets indicate an average over ini-
tial conditions. For simplicity we will work at T=O,
since thermal fluctuations should be asymptotically ir-
relevant for a quench into the ordered phase. The struc-
ture factor is expected to having the scaling form'

S„(t)=L(t)"g, (kL (t)),
where d is the dimensionality of space and the domain
scale L(t) —t'~ for a nonconserved order parameter.
Recently we have introduced a second fundamental
quantity, the response to the initial condition, defined by
Gk(t) = [Bgk(t)/i}gk(0) ]. It has the scaling form

(2)

where A, is a new nontrivial exponent and g(0) =const.
The scaling forms (1) and (2) apply when t is large com-
pared to microscopic time scales: by definition, Gi, (0)= 1.
For initial conditions with only short-range correlations,
A, has been calculated to first order in 1/n for an n-
component vector order parameter.

If the initial conditions are Gaussian random variables
with correlation function [PI,(0)P i, (0)]=5i, zA(k), in-
tegration by parts relates Gi, (t) to the correlator Ci, (t) of
the field with the initial condition:

C„(t)—:[P„(t)P „(0)]=A(k)G„(t) .

Although (3) is strictly true only for Gaussian initial con-
ditions, we conjecture that it holds more generally in the
scaling regime, i.e., that higher cumulants of the initial
condition distribution are irrelevant in the renorm-
alization-group (RG) sense. This can readily be
confirmed for a vector order parameter with n = ~,
where only the second cumulant of the distribution
enters, and in the d=1 Glauber model (see below). A
scaling form for the more general correlation function
[Pi,(t)&P k(t')], with t and t' both large, can also be writ-
ten down, ' but involves no additional exponents.

The dependence of the ordering kinetics on the nature
of the initial conditions has not been adequately ad-
dressed in previous work. In this Brief Report we consid-
er the case where A(k) contains a component correspond-
ing to long-range (power-law) correlations, i.e. ,

b, (k) =bsR+ b, LRk

with 0& o. & d. Then the correlations in real space decay
as r '" '. Using elementary renormalization-group ar-
guments, we predict that the exponent A, defined by (2) re-
tains its short-range value ksR for o. & o., =d —2A.sR,
while A, =(d —o )/2 exactly for o ) cr, . More generally,
the long-range correlations are irrelevant (relevant) for
cr (o, (o )o, ). In consequence, the scaling function for
the structure factor retains its short-range form for
o. & o.„but acquires a new, o.-dependent form for cr )o,
In particular, for a small scaling variable k t ~0, we pre-
dict Si,(t) —k t'" ' for o. )o, These conclusions
are supported by the 1/n expansion for a vector order pa-
rameter, by exact results for the d=1 Ising model with
Glauber dynamics, and by Monte Carlo simulations of
the d=2 Ising model.

The RG calculation follows a familiar path, albeit in
the context of the T=O fixed point that controls domain
growth. Note, however, that we do not explicitly demon-
strate, by deriving recursion relations, the existence of a
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RG fixed point from which the scaling forms (1) and (2)
emerge. Rather, scaling is assumed and the existence of
an underlying RG inferred. The scaling hypothesis is,
however, supported by a wealth of experimental and
simulational evidence, ' and the scaling forms (1) and (2)
can be derived explicitly for a vector order parameter
within a 1/n expansion and for the d=1 Ising model
with Glauber dynamics. On the other hand, the large-n
limit for a conserved vector order parameter reveals a
more complicated scaling form than (1), involving two
marginally different length scales. Subject to the above
caveats, a schematic RG calculation may be performed as
follows. Starting from the deterministic Langevin equa-
tion dgkjdt = —BHIBPk, where H is the Hamiltonian,
one formally eliminates Fourier components with
A/b & ~k~ & A, with A the large-momentum cutoff and b
the RG scale parameter. Then one rescales momenta,
times, and fields according to k =k' jb, t =b t ',

pi, &i, (b t')=b p (kt'), and pk&b(0)=bxcak(0). Note the
introduction of a separate scaling dimension for the ini-
tial condition. Applying these rescalings to the scaling
forms (1) and (2) determines the exponents g and g:
g=d/2 and y=d/2 —k.

Under the RG transformation the correlator A(k)
of the initial condition, defined through [Pk(0)P k(0)]
=b(k), becomes b x[gk(0)$' k(0))=b(k'Ib)+ .
where the ellipsis indicates the contribution from the
coarse-graining stage of the RG. Thus the new initial
correlator b, '(k')=[Pi, (0)P' i, ,(0)] is given by

b, '(k') = b I h(k'Ib)+

Using (4) we can write fiow equations for the short- and
long-range parts of the correlator:

~sR=b" '[~sr+
—b 2A, —d+o.gLR LR '

(6)

The key point here is the absence of any contribution to
6„'R from the elimination of short length scales. This
kind of result is familiar from the study of critical phe-
nomena in systems with long-range interactions, ' long-
range correlated disorder, ' or long-range correlated ran-
dom fields, " etc. , and a similar result for the renormal-
ization of the transport coeKcient was recently used to
derive the t' domain growth law for a conserved scale
order parameter. ' The common feature of these calcula-
tions is the absence of any additional singularities at
small momenta arising from the elimination of large mo-
menta.

At the fixed point controlling domain growth, both the
equation of motion and the initial condition distribution
should be invariant under the RG transformation. It fol-
lows immediately from (7) that the long-range correla-
tions are irrelevant (i.e., b, LR iterates to zero) at the
"short-range fixed point" if o. & d —2ksR. In the opposite
regime, the invariance of AL& at the "long-range fixed
point" fixes A,LR=(d —o. )/2. The determination of A,sR is
nontrivial, since it requires explicit computation of the
terms represented by the ellipsis in (6). To first order in

1jn, where n is the internal dimension of a vector order
parameter, one finds ksR=d/2 —a (d)/n, where a (d)
()0) is given in Ref. 4, so cr, =2a (d) jn +0 (1/n ). The
validity of Eq. (7) is also confirmed by the 1/n expan-
sion, ' since one finds no correction to A,LR=(d —o. )/2.
Note that a naive interpretation of the 1/n results would
predict that A, is discontinuous at o. =O. Here, as else-
where, " one needs the RG to interpret the results
correctly.

Consider now the functions Si,(t), Gk(t), and Ck(t) of
Eqs. (1)—(3). The scaling functions g, (x) and g(x) will
have the short-range forms for cr & o.„but will depend on
o. for o. )o, Note, however, that because of the explicit
factor of b, (k) in (3), Ci, (t) picks up the k term from
(4), which dominates over the constant term in the scal-
ing limit k~0. Thus Ci, (t)=bLRk t g(k t). Sum-
ming over k yields the autocorrelation function A(t)—= [P(r, t)P(r, 0) ]—t '" ' . In the long-range re-
gime, this becomes A (t) —t ' ' . The two forms
match, as expected, at cr =o, When the initial state is
the critical state, A (t)-t '" +~'~ . For the d=2 Ising
model (ii= —,

' ), for example, we predict 3 (t) —t
The structure factor Si,(t) also has, even for o. & o „a

"long-range" contribution Si", (t) varying as k at
small k. It is given by the diagram of Fig. 1, where the
circle represents b.(k) and the lines are exact response
functions. Thus Sk (t)=bLRk Gz(t)G i, (t). The
remaining contributions to Sk(t) should be finite at k=0.
This structure has been confirmed explicitly in the 1/n
expansion. ' Using Eq. (2) gives Si, (t)=k t s (k t),
with s(0)=const. Comparing this with the general scal-
ing form (1), we observe that, for A, +a /2 &d/2 (i.e., for
o. & o, ), Si", (t) does not contribute to the scaling function,
i.e., it is negligible compared to the full Sk(t) in the scal-
ing limit k —+0, t —+ ~ at fixed k t. For o. )o„ the scal-
ing function is lang-ranged, i.e. , g, (x)-x for x —+0 in
Eq. (1). In real space, this means that for o )o, the
equal-time correlation function C(r, t)= [P(r, t)P(0,t)]-
decays as Il. (t) Ir J" for r ))I.(t).

For d=1, the Ising model with Glauber dynamics can
be solved exactly. ' For T=O and small k one obtains
(Pk(t) ) =Pk(0)exp( —k t) for the Fourier components of
the Ising spins, where ( ) indicates an average over the
residual noise present in Glauber dynamics at T=O. In-
corporating this latter average into [ ], the result
Gk(t)=exp( k t) for t—he response function follows im-
mediately. Comparison with (2) gives A. =O, and hence
o, = l. Thus long-range correlations are irrelevant (in
the RG sense) for all physical values of o (i.e., o. & d = 1),

0

FIG. 1. Diagram for Sk (t). A line and a circle represent
the response function (2) and the correlator (4), respectively.
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as shown explicitly by Bray. The correlation with the
initial condition is Ct, (t)=h(k)exp( —k t), so the auto-
correlation function is A (t)-t " ', generalizing the
t ' dependence found for initial conditions with short-
range correlations. We note also that Eq. (3) holds ex-
actly for this model, due to the linear dependence of
(P„(t)) on P„(0).

The case of greatest experimental relevance is
o. =2—g, corresponding to a quench from the equilibri-
um state at T, . To determine whether this belongs to the
short- or long-range universality class we need to know

Monte Carlo simulations' of the Ising model sug-
gest A, sR

——
4 and —,

' for d =2 and 3, respectively, giving
o., =—,

' and 0, respectively. Thus o., is definitely less than
2 —

rI (=—' and =2, respectively) placing these systems
firmly in the long-range universality class. This implies a
t 'd ~+"'~" decay for the autocorrelation function 3 (t),
i.e., t ' ' for d=2 and =t ' for d=3, and a structure
factor of the form

S (t)=k t "I~ttt" + "t~ s(k t)k

with s(0)=const.
Monte Carlo simulations on the d=2 Ising model have

been performed to test these predictions. Equilibrium
states at T = T, =2/ln(1+ &2) were prepared' using the
accelerated convergence algorithm of Wolff. ' Each such
state was then quenched to T=O and evolved using con-

ventional "heat-bath" dynamics, ' vectorized by sequen-
tial updating of each sublattice in turn. The equal-time
correlation function C(r, t)= [S;(t)S~(t)], with sites i and
j separated by r lattice spacings along a lattice direction,
is presented in scaling form in the inset in Fig. 2, where t
is the elapsed time after the quench in units of attempted
updates per spin. The data represent an average over 100
independent initial conditions for a system of size 250
with periodic boundary conditions. What is actually
plotted is C(r, t)=CI (r, t)[C (r, O)/C 1(r, O)], where CI
and C are the correlation functions for the finite and
infinite lattices, respectively. ' This correction is
designed to remove, as far as possible, finite-size effects in
the spatial correlations at t=O, this being the dominant
finite-size effect present. Its efficacy is demonstrated by
the exceptionally good scaling plot obtained. A further
refinement was to select only initial equilibrium states
with magnetization per site M satisfying ~M~ (0.01. If all
equilibrium states are included, the data fall on the same
scaling curve at short times, but break away at later
times. This is because finite-size scaling yields
~M -L ~ =L ', so ~M~ is typically large ( M~-0.6
for L=250). As a result, the system usually reaches a
single domain quite quickly. Selecting initial states with
small M is a device to artificially expand the scaling re-
gime. The dashed curve shows the asymptotic behavior
C(r, t) =0.96 (t/t /r)'~, with the same r dependence as
the initial condition, as predicted for the long-range
universality class. This scaling function is quite different
from that associated with the conventional quench from
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FICx. 2. Finite-size scaling plot for the autocorrelation function of the two-dimensional Ising model quenched from T=T, to
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asymptotic behavior C(r, t) =0.96(&t /r)'
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the high-temperature phase. '

The results for the autocorrelation function are con-
sistent with the prediction 3 (t)-t ' ' . In this case we
were unable to correct simply for the finite-size eftects on
the initial condition, which yield a CL(r, O) decreasing
more slowly than 1/r ' . As a result, we expect
2 (t) = t '~' a (&t /L), the argument of the scaling
function a being the ratio of the domain scale to the sys-
tem size. Therefore we employ a finite-size scaling
analysis, in which a plot of t'~' 3 (t) versus &t /L
should collapse the data. The result is shown in Fig. 2.
The data collapse is quite satisfactory.

In summary, a new universality class for domain
growth from correlated initial conditions has been
identified. The nontrivial exponent A, that enters the scal-
ing form for the response function has been determined
exactly for this class. The scaling function for the struc-
ture factor has a new universal form characterized by the
range of the correlations in the initial conditions. The re-
sults are relevant to a quench into the ordered phase from
the critical point.
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