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A two-component theory of superconductivity is developed where one electronic component pro-
vides mobility and the other provides pairing. For the Cu-O-based high-T, materials the two com-
ponents are identified with mobile electronic states associated with Cu-O planes, and localized
negative-U states associated with oxygen vacancies in the Cu-O planes. An explicit comparison of
phenomenology with BCS theory is performed including comparison with experiments on
YBa,Cu;0,. The discussion includes quantitative comparison of the superconducting properties T,
A, H,, and §. Long-wave collective excitations, normal-state properties including resistance and
tunneling, and the isotope shift are described. Unusual properties are predicted including neutral-
fermion excitations, a spreading of the fermionic gap onset, a separation between the resistive tran-
sition T, and the evaporation of the condensate T,, anomalies in sound and bulk modulii at T,
linear temperature dependence of normal-state resistivity, linear voltage dependence ih normal-state
tunneling conductance, and finite zero-bias conductance in superconducting-state tunneling. A new
signature of structural coherence obtained by channeling experiments is indicated.

There are two attributes of electrons for superconduc-
tivity: mobility and pairing. While this is not directly
obvious, these two attributes compete against each oth-
er.'? Large pairing energies are consistent with poor mo-
bility and high mobilities are consistent with weak pair-
ing. In this article a theory of superconductivity is de-
scribed based on combining these two attributes by mak-
ing use of two types of electronic states in the same ma-
terial, one which provides mobility and the other pairing.
A small hybridization between the two types of states is
essential for the mobility and pairing to work together to
give superconductivity. Further, it is suggested that
many diverse experiments on high-7, materials can be
understood within such a theory where (1) locally paired
states are associated with oxygen vacancies in Cu-O
planes and (2) mobile single-particle states, are associated
with Cu-O planes. Superconductivity arises because the
localized states become mobile through partial mixing
with the extended states, and the extended states become
paired through mixing with the locally paired states.

Localized pairing is the local analog of Cooper pairing
of extended states—it is accomplished through the
electron-ion (electron-phonon or electron-structural re-
laxation) interaction. Localized states which pair are
known as negative-U centers,® where U is the effective
electron-electron repulsion.

The oxygen vacancies responsible for the paired states
are located in the Cu-O planes. Because of this, the in-
troduction of localized states by oxygen vacancies also
disrupts the mobile states. In large part, it is the com-
bination of constructive and destructive roles of the oxy-
gen vacancies which has led to difficulties in the interpre-
tation of experimental literature. Basic theoretical phe-
nomenology is discussed here while a discussion of the
family of high-7, materials is pursued in a companion ar-
ticle.

There are two objectives to this article, (1) to introduce
a conceptual understanding of the theory and (2) to dis-
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cuss the phenomenology providing predictions which can
motivate experimental tests. The understanding of the
theory described here is still preliminary. A key point of
this discussion is the comparison of the two-component
theory with Bardeen, Cooper, and Shrieffer’s (BCS)
theory of superconductivity in metals.*> Surprisingly,
many basic differences exist. Comparisons are also made
with the theory of strong-pairing low-mobility supercon-
ductivity known as negative-U lattice theory. Discus-
sions of antiferromagnetism (which can be accounted for
by a repulsive interaction of single-particle states®), low-
dimensional structural components in Cu-O-based ma-
terials, and disorder, which play a major role in phenom-
enology and other theoretical approaches to supercon-
ductivity,”® are largely postponed since they do not play
an essential role in the superconductive properties to be
derived.

This article is divided into three sections. In the first,
the theoretical background is briefly summarized. The
second introduces pictorially the two-component theory
and then an appropriate formalism. The third section de-
scribes the general phenomenology of the two-component
theory with application to YBa,Cu;0,. Included in this
discussion are the following: (a) The transition tempera-
ture and the fermionic gap T,, and A; (b) the thermo-
dynamic critical field H,; (c) the coherence length &; (d)
long-wavelength collective excitations; (¢) normal-state
properties; and (f) the isotope shift and a new signature of
structural coherence.

I. THEORETICAL BACKGROUND

BCS theory describes the superconductivity arising
from a weak pairing interaction of mobile extended elec-
trons.* When the pairing is stronger but the electrons
can still be described as extended, strong-coupling theory
applies.” For an even stronger interaction, or for in-
herently localized paired electrons (negative-U lattice) it
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has been suggested that a superconductivity arises in the
form of a Bose condensation of preexisting tightly bound
pairs similar to liquid-He* condensation.’” !> No physi-
cal realization of this is known. In this limit the mobility
is low because of the strong electron attraction, the in-
herent localization of the electrons, and the strong cou-
pling to the lattice relaxation responsible for the pairing.
It is this mobility which controls the transition tempera-
ture T,. Since no physical realization is known, it is not
clear that such states by themselves can be mobile.
Strong localized pairing is well established in localized
states associated with defects in semiconductors where it
has been discussed'>!# and studied theoretically!>~!'® and
experimen‘cally.lg’20 The enhancement of superconduc-
tivity in metal-semiconductor disordered alloys?!:??
motivated studies of negative-U localized pairing states in
a metal and their enhancement of BCS superconductivity
of the metal.?>~2° The idea of superconductivity induced
by resonant pairs?® predates BCS theory, was reintro-
duced,?”?® and has been suggested as relevant for the
high-T, materials®*~*® with pairing possibly arising from
electron many-body effects. General arguments suggest-
ing local pairing in the high-7, materials have been
given.3*3° Treatment of two types of mobile electrons in
a metal and the hybridization contribution to supercon-
ductivity is known as two-band superconductivity.>¢~3°
The key suggestion that oxygen vacancies in high-T, ma-
terials can be responsible for enhanced pairing has been
discussed.*®*! The single-particle electronic stats associ-
ated with oxygen vacancies have been calculated yielding
localized states with transition energies near the Fermi
energy.*»* Each of these works contains some of the
basic concepts of the theory which is described here. The
phenomenology which is to be described and its relation-
ship to material properties is unique to the two-
component theory developed here.

II. INTRODUCTION TO THE
TWO-COMPONENT THEORY

A. Pictures

To motivate the basics of the theory, Fig. 1 shows an
idealized picture of the extensively studied structure of
YBa,Cu;0; (1:2:3:7 material).** The structure is layered
with Cu-O bonded planes [Fig. 2(a)] and ionic (insulating
or semiconducting) layers in between. One of three Cu-O
planes is incomplete; half of the oxygen atoms are miss-
ing thus forming Cu-O chains [Fig. 2(b)]. While it may
seem natural to think about the Cu-O chains, it proves
natural to associate one localized electronic state per unit
cell with the missing oxygen sites. Similar states arise
when an oxygen atom is removed from a complete plane
[Fig. 2(c)].*%3! Thus we consider an ordered lattice of lo-
calized defect states. The Cu and O in complete planes
are tightly bound and give rise to a band of mobile states
which are partially occupied.

The electronic states for the two-component theory are
abstracted from this picture of 1:2:3:7 material without a
direct one-to-one correspondence. A schematic picture
of the essential electronic states for the two-component
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FIG. 1. Diagram of one unit cell of the structure of
YBa,Cu;0; (1:2:3:7 material). The structure is layered, formed
out of alternating Cu-O planes [Fig. 2(a)] and ionic (insulating
or semiconducting) layers. The central one of the three Cu-O
planes is incomplete, half of the oxygen atoms are missing
(shaded circles), forming Cu-O chains [Fig. 2(b)]. Mobile elec-
tronic states are associated with the Cu-O planes and chains.
An ordered lattice of localized states is naturally associated
with the missing oxygen atoms since the same type of state
arises when only one oxygen atom is missing in a plane [Fig.
2(c)]. The insulating layers are important in establishing the
confinement of the localized states.

theory is illustrated in Figs. 3 and 4. A lattice of local-
ized states coexists with a lattice of mobile states. The
central assumption of this theory is that the localized
states are negative-U centers. This means that if elec-
trons are placed in the localized states they prefer to pair
so that each site is either doubly occupied or unoccupied
(Fig. 5). This assumption can be checked theoretically by
calculations similar to those used to study localized
negative-U states in semiconductors.!*”!® Experimental
manifestations are the subject of this and the companion
article.

The mobile states have a large hopping (overlap) be-
tween adjacent sites which gives rise to their mobility. A
small hopping is also possible between the locally paired
states and the mobile states. This hopping could involve
single particles, or pairs, but since leaving one particle on
a paired site would have a high energy it would rapidly
move into the mobile states or another mobile electron
would join it, so that single-particle processes can be fold-
ed into the pair hopping processes in perturbation theory.
Thus we only need to consider either full or empty paired
sites for most of the theoretical discussion.

Direct hopping between the paired states may be possi-
ble and would affect some aspects of the following discus-
sion. It will be assumed that such hopping is weak and it
will be shown that the mobility of the single-particle
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states can be effective in leading to mobility of the paired
states. The mobile states may also have an attractive or
repulsive effective electron-electron interaction. The
effect of coupling to the paired band is diminished if the
mobile states are inherently paired. On the other hand, a
repulsive electron-electron interaction causes the up and
down electrons to hop onto paired sites from different
origins, and leads to competition of superconductivity
with antiferromagnetism [Fig. 4(c)]. Central points of the
theoretical development can be made assuming that the
electron-electron interaction is weak on the mobile states.

In order to describe the elements of two-component
theory, it is convenient first to consider the two types of
states without coupling: allowing the paired states to
possess the mobility which is to be gained by coupling to
the mobile states, and the mobile states to have the pair-
ing which is to be gained by coupling to the paired states.

Paired states. A lattice of paired states, when partially
filled, is a bosonic system like liquid He*. The boson den-
sity is changed by the Fermi energy u of the electrons.
They are charged. In the usual simple bosons, the Fermi

(a)

FIG. 2. (a) Complete Cu-O plane which gives rise to extend-
ed single-particle states in the two-component theory of super-
conductivity. The square indicates the cross section of the unit
cell of Fig. 1. (b) Incomplete Cu-O plane. The shaded circles
are locations of oxygen vacancies when compared with the full
Cu-O plane. There are two types of electronic states expected
to be associated with the incomplete plane. One is similar to the
complete Cu-O plane. The other is a set of localized states
identifiable with the oxygen vacancies. (c) Oxygen vacancy in
the Cu-O plane. The ordered lattice of oxygen vacancies
motivates the formalism of the two-component theory.

energy must lie below the lowest bosonic state. These,
however, are “hard-core” bosons, since two pairs cannot
sit on the same site. At half-filling of the paired states
there is pair particle-hole symmetry. Above half-filling
we can talk about the pair holes as bosons and below
half-filling the pairs as bosons. At T"=0 the pair density
is just a linear function of the Fermi energy. The
effective boson number behaves as ng(1—ng) where ny is
the fractional occupation of sites. The fractional filling
and boson number are shown as a function of y in Fig. 6.
In a bosonic system, boson condensation occurs below
a temperature related to the mobility*’ of the bosons, the
higher the mobility (or the lower the mass) the higher is
the condensation temperature. Superfluidity occurs
below the transition temperature. Bosonic states with a
definite momentum g are generated in the usual way:
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FIG. 3. Illustrations of the essential states for the two-

component theory. This diagram is not meant to exactly give
the electronic states of the 1:2:3:7 material but to capture the
two kinds of states: (1) localized states assumed to be negative-
U centers (see Fig. 5) shown by circles with paired up-down ar-
rows, and (2) single-particle extended states, illustrated by
separating spin-up from spin-down. Each horizontal set of
states schematically represents a plane in 1:2:3:7 material. The
localized states are associated with the oxygen vacancies in the
incomplete Cu-O plane, and the single-particle states with the
complete planes. One plane of single-particle states replaces the
two complete Cu-O planes in 1:2:3:7 material. The hopping of
the single-particle states ¢ is large. A small hopping (w) of elec-
trons from the paired states into the single-particle states, or
vice versa, is possible. (a) shows a conceptually simple way for
the planes to be connected to the paired states, while (b) shows
slightly more realistic connections where the difference is of im-
portance for the mobility of the pairs induced by hopping
through the single-particle states.
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FIG. 4. The building blocks for different ways of connecting
paired and single-particle states. In (a) each pair can hop only
to one single-particle site. In (b) each single-particle site is
shared between paired sites. The difference between (a) and (b)
affects the probability of a pair hopping into the single-particle
states and back onto the same site. This “self-hopping,” larger
in (a) than (b), is not helpful in generating superconductive
correlations and is manifest in the formalism through E. In
the case of a repulsive interaction in the single-particle states,
two electrons hopping onto a paired site will originate at
different single-particle sites as illustrated in (c). Antifer-
romagnetism in the Cu-O-based materials suggests that such a
repulsion should be assumed and thus (c) is the most realistic
coupling for these materials. While antiferromagnetic order
competes with superconductivity, the existence of this type of
hopping suggests that a repulsion on the single-particle states
does not fundamentally interfere with superconductivity. Most
of the basic concepts developed in this article are independent
of the nature of the couplings (a), (b), and (c).

(a) l
(b) l

FIG. 5. A negative-U center is the localized analog of Coop-
er pairing of extended states. It corresponds to an effective at-
traction between two localized electrons. The principle of a
negative-U center is illustrated by having two centers which
have a total of two electrons in their localized states. Electron-
electron repulsion would have the electrons sit on different sites
(b). However, structural relaxation would have them sit on the
same site (a). The dominance of the latter is called a negative-U
and corresponds to a localized pairing similar to the Cooper

pairing of extended states in BCS superconductivity. Local
pairing is common in defects in semiconductors.
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FIG. 6. Basic parameters in hard-core boson condensation
on a lattice of paired sites [Fig. 5(a)]—negative-U lattice theory.
The density of pairs on the lattice is given by ng and is a linear
function of the Fermi energy (u). E,, reflecting the boson mo-
bility, is the half width of the boson band. kT, (u)/E,=Mpu) is
shown in mean-field theory and varies slowly near half-filling,
which has the largest T, with A(y)=%. Below half-filling the
condensation can be thought of as condensation of pairs, above
half-filling as condensation of pair holes. The boson condensate
at T=01is (B§By)=Nny(1—np). In conventional negative-U
lattice theory there is a competing charge-density-wave order
because of nearest-neighbor repulsion. (Refs. 1 and 2). The
effect of this repulsion is not included here since the hard-core
boson model which results from the two-component theory does
not intrinsically have the nearest-neighbor repulsion.

where B,fr creates a pair on site i. Let E be the energy of
the zero-momentum boson, measured with respect to the
average boson energy E‘? = E, ). Then the condensation
temperature is given by kTy=A(u)E,. In mean-field
theory A(u) is plotted in Fig. 6. The highest T, is for
half-filling when kT.=E /2. Near half-filling T, is
weakly dependent on u.

Mobile states. The energy of mobile states as a func-
tion of crystal momentum is shown in Fig. 7(a). The high
mobility is directly related to the wide range of energies
(dispersion) as a function of momentum. The Fermi ener-
gy denotes the separation between filled states and empty
states. There are two types of excitations, electrons
above the Fermi energy and holes below the Fermi ener-
gy. In conventional BCS superconductivity, pairing is
self-consistently generated by a weak attractive scattering
potential between the mobile states, coupling electrons of
momentum k with electrons of momentum —k. The ele-
mentary excitations (bogoliubons) are hybrid excitations
of electrons at k with holes at —k, with unequal weight.
This has the effect of creating a gap in the spectrum
which can be most easily illustrated by measuring hole
excitations upwards in energy and generating the excita-
tion spectrum in Fig. 7(b).

Two components. The two-component theory is a coex-
istence of both kinds of states where the paired states by
themselves are essentially immobile and the single-
particle states are not pairing. Combining the two types
of states, mobile and paired, Fig. 8(a) shows what hap-
pens without any hybridization. The paired states are lo-
cated at a particular energy on this diagram because they
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have very little mobility. The energy at which the paired
states are shown is up =Ejy /2. Where Ej}, is the electron-
ic energy of a pair (boson). If we consider lowering the
Fermi energy from u, in Fig. 8(a), first the single-particle
states will be emptied. When the Fermi energy reaches
U, =pp the Fermi energy remains fixed (pinned) while the
paired sites are emptied two electrons at a time, until all
the paired sites are emptied. Then, moving the Fermi en-
ergy further continues to remove electrons from the
single-particle states (u3). Since the pairs are immobile
and the single-particle states have no pairing, this picture
would not be superconducting.

Once the two types of states are coupled this diagram
is no longer unique, since the effect of the coupling de-
pends on the position of the Fermi energy itself. If the
Fermi energy is far away from the two-particle transi-
tions, they are either almost completely empty or almost
completely filled. They will tend to have little effect on
the properties of the system, giving rise to a small pairing
field on the single-particle states which falls exponentially
with the distance of the Fermi energy from the paired-
state transition. The highest superconductive transition
occurs when the Fermi energy is at half-filling of the bo-
sonic states. The effect of the hybridization is shown in
Fig. 8(b) where the boson band is half-filled. A gap opens
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FIG. 7. (a) illustrates the mobile single-particle-state energy
as a function of momentum. The energy (vertical) width of the
band is proportional to the electron mobility. The Fermi energy
separates filled states from empty states. Excitations are elec-
tronlike above the Fermi energy and holelike below the Fermi
energy. The density of excitations near the Fermi energy is
essentially constant as illustrated to the right. In the usual BCS
superconductivity theory a weak attractive interaction gives rise
to a pairing between electrons. The excitations are now mixed
electrons and holes of momentum k and —k. To show the effect
of hybridization it is convenient to measure both hole and elec-
tron excitations upwards from the Fermi energy as shown in (b).
The hybridization results in an opening of a gap in the excita-
tion spectrum wherever the Fermi energy lies as shown by the
thick line, and to the right in the density of excitations near the
Fermi energy. In the figure the typical scale of the gap ~0.001
eV is greatly exaggerated compared to typical bandwidths ~1
eV.

up in the single-particle states, just as in BCS theory, ex-
cept that here the gap is controlled by the hybridization
w and the square root of boson condensate [which is Nny
(1—np) at T=0]. The bosons become mobile (disper-
sive) as reflected in the energy width of the boson band
E,. E,, which controls the condensation temperature, is
determined primarily by w, and the density of the single-
particle states near the Fermi energy.

As the temperature is increased from T =0, bosons
evaporate from the condensate and the fermionic gap A
decreases. The boson energy width E| is temperature
dependent, increasing slightly as A decreases, then de-
creasing again above T,. The boson excitations coexist
with fermionic excitations across the fermion gap. These
fermionic excitations are coupled to the bosons leading to
a hybridization of electrons with holes. Unlike BCS
theory the hybridization is not only between electrons at
k, with holes at — k but with all holes, specifically the de-
generate electron and hole at k& and k’ in Fig. 8(b). Be-
cause of this, at half-filling of the bosonic band long-lived
fermionic excitations are neutral hybrids of electrons and
holes. The onset of fermionic excitations is also
significantly broadened. Before the condensate evapo-
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FIG. 8. The two components are combined, a mobile single-
particle band as in Fig. 7(a) and a lattice of paired states with a
transition energy up =Ep /2. The mobile states are assumed to
have no intrinsic pairing and the paired states are assumed in-
trinsically immobile corresponding to no momentum depen-
dence of their energy. Without hybridization between the two
kinds of states there is no superconductivity (a). The occupa-
tion of the boson band depends on the Fermi energy. The effect
of a small hybridization is illustrated in (b) for the case of half-
filling of the boson band u=pup where the hybridization has its
most dramatic effect on the properties of the material. The abil-
ity of mobile electrons to spend time on the paired sites and the
paired electrons to spend time in the mobile states results in a
gap opening in the mobile-state spectrum similar to the BCS
theory [Fig. 7(b)], and the paired states gain mobility leading to
superconductivity. The size of the gap is controlled by the bo-
son (paired-state) condensate, T, is controlled by the mobility of
the bosons given by E, (Fig. 6). The density of excitations is il-
lustrated to the right in the vicinity of the Fermi energy.
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rates entirely, the boson condensate is able to scatter into
the fermionic excitations, and true supercurrents no
longer flow, leading to a resistive transition temperature
T,. Then the condensate evaporates at a higher tempera-
ture T.. Even when the condensate evaporates, because
of the continued existence of the pairs, the resistive “nor-
mal” state has properties very different from a normal
metal. At half-filling, current is carried by the charged 2e
bosons rather than the neutral fermions.

Another way of illustrating the two-component theory
is through Feynman diagrams showing particle processes.
Figs. 9(a)-9(i) show some of the important diagrams in
the two-component theory. The diagrams consist of
single-particle propagators and paired propagators and
are to be contrasted with the usual diagrams [Figs.
9(a’)-9(g’)] which describe fermion-boson interactions
when the boson is a phonon. The diagrams are based on
the vertex in Fig. 9(c) which is the conversion of two sin-
gle particles into a pair (hopping to a localized state), or
the conversion of a pair into two single particles (hopping
from localized to extended states). Diagram 9(d) indi-
cates the pairing of single particles. Diagram 9(e) indi-

cates the movement of the paired particles. Diagram 9(f)
J

indicates the process of an electron turning into a hole
plus a pair and back—the self-energy diagram of the
electron. The formal treatment of these diagrams does
not make use of the usual boson propagator because the
paired states are hard-core bosons. The diagrams
represent directly the second-order expansion of the per-
turbation series of the hybridization w. Nonperturbative
techniques, however, are to be used because all of these
diagrams are infinite at T'=0, because the two types of
states, mobile and paired, coexist at the same energy.
The single-particle diagram 9(f) continues to diverge in
the normal state, indicating the need to hybridize elec-
trons and holes, forming neutral excitations.

The response diagrams are indicated in Figs. 9(a)-9(),
where the particle-hole, paired particle-hole and pair-
dissociation (or -formation) diagrams are to be considered
as possible excitations. Neutrality of long-lived fermionic
excitations at half-filling is important in determining the
response.

B. Formalism

A Hamiltonian which embodies the features of the
two-component theory is (in real and momentum space)

H=73 t5C1T+8,aci,a'+EB S BB+ (3 w8CIT+5,TCiT+B,lBi+H'c' ]
05

i,8,0 i

=k2 €kl ot o+ Ep 3 BB, +
» O q

The mobile electrons are created by the fermion opera-
tors C,-To. The paired states are formed out of two single-
particle creation operators B,-Jr:b,-TTb,-Jyr i- The energy of
mobile states €, (Fig. 8) is related by Fourier transform to
the single-particle hopping t5. The pairs have no intrin-
sic hopping, just an energy Ep. The hopping between
paired and mobile bands is given by ws. The momentum
dependence of w, depends on the way pairs can hop onto
single-particle states as shown in Figs. 3 and 4. If the
single-particle states have a positive on site correlation
energy then up and down electrons will hop onto a paired
site from different original sites [Fig. 3(c)].

The formal treatment of the mixed fermion-boson sys-
tem relies upon variational, mean-field, or perturbation
treatment of the excitations so as to effectively decouple
the two systems.

Several of the basic features of the phenomenology of
this theory can be obtained using a BCS mean-field
theory approach at T =0. The variational wave function
is

=TTy +veef ret e DT +v;BD10) . 3)
k i

The first product is the usual BCS correlated wave func-
tion for the single-particle states with variables u; v,.
The second product is a similar product in real space

J

1 Fot
VJ—V—-EI( wqck,TC‘_k +q,qu+H.C.
9,

, w,=3 e . ()
5

which can be used to represent the ground state of the
negative-U lattice with variables u;,v;. v?=ny the pair
site occupancy, and u?=1—v2. Another way to
represent the mean-field ground state of the negative-U
lattice is as a symmetric sum of all possible arrangements
of pairs.

Above T =0, a Bogoliubov transformation of the
single-particle states enables the single-particle states to
be treated as a BCS superconductor with a gap. The
effect of this transformation is to effectively decouple the
two problems with a cross coupling only through the
g =0 term and the order parameters. The transformation
separates and treats exactly the dominant ¢ =0 term in
the coupling Hamiltonian. Since the boson condensate
(B}B,) is a macroscopic number B, and B are treated
as numbers. The dispersion E, of the bosonic excitations
can be treated by perturbation theory of the g0 terms.
The width of the bosonic band, E, can be obtained varia-
tionally by taking the derivative of the energy with
respect to the boson condensate. This solution process
leads to the above picture of elementary excitations—a
fermionic gap with bosonic states inside the gap. It also
provides expressions for the Bose condensate tempera-
ture, the fermionic gap, and the thermodynamic critical
field. The effective decoupled Hamiltonian is written in
the form

H—puN=3[(&~E)+E(vfovo+vhivi)1+(E; —EQB{B,+ 3 (E;+E,)B]B, ,
k

q+0

E.=[A(D)|?>+ (g, —p)?]'7?, Y k,o are bogoliubon operators ,  (4)
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The first term in the sum over k is the ground-state ener-
gy. The second term is the energy of excitation of the
single-particle states with the new dispersion E; (bogo-
liubons). The bosons now have a momentum-dependent
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FIG. 9. Feynman diagrams (a)—(i) illustrating basic particle
reactions of the two-component theory in contrast to the usual
diagrams (a’)—(g’) of electrons interacting with bosons such as
phonons or photons. A single particle (propagator) is illustrated
by a single line with an arrow (a) and a pair by a double line
with an arrow (b), the shaded line (b’) is for a phonon or photon.
Response diagrams for interaction with external fields have
photon propagators (g)—(i) and (g'). The difference between
these two sets of diagrams is essentially contained in the com-
parison of diagrams (c) and (c¢’), which shows that in the usual
case an interaction, an emission or absorption of a boson con-
serves the electron. In the two-component theory two electrons
convert into a pair, or are created by the decay of a pair. In (c')
the ¢ =0 boson state has no meaning, while in (c) it is the essen-
tial boson condensate. As explained in the text, it is useful to
consider diagrams (d)-(f). The existence of fermionic states and
bosonic states at the same energy, however, guarantees that
these diagrams are divergent, so an essential part of the analysis
relies on treating nonperturbatively the original reaction dia-
gram (c).

<>

_EB~Ek_Eq—k

q° §k=8k—‘u, EB:EB_Q.'LL (5)

Ienergy E,. The ¢ =0 term is buried in the ground-state
energy term. E;’ is adjusted so that the average of E is
zero. This is the action of a pair back onto itself which
shifts Ez and is subtracted out from the g dependence of
E, and the condensation energy. Expressions for E, are
discussed below in the section on the coherence length.
For |E; —2u| greater than 2A the perturbation theory
expression for E, diverges in the limit g —O0.

The solution of the decoupled Hamiltonian follows
from the finite-temperature behavior of the now disper-
sive boson system and the direct dependence of the fer-
mionic gap on the boson condensate as discussed below
(Sec. IIT A). Mean-field theory may be used for treating
much of the finite-temperature behavior of the hard-core
boson problem because the hopping through the single-
particle states is further than nearest neighbor. This hop-
ping translates into the coupling in the equivalent spin
x -y model. In the standard treatment of the negative-U
lattice problem, in addition to boson hopping there is a
nearest-neighbor repulsion. This does not happen in the
two-component theory because the hopping is indirect.
For this reason, the present Hamiltonian is equivalent to
an x -y model rather than the usual Heisenberg model.!2

The effect of the g0 terms on the single-particle
states has thus far been neglected. The primary effect is
to hyridize electronlike bogoliubons with holelike bogo-
liubons at all energies and dramatically broaden the onset
of the fermionic gap. The hybridization can be seen in
the direct solution of small model problems. In the sec-
tion on normal-state properties, a mean-field—random-
phase approximation (RPA) solution of the fermionic ele-
mentary excitations at half-filling is discussed. The treat-
ment is supported by commutators of the bosonic opera-
tors which have a zero expectation value implying that
they may be treated in mean-field theory as number
operators. A more detailed discussion of the RPA solu-
tion will be given elsewhere; it leads to neutral fermionic
excitations and the broadening of the fermionic gap onset
in the superconducting state.

III. PHENOMENOLOGY

A. The superconducting transition temperature
and the fermionic gap: 7.,A

For comparison, the mean-field solution process for
BCS theory and the two-component theory are contrast-
ed pictorially in Figs. 10 and 11.

BCS theory. The electron-phonon interaction leads to
a self-consistent pairing of electrons (Fig. 10) and a gap in
the fermionic spectrum below T,.. Both T, and A(T) are
obtained from the self-consistent gap equation (shown for
comparison with the two-component theory equations):
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(b)
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FIG. 10. Pictorial illustration of the conventional mean-field
solution of BCS theory. The effect of electrons interacting
through phonons (a) is assumed to collapse to an effective at-
tractive scattering (b). The scattering is simplified by averaging
separately incoming electrons and outgoing electrons illustrated
by the shaded square in (c) which results in the diagrams of (d)
which involve electron pairs annihilating or being created, or
can be thought of as electrons converting into holes or into elec-
trons. The average is the order parameter—the excitation spec-
trum gap A. A is zero in the normal state and nonzero in the su-
perconducting state. Since these diagrams involve only one-
particle processes they can be solved exactly by linear superpo-
sition of the electron and hole states (Bogoliubov transforma-
tion), creating a new single-particle states (bogoliuibons). The
double shaded square in (d) indicates the need to subtract out
the “overcounting” of the original diagram (b) by the two dia-
grams (d).

(BCS) A=L 5 u,u,
N k

1 V A tanh(BE,)
AN (A% (e —p))'?

fiw
=AV fo ®de D (¢)tanh(BE,) /E, ,
E.=(e2+AH)V2 . (6)

V is the effective electron-electron attraction which is cut
off at the Debye frequency #wp. D (g) is the density of
electronic states for each spin. E, is the new excitation
energy with the gap A. A can be canceled from both
sides leaving the only dependence on A in the integrand.
Evaluating the expression at 7'=0 gives an expression for
A(T =0), and evaluating the same expression for T=T,
where A becomes zero gives an expression for 7,.. The
two expressions (Table I) are related by a constant giving
the relationship 2A=3.5kT,.

Negative-U lattice theory. As described above (Fig. 6),

FIG. 11. Pictorial illustration of the mean-field solution of
the two-component theory. Two types of electronic states exist
in the material, one of which has a strong electron-phonon cou-
pling (a) leading to immobile pairs. A small probability of con-
version of ¢ to b (or direct pair exchange) leads to the diagrams
of (b). These diagrams are quite similar to the diagrams of BCS
mean-field theory Fig. 10(d). The cases where no momentum is
transferred to the paired states are exactly analogous to BCS
theory diagrams in the condensed state and are treated similar-
ly. Diagrams where momentum is transferred from or to the
paired states are used to obtain the boson mobility, and a more
complete hybridization of electrons and holes than exists in
BCS theory. The absence of the overcounting diagram leads to
a substantial difference in the condensation energy of the two
theories.

the condensation transition for a negative-U lattice is
controlled by the width of the boson band (mobility of
the pairs) E:

(negative-U lattice) kT, =AM u)E, , (7)

where A(u) is the Fermi-energy dependence shown in
mean-field theory in Fig. 6. Since A will be used to
denote the mean-field result, the notation A’ will be used
for the negative-U lattice when a precise value is needed
(Table I).

Two-component theory. The mean-field two-component
theory is quite similar to the BCS theory but the expres-
sions are used quite differently. The gap equation is no
longer directly self consistent. There are two cross-
related “‘gap” equations for the fermionic gap A and for
the boson order parameter A’, which is not a gap (it is a
local field). Self consistency is in two steps from fermions
to bosons to fermions. Similar to BCS theory A is isotro-
pic (s-wave superconductivity). The mean-field analysis
leads to the following expressions at 7 =0:

w w A
A=A, N; uv; 2 [A?+(Ep/2—p)?] 2’
(8)

w 1 A

w
A=A = — = = _ Y
TN Ty N2 AT (o, ]

. w
=—A [ deD.(e)/E, .

TABLE I. Comparison of basic superconducting parameters for BCS theory of weakly paired mobile
states, negative-U lattice theory of strong-pairing low-mobility states, and the two-component theory.
At half-filling of the boson band A=0.5, A’=0.3, 3,8=1, and 8 =1.6. Expressions for A,3,5 as a func-

tion of u and explanations are given in the text.

BCS Negative-U lattice Two-component
kT, 1.13%wpe ~1/PWV A()E, AMp)w?D, (pu)In(1.13¢ /K T,)
A 2Awpe " /PWY Blpw/2
QH? /87 QoD (1)A?/2 S (u)kT, /2 S(u)kT,. /2
2A/kT, 3.5 4B/[Aw?D, (1)In(1.13¢ /kT,)]
3 fivg /A a a <§{<tvg/mA (Fig. 14)
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w is the zero-momentum hybridization of the paired and
single-particle states w,—,. The energy cutoff of A and
the integral is the full single-particle band rather than
fio, as in BCS theory. A plot of the magnitude*® of A,
A’, and E; at T=0 as a function of pu—pup is given in
Fig. 12 for the case of a constant single-particle density of
states D (g) with parameters estimated for YBa,Cu;0; as
given below. The assumption of a constant single-
particle density of states D_(¢€) is not as good for real sys-
tems as the same assumption for BCS theory because the
integration cutoff is the full bandwidth.

For T#0 a mean-field decoupling of the two com-
ponents with the order parameters serving as the cou-
pling leads to the expressions

|A(T)[>*=w?*(B{B,) /N ,
, . w
A(T)—_<-N§ck,lc—k,T> (9)
_ w
=— A T) [ de D, (e)tanh(BE,) /E, .

The fermion gap size A is explicitly given by the boson
condensate. These equations give the mean fermionic
gap because the coupling of the single-particle states to
the g0 bosons gives a range of values of the fermionic
gap, leading to lower and higher features in the excitation
spectrum.

Unlike BCS theory, where A and T, are determined by
the same equation, 7T, is determined by the energy width
of the boson band like a bosonic system, generated, how-
ever, by the hopping of bosons through the single-particle

0.1 0.2 0.3 0.4
[Eg-2p | —

FIG. 12. Solution of the zero-temperature mean-field theory
of the two-component theory for a constant single-particle den-
sity of states showing the two order parameters A (the mean fer-
mionic gap) and A’ and the superfluid dispersion width E,
(without the shift E,?) as a function of |E, /2;;;1 (The distance
of the Fermi energy from the uncoupled two-particle transition
energy). Units of both axis are the coupling strength w. A and
A’ decay exponentially a distance of A’ away from half-filling.
T, is determined from E, and Fig. 6. T, is large only for a re-
gion of Fermi energies of order E,, which is quite small. Exper-
imentally, this does not require high precision to match since
the Fermi energy is “pinned”—to shift the Fermi energy from
half-filling a distance E, involves adding or subtracting one
electron per unit cell.

states. The width of the boson band is determined varia-
tionally, 8¢ H ) /8{B}B, ), below T,. Near and above T,
perturbation theory also gives the same result [the
electron-electron bubble Fig. 9(e)]:

Eo(p)=wA'(u)/A(p)—EJ=w’D (w)n[2t /A(n)]—EL, T=0,

w’D (wn[2t /A(T)]—EL, A(T)>>kT
w?D, (u)n(1.13¢ /kT)—

Eo(T)=wA(T)/A(T)—E.=

The latter expressions assume an approximately constant
density of states of width 2¢. The decoupled equations
imply T, is given by

kT, (u)=Mup)Eq(u)

=Mup){w?D (win[2t /kT,(u)]—EQ} ,
(11
Mp)=L1(1—2nz)/tanh~(1—2ny),

(1=2ng)~(u—wup)2/Eq(u) .

Alu) is given in mean-field theory (Fig. 6) which can be
used because of the further than nearest-neighbor hop-
ping. Because E, is temperature dependent, the expres-
sion is self-consistent with a weak logarithmic depen-
dence on T, itself. For half-filling of the boson band the
expressions for A and T, simplify [A(x)=0.5] to

(10)

E), AT)<<kT .

[
A=w/2
kT, =(1/2)[w’D.(w)n(2t /kT,)—E?]

Note that 2A /kT, is not universal.

A numerical comparison of these predictions can be
made with experiments on 1:2:3:7 material using rough
simplifying assumptions. The boson band is assumed to
be at half-filling. E,? is neglected. The native hopping of
the paired band and the electron-electron interaction in
the single-particle band are assumed unimportant. Then
the predictions can be compared by making use of
single-particle theoretical calculations of the bandwidth
and density of states at the Fermi energy (Table II).*?
The value used for D (u) involved subtracting out the
contribution to D (u) of the localized band, which are the
paired states in this theory. Only one parameter remains
unknown—w. w is set using the experimental value for
T,=92 K. The value of w that is obtained is 0.042 eV,

(12)
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TABLE II. Model parameters from electron structure calcu-
lations (Ref. 31) and (T, ) from experiment, for use in compar-
ison of theory with experiment.

Model parameters for YBa,Cu;0; (1:2:3)

D(u) 2.75 electrons/eV cell spin
D (u) 1.7 electrons/eV cell spin
2t 3 eV
T, 92 K

which is small, consistent with the assumptions of the
theory. This value, and therefore of A is quite sensitive
to the value used for D (u). The measurement of A (or
2A/kT,) then provides an experimental test of the
theory. The theoretically predicted value of 2A/kT, is
5.3. This value is somewhat larger than the BCS value
3.5, however, in the two-component theory there is no
guarantee that this number should be near any particular
value. Experimentally,*” =5 values from different types
of measurements have given a wide range of values from
0 to 8 (even no gap has been reported). Within the con-
text of the simplifying assumptions, since the value pre-
dicted by two-component theory is within reasonable
range of the experimental values, this is encouraging.
Moreover, within the two-component theory it is possi-
ble to suggest why different experiments give different
values of the gap. The existence of two different com-
ponents suggests a more complicated response of the ma-
terial particularly since E,; and A are of the same order.
The spreading of the onset of fermionic excitations fur-
ther complicates the excitation spectrum. At bosonic
half-filling the neutrality of the fermionic excitations im-
plies that vanishing or near-vanishing matrix elements
affect some response functions. Some evidence for a split-
ting of gap features exists from tunneling data.’>33 It is
significant to note that data on infrared (ir)
reflectivity*>* has been interpreted in two different ways
to yield the values 3.5 and 8. These two interpretations
look specifically for signatures of the lowest gap and of
the highest gap. This is consistent with the development
of lower and upper fermionic gaps through single-particle
hybridization from the theoretical mean gap 5.3. It also
contradicts the usual assumptions that either the largest
or the smallest gap size measured should be considered
most definitive. Above T, the hybridization of electrons
and holes leads to a region in the vicinity of the Fermi en-
ergy where the occupation of electronic states is different
from the conventional occupation. Experiments®! which
observe a persistence of gaplike signatures into the nor-
mal state are likely to be sensitive to matrix elements
affected by this change in occupation. A qualitative
difference in behavior between different samples can also
be understood in this context since in samples not at
half-filling the fermions are charged. Systematic varia-
tions in A and T, also occur and these variations are dis-
cussed in more detail in the companion article discussing
more direct application to Cu-O-based superconductors.
In the two-component theory, within the fermionic gap

A there are present bosonic excitations which should
affect a variety of response functions. A significant body
of experimental evidence exists for the presence of excita-
tions within the measured gap.”>>* Direct observation of
boson-pair excitations should be possible. The boson
dispersion (Fig. 13) suggests a dominance of large
momentum excitations or phononlike absorption in in-
frared and Raman spectroscopies. The half width of the
boson band with respect to its average energy is
E,=2kT,, which for 1:2:3:7 material is 0.015 eV or 120
cm™!. Since boson pairs must be excited, the expected
excitation peaks (more than one for a noncubic material)
are around 2E,=240 cm ! and may be as high as 4E,
which coincides with a region of large phononlike ab-
sorption peaks with anomalous temperature dependences
in experiment.4’>%0

Subtleties occur in the vicinity of T,.. Because the fer-
mionic gap is closing, there may occur mixing (scattering)
of the boson condensate below the temperature of boson
condensation T,. The scattering leads to resistance.’
Thus the superconducting-to-normal transition T, occurs
below the thermodynamic transition 7, when the con-
densate disappears. A breakdown of perturbation theory
suggests T, is determined by |ug —u|=2|A(T})|, imply-
ing that T, — T, increases away from bosonic half-filling.
The fermionic gap broadening (which increases near T,)
implies that scattering of the condensate before evapora-
tion occurs even when |uz —u|=0. The amount of the
preemption would be expected to be small because the
gap decreases rapidly only quite near to T,. Anything
which couples to the single-particle state energies such as
disorder or a magnetic field further reduces 7T, broaden-
ing the resistive transition.

Experimentally, a broadening in the superconductive-
to-resistive transitions is observed even in the best materi-
als. The original explanation for this effect was sample
inhomogeneity. It is tempting to conclude that this
broadening is due in part to the difference between T,
which denotes the onset of resistance due to condensate

7S

FIG. 13. Momentum dependence of the boson energy at
T =0 due to the coupling between paired and mobile states as
obtained from perturbation theory for a constant density of sin-
gle particle states. Without any gap in the single-particle-state
spectrum there is a weak logarithmic divergence at ¢ =0. An
approximate (BCS) form of the cutoff was used to generate this
figure. The approximate coherence length is indicated.
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scattering, and T,, which denotes the disappearance of
the superfluid. The broadening changes with doping with
the narrowest transition at the highest T,,°® and sys-
tematic broadening occurs in a magnetic field,””%® con-
sistent with this interpretation.

The s-wave nature of the superconductivity is con-
sistent with experiment.>> %

B. The critical field H,

The thermodynamic critical field H, is the magnetic
field which is capable of turning off the superconductivi-
ty. This corresponds to having an energy density HZ2 /8
equal to the condensation energy AF.

BCS theory. Self-consistency leads to a first-order can-
cellation in the condensation energy as can be seen in the
overcounting correction in Fig. 10(d). It then becomes
second order in the gap or transition temperature.

(BCS) H2/87=D(u)A?/2=1.56D (u)(kT,)* . (13)

Negative-U lattice theory. The condensation energy has
no cancellation and is (per unit cell )

(negative-U lattice) (H?/8m)Qo=kT,ng(1—ng)/A ,

(14)
(negative-U lattice at half-filling) ~0.82kT, .

For a negative-U lattice theory only nearest-neighbor
hopping can be allowed because the hopping is
suppressed exponentially. Thus, for the latter expression
at half-filling, A has been taken for nearest-neighbor in-
teractions on a cubic lattice where fluctuations reduce A
from the mean-field value 0.5 to 0.3 (=1").%!

Two-component theory. Since the self-consistency is
not direct, there is some cancellation, but the condensa-
tion energy of preformed pairs remains first order in kT,.
The absence of cancellation can be seen in the constant
term of the Hamiltonian in Eq. (2), and in the diagrams
of Fig. 11(b). Assuming that the H, has the effect of re-
moving all correlations, AF is the difference between the
ground-state energy with the coupling w and without w
(except for the self-action E;’, which is not sensitive to
turning on the field) at T =0.

At half-filling the condensation energy per unit cell is
Q,H?2/8m=E,/4. This then gives a particularly simple
relationship between the critical field and the critical
temperature:

QH?/87m=E,/4=kT,/4A~kT,/2 , (15)

Since this expression is relatively insensitive to details of
the theory but is significantly different from the BCS phe-
nomenology, it provides a good opportunity for compar-
isons of theory and experiment.

At half-filling there is no Fermi-energy shift when
turning off w. Away from half-filling there is a Fermi-
energy shift. Assuming the boson band is at least partial-
ly filled, then the Fermi energy with w =0 is just ug. If
the boson band is less than half-filled, as w is turned on

the Fermi energy shifts down, transferring fermions to
bosons, increasing slightly the boson condensate. The op-
posite occurs if the boson band is more than half-filled
and the pair holes are the active species:

H?/87Q,=(H),—{(H), -,

=E(T=0)A"/w)*+(u—ug)*D (1) . (16)

A comparison can be made between BCS theory, two-
component theory, and the negative-U lattice theory on
the value of the energy density of the thermodynamic
field. There are difficulties in obtaining an experimental
value for H,. In a small coherence length (type-II) super-
conductor obtaining H, involves the geometric mean of
two critical fields H,,(T =0) for flux penetration, and
H_,(T=0) for the disappearance of superconductivity,
including the effects of asymmetry, and an uncertain ex-
trapolation of H,,(T) to T =0, since H_ (T =0) is too
large to measure directly. Furthermore, the observed
broadening of the resistive transition 7,-T, affects the
determination of H,,, and the nature of the short-range
correlation function (Sec. III C) affects the interpretation
of H,,. This limits the conclusions which can be extract-
ed until more systematic comparisons can be made. The
energy density per unit cell for the three theories are
given in Table III. A range of experimental results is in-
dicated.*®>? It has been generally stated that values of
H_, measured in this family of materials are much larger
than would be expected from BCS theory, consistent with
the qualitative predictions of two-component theory.
Since this is a qualitative difference between the two-
component theory and any particle exchange theories
(phonon or other), more comparisons with experiment
should prove useful.

C. The coherence length £

The coherence length is the distance over which super-
conductivity (the gap A) recovers if suppressed locally or
at a boundary, at T =0.

BCS theory. The recovery of superconductivity follows
essentially a simple exponential form with decay constant

(BCS) E=1vp /A . (17)

Negative-U lattice theory. As is expected from a
nearest-neighbor interaction Hamiltonian the recovery
distance is just a nearest-neighbor distance in the
negative-U lattice.

Two-component theory. In two-component theory it is
possible to ask two questions, one related to the behavior
of superconductivity at a boundary between a two-
component system and a normal metal where supercon-
ductivity decays because of lack of locally paired states
beyond the boundary. The second is the recovery of su-
perconductivity if it is suppressed within the two-
component system. The former should display a hybrid
behavior where the normal metal, superconducting by a
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TABLE III. Comparison of theoretical and experimental values for 1:2:3 material using a number of
simplifying assumptions (see text) and Table II. The one unknown parameter for two-component
theory w is fit to T, yielding the value w=~0.042 eV. The coherence lengths are given in units of the in
plane lattice constant a and the interlayer separation d,, a =d,=3.9 A. The condensation energy per

unit cell (Q,H?2/87) is given in units of temperature.

Negative-U Two-component
BCS lattice theory Experiment
2A/kT, 3.5 5.3 2.5-8
QH?/87/k 3K 76 K 46 K (9-36 K)?
Eab 25a la® (Fig. 14) 5-9a
£, ? 3d,° 1d, 0.75-1.8d,

#The parentheses around experimental values for the condensation energy indicates large uncertainty in

its extraction from experimental results (see text).

®The negative-U lattice coherence assumes a nearest-neighbor interaction negative-U lattice coincident

with the oxygen vacancies.

proximity effect, displays a BCS behavior with the BCS
decay constant. Decay within the two-component system
involves an interplay between the two kinds of states.
Within the two-component system, local pairing is
determined by the paired states. The coherence and the
order parameter are determined by the hopping of pairs
through the single-particle states. This hopping describes
the distance over which superconductivity is affected if it
is suppressed locally. It is important to recognize, unlike
a simple negative-U lattice theory, the coherence length
is larger than the nearest-neighbor distance because the
hopping proceeds through extended single-particle states,
and is not exponentially suppressed on the negative-U
states. The hopping probability T’ is related by Fourier
transform to the dispersion E, of the bosonic states (Fig.
13). The width of the dip in the dispersion is reciprocal
to the coherence length £. In perturbation theory, at
T =0 the dispersion E, is given at bosonic half-filling by

1
EctE, ¢

€ —k gk
1+ =
Eq*k Ek

>

_ 2
Eq_*]wq| %

. (18)
Tx=3e ®E, .
q

The coherence decay function is obtained by correcting
Ty for volume factors by J(R)~R?*Ty. The behavior of
this expression is illustrated in Fig. 14. Ty decays as
R 3s0J(R) decays as a power law R ~!, and is cut off at
a distance which, up to a numerical factor, is the BCS
coherence length #iv; /mA. Without the cutoff, integrat-
ing over Ty to give E,; would be logarithmically diver-
gent. This logarithm is the same one which appears in
the expressions for E, given above [Eq. (10)] where the
logarithmic divergence is cutoff by A or 7. Because of
the power-law decay, the coherence length is lower than
the BCS value, but larger than nearest neighbor. The
power-law decay should be manifest in experiment in a
“softness” of the coherence length and the experimental
values should be somewhat dependent on the particular
measurement made.

In 1:2:3:7 material there is a basic difference between

the coupling in the x -y direction and the z direction. In
the z direction g, are relatively constant (the fermions are
assumed to hop weakly across the insulating layers). The
g dependence of E, arises from the pair hopping w, (Fig.
3) and is therefore expected to have a coherence length
comparable to the distance between the paired states and
the complete Cu-O planes (Fig. 1). This is the interplanar
separation d,=3.9 A. In the x -y direction, coherence is
controlled by the hopping of pairs as described above; the
decay is given by Fig. 14. Experimental values®>~%* for
the coherence length in the z direction are in the range
3-7 A and in the x -y plane are in the range 16-34 A cor-
responding to 5-9 lattice constants as shown in Fig. 14.
These results are in essential agreement with the theoreti-
cal predictions.

0.8 +
0.6 +
04 ¢

0.2 +

5 10

15 T 20
€ Bcs

FIG. 14. The hopping range of the bosons gives the coher-
ence length behavior of the superconductivity. The BCS ex-
ponential range function J (R) with a coherence length based on
material parameters is shown along with the power law (R ~!)
decay of the two-component theory. The pure power-law decay
(dashed line) is cut off in an approximate way using the ex-
ponential BCS range function. Experimental values for the
coherence length in 1:2:3:7 material are indicated in the shaded
region. The units of the horizontal axis are lattice constants
a=3.9 A. The BCS decay length indicated differs from that in
Table III since here the form of the decay uses the length ap-
propriate to the gap of two-component theory.
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D. Long-wavelength collective excitations

An important qualitative distinction exists in the long-
wavelength collective modes between BCS theory,
negative-U lattice theory, and their combination in a
two-component theory. The properties of long-
wavelength excitations in these theories are dealt with
separately from the usual model Hamiltonians because
these Hamiltonians do not contain the long-range
Coulomb potential.

BCS theory. The long-wave collective high-frequency
plasmon (charge-density wave) excitations in the BCS
theory are high-frequency modes essentially the same as
in a normal metal.

Negative-U lattice. The long-wave g —0 bosonic exci-
tations in the negative-U lattice are themselves the
charge-density waves. This is the plasmon whose excita-
tion energy is very large. Thus the long-range Coulomb
interaction should play an important role in a full treat-
ment of the negative-U lattice theory; this has been large-
ly untreated.

Two-component theory. The long-wavelength bosonic
excitations in the two-component theory are coupled
charge-density waves, where the charge oscillates be-
tween the single-particle and paired states. This corre-
sponds to a screened plasmon of both the negative-U lat-
tice and the mobile states. Since long-range displace-
ments of charge are not involved, the long-range
Coulomb potential in the Hamiltonian and the plasma
frequency do not affect the low-energy modes. Since the
dispersion is controlled by the mobile states, the long-
wavelength boson essentially corresponds to a zero-sound
wave in a neutral (screened) Fermi gas.%> The zero sound
in a neutral Fermi system is the analog of the plasmon in
a charged Fermi system, and has a linear dispersion at
q—0.

The other collective long-wave excitation, the acoustic
phonon (sound waves), couples directly to the electronic
long-wave boson excitation. The primary reason for this
coupling is that E typically varies linearly with pressure
through the pressure dependence of the local structure in
the negative-U center. A second reason is a change in w
with pressure. Thus hydrostatic pressure should affect
superconductivity, and bulk modulii and sound waves
should be affected by boson condensation.

A linear change in E; with pressure implies that pres-
sure affects the bosonic occupation similar to doping.
The boson occupation, as has been discussed, affects all of
the essential properties of superconductivity in a sys-
tematic way. The most observable effects are on T,.
Consider the case of a linear raising of E; with pressure.
If the Fermi energy is above boson half-filling, pressure
increases the bosonic filling, raising T... If the Fermi en-
ergy is at boson half-filling very little effect should be ob-
served, while if the Fermi energy is below boson half-
filling T, is lowered. The effect of changes in w with
pressure is a systematic shift in these properties so that
the turning point from raising T, to lowering T, is shift-
ed slightly from boson half-filling.

Evidence in support of these predictions exists. Exper-
imental observations support a pressure sensitivity which

varies with doping.®*~ % Large anomalies in bulk moduli,
sound waves, and internal friction have been found at the
superconductive transition.®® 72

E. The uncondensed “normal” state

The uncondensed state of the two-component theory
does not behave as a normal metal because of the pres-
ence of paired states. Local pairing and its influence on
the single-particle states remain even after evaporation of
the condensate. The long-range coherence disappears, lo-
cal coherence imposed by the large paring energy
remains. The essential physical process is the local tran-
sition from single-particle to paired states. Rather than a
normal system the behavior is of an evaporated soup of
the elementary excitations of the superconducting state.
Direct considerations suggest that the transport is dom-
inated by charged bosons (paired states) while the fer-
mionic excitations are neutral at half-filling of the boson
band.

The importance of the coupling is revealed in the
divergence of the single-particle self-energy diagram in
Fig. 9(f). This diagram represents the process of an elec-
tron turning into a hole plus a pair. At half-filling of the
boson band, these two states have the same energy. The
coupling of two degenerate states, electron and hole, by
the Hamiltonian implies that these states hybridize, with
equal weight. This is due to the Hamiltonian term

Wi +k’clj,TcII’, Brik s (19)

which converts a hole at k' into an electron at k, where k
and k' are related to each other as in Fig. 8(b). The
change in boson number during this process is accounted
for in the coherent ground state which does not conserve
boson number at k +k’. In mean field at half-filling the
boson operators may be treated as numbers because the
expectation value of their commutators are zero:

([B,,B}:1)=(8,,—2nz(qg—q'))=0
(at half-filling) , (20)

where npz(q —q’) is the pair Fourier density operator.
More generally, the 70 terms in the Hamiltonian cou-
ple all single-particle states, both electrons and holes.
Wave packets which can couple to the local order (coher-
ence) should be generated and they, in turn, induce local
correlation (hopping) in the bosonic system.

The hybrid electron-hole fermion elementary excita-
tions are neutral at half-filling for all electron energies.
In contrast, in BCS theory electrons and holes hybridize
below T, but they have equal weight only for the elec-
trons and holes originally at the Fermi energy. Unlike
the fermion diagram, the bosonic diagram is convergent
with the logarithmic divergence cut off by k7. The nor-
mal state is thus seen to be composed of neutral fermion
and charged boson elementary excitations.

The neutrality of the fermionic excitations is not ex-
clusive to the normal state, but extends throughout the
superconducting state. The hybridization is stronger at
higher temperatures because the bosonic states are most-
ly responsible for hybridizing k and —k in the conden-
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sate. At T =0 the hybridization is thus likely to be more
easily broken.

Neutral fermion excitations and charged boson excita-
tions lead to dramatic transport properties of the normal
state. Since fermions are neutral, charged bosons carry
current in the uncondensed state. Thus while fermions
originally provide the mobility, the bosons carry the
current once hybridization has been made. Without a
complete solution of the normal state, transport is tenta-
tively extracted from the boson properties as described by
Fig. 9(d). The real part of this propagator has deter-
mined T,. The imaginary part is the decay of a pair [Fig.
9(c)] which determines the boson lifetime. The g aver-
aged imaginary part of the propagator is shown in Fig. 15
as a function of energy measured from the Fermi energy.
Away from the Fermi energy the decay increases linearly
with energy. For an approximately constant single-
particle density of states,

(Im25(E,q)),=2mw>D2E coth[BE /2] , 21

where E is measured with respect to 2u and B=(kT) .
The reason for the linear dependence of the decay rate of
the bosons into two single-particle states is illustrated in
Fig. 16. Considering the decay of a boson at an energy E,
it can decay into two electrons of energy E /2 or one of
the electrons can have less energy and the other one
more. Ultimately, the largest energy difference between
the two electrons is just E since the low-energy electron
cannot have an energy lower than the Fermi energy
below which the electronic states are filled. The number
of possible ways to decay is then just proportional to the
energy E giving the dependence of Fig. 15. The decay

Boson Decay Rate

E/2 (eV)
~0.05 0.05 0.1 0.15

-0.15 -0.1

FIG. 15. The decay rate (inverse lifetime) of bosonic pairs in
the uncondensed state at an energy E away from the Fermi en-
ergy. The function plotted is g (x) =x coth(x /kT) where the in-
verse lifetime (Im=,(E,q) ), =4mw’>D}g (E /2). The axes are in
electron volts. In YBa,Cu;0, the prefactor has the estimated
dimensionless value 0.06. Four curves are plotted for different
temperatures (from lower to higher) 100, 200, 300, and 400 K.
The decay rate at the Fermi energy is proportional to the tem-
perature; this leads to a linear resistivity (Fig. 17). Away from
the Fermi energy the decay rate is proportional to |E|. This
leads to the unusual behavior of the tunneling conductance (Fig.
19). The shape of the boson decay rate is due to phase space
considerations illustrated in Fig. 16.

rate of the boson at the Fermi energy (E =0) is propor-
tional to k7. This is determined by the density of avail-
able fermion states at the Fermi energy, which is given by
the range of energies (kT') where electronic states are par-
tially occupied.

This derivation of the boson lifetime does not include
some of the subtleties of this many-body problem. Since
it is essentially based on phase space considerations the
result is likely to continue to hold for more complete
treatments.

Resistance. The Drude conductivity is given by

o=(ne*/m)r, (22)

where n is the density, e is the charge, m is the mass, and
7 is the lifetime of the charged particle. The lifetime
refers to the scattering of a single particle. In this case
the lifetime is determined by a decay of a paired state.
The temperature dependence of this expression can be
obtained assuming that n and m are independent of tem-
perature, n because the pair density is determined by u
and is pinned by the large density of paired states, and m
because m is controlled by the boson hopping range
which is (aside from at most logarithmic factors) indepen-
dent of temperature. 7 is inversely proportional to the
decay rate, which at the Fermi energy is
(Im2;(0,9)),=47w’>D2kT. Thus the resistance
R ~1/0 is proportional to kT. This is illustrated in Fig.
17. Such a linear resistance has been measured in several
of the high-T, superconductors and is considered by
many to be a signature of this form of superconductivity.
Substantially away from half-filling, it is to be expected
that a usual fermionic dependence of the resistance
should be observed.
The frequency-dependent resistance

ry>

FIG. 16. Illustration of the processes by which a bosonic pair
with energy E with respect to the Fermi energy can decay into
two single-particle states. The pair (coming from the left)
shown at the energy E /2 per electron can decay into two elec-
trons at E /2, or one electron can have less and the other more
energy. The limit in the difference between the energy of the
electrons E is established by the Fermi energy below which the
electronic states are filled. The number of ways the decay is
possible (the phase space) is thus proportional to E giving rise to
Fig. 15.
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R(T)

Te T

FIG. 17. Schematic illustration of the linear resistance in the
uncondensed state obtained from the two-component theory.
Such curves are believed by many to be characteristic of the
high-T, family of superconductors. Note that the two-
component theory suggests that sufficiently away from half-
filling (away from optimal superconductivity) the curve will be
substantially different.

o(w)=0/(1+iwr)=(ne’/m)r/[1+(wT)*]

can also be obtained from these results using the
frequency-dependent lifetime

(@)~ 1/47wD2ocoth[fhw /2],

which decreases as a function of w, increasing the high-
frequency tail of o(w). Such a frequency dependence has
been suggested experimentally.”

Evidence for the importance of a narrow band in trans-
port has been derived from a range of experimental re-
sults.”* Sum rules of the conductivity which give esti-
mates of n/m also give values much smaller than would
be expected from the single-particle states.”> This is con-
sistent with the picture of neutral fermions and narrow-
band charged boson transport.

Tunneling. In a tunneling process between a BCS su-
perconductor and a metal through an insulating layer,
the tunneling is controlled by the density of states of the
superconductor. Above T, this is constant, below T, a
gap opens up and the tunneling at 7 =0 is zero up to the
gap width.

The tunneling current of electrons from a two-
component material into a normal metal involves charged
pairs of the two-component material decaying into the
single-particle states of the normal metal. Thus the tun-
neling involves directly the decay process of Fig. 9(c). In
order to understand how this decay process applies, the
following discussion indicates that the properties of the
interface itself enter. In Fig. 18 the interface is shown
schematically for a narrow insulating layer. The applied
voltage (¥) which causes the tunneling current to flow
means that the Fermi energy is lower in the metal than in
the two-component material. Since the Fermi energy
bends at the interface, the “pinning” of the Fermi energy
by the paired band causes the band itself to bend (due to
charge accumulation at the interface). The tunneling
current is the combined decay of paired states into
single-particle states. Tunneling data is usually expressed
in terms of the conductance G, which is the derivative of

FIG. 18. Schematic illustration of a thin interface between a
normal metal and a two-component material in the uncon-
densed state. The shaded region represents the occupied elec-
tronic states and the unshaded region the empty electronic
states. The Fermi energy separates them. Current flows due to
an applied voltage corresponding to the Fermi energy drop
from right to left.

the current with respect to the applied voltage. This is
the current due to small additional lowering of the Fermi
energy in the normal metal. If the bosonic band does not
bend at the interface, the change in ¥V would raise the
effective E of the paired states compared to the Fermi en-
ergy in the normal metal. This would give rise to a linear
increase in boson decay rate (current) and a constant
(V). In contrast, for a vertical arrangement of paired
states, the change in V results in the addition of a paired
state at ¥ corresponding to G (V)~(ImZ,(V,q)),. As-
suming that the actual bending of the paired band can be
decomposed as a sum of these two contributions leads to
G(V)~Gy+(Im=Z,(V,q)),. The experimental results
on tunneling for different temperatures in the normal
state of 1:2:3:7 material are quite similar to the theoreti-
cal curves in Fig. 15 as shown in Fig. 19. A sensitivity of
these tunneling experiments to surface conditions is
reasonable since it depends on the localized states and
their hybridization near the interface.

Below T, tunneling is affected by three changes. First,
the averaging over g used in obtaining the decay charac-
teristics above T. should no longer apply, and tunneling
is similar to a diffraction experiment where a structure
factor leads to peaks in the tunneling data. In an experi-
ment this is averaged over several crystallographic direc-
tions. Second, the single-particle states have a gap which
is multistaged, affecting the decay probability and tunnel-
ing near the Fermi energy. Third, the condensation in
the superconducting state inhibits the bending of the
paired states, which is then possible only within a coher-
ence length of the interface. Pair decay from the paired
states into the normal metal is still possible at ¥ =0 and
T <T,.. This is consistent with the experimental zero-
field conductance.’® Experiments>® which rule out pair-
to-pair hopping across the interface, do not rule out pair
decay which is responsible for tunneling at a two-
component/metal interface.

F. Isotope shift and structural coherence

One of the central signatures of BCS theory is the iso-
tope shift of T,, since, in BCS theory,



374 Y. BAR-YAM 43

G(V)/G(100mV)

V (mV)

-150 -100 -50 0 50 100 150

FIG. 19. Distinctive experimental tunneling conductance in
the normal state of 1:2:3:7 material. Temperatures of the plot-
ted curves are 100, 110, 120, 130, 140, 150, 169, and 180 K from
bottom to top. Variation with ¥ and T is given correctly by the
pair lifetime (Fig. 15). The dashed line is the theoretical result
of Fig. 15 with T=180 K and offset to the experimental data:
G(V)~Gy+ (ImZB(E,q))q. A small asymmetry in the experi-
mental data may be due to a shift of the Fermi energy away
from bosonic half-filling and/or an energy dependence in the
single-particle density of states. The data is normalized since
prefactors or G, are weak functions of temperature (not shown).
Data by courtesy of J. M. Vales, Jr., and M. Gurvitch and their
collaborators (Ref. 53).

T, ~wp=(k/M)'?, where « is the oscillator restoring
force and M is the mass of atoms associated with the pho-
non responsible for the superconductivity. The isotope
shift parameter a=—M /T dT /dM = 1.

In the two-component theory the isotope shift arises
because of the internal workings of the negative-U center.
This is implicit in the Hamiltonian used to obtain most of
the above results. The following general considerations
indicate that the isotope shift is sensitive to comparisons
between different relaxation rates, structural and elec-
tronic, and should be small.

There are two electronic states of the negative-U center
[Fig. 5(a)], unoccupied and doubly occupied. These also
correspond to two different positions of nuclei (Fig. 20).
A transition between the electronic occupations is accom-
panied by a shift in positions of the nuclei; this structural
change is responsible for the negative U. The zero-point
motion of the nuclei correspond to Gaussian wave pack-
ets in potential wells which are in first-order harmonic.
The transition matrix element w includes a transition of
this nuclear wave function which can be considered in
two limits. One limit is the transition of the ground state
from one well into the other [Fig. 20(a)]; w would then be
reduced by the overlap of the Gaussian orbitals. The
second limit includes virtual transitions into excited oscil-
lator states. This corresponds to a vertical transition
[Fig. 20(b)] followed by a relaxation using the anharmon-
ic terms of the oscillator. The direct transition dominates
when the two sites are close together, and the vertical
transition when the two sites are far apart since the direct
transition is exponentially suppressed by the wave-
function overlap, while the vertical transition is only

suppressed inversely with the intermediate energy (a vir-
tual Franck-Condon transition).”®

If Ry and R, are the lowest-energy sites of the two os-
cillators then the Gaussian overlap is

exp[ —(Mx)"V2(R,—R,)*/4h] , (23)

which is quite sensitive to the mass of the harmonic oscil-
lator when the two locations are far apart, and not when
they are close together. Thus, the isotope shift would be
small for sites close together. For sites far apart when
the vertical transition dominates, the Gaussian overlap
does not enter and the isotope shift is also small. In any
case, a large negative-U necessitates relatively large sepa-
rations between the two sites indicating that vertical tran-
sitions are to be expected. This discussion has assumed
that the transition rate (given by w) is very small com-
pared to the relaxation rate of the anharmonic oscillator.
The actual value of the isotope shift appears to depend on
a comparison of the electronic transition rate, with the
structural relaxation time of the oscillator which depends

(a)

0 e 2 e)

(b)

0 e) 2 e

FIG. 20. Illustration of the structural behavior of negative-U
centers. The potential experienced by nuclei near the negative-
U center (neighboring the oxygen vacancy) is, as usual, approxi-
mately parabolic. Two electronic occupations, unoccupied and
doubly occupied [Fig. 5(a)], correspond to two different equilib-
rium positions of the nuclei. The separation between these loca-
tions is the relaxation responsible for the negative U. The dark-
er lines are the Gaussian quantum wave functions describing the
zero-point motion in the potential wells. The transition be-
tween an unoccupied center and a doubly occupied center is il-
lustrated in two limiting cases, (a) direct transition between the
two ground states, and (b) a vertical transition followed by a re-
laxation of the oscillator, assuming an anharmonic oscillator.
Because of the transitions between these two states, which are at
the same energy, there is a quantum coherence between the two
sets of nuclear locations (structural coherence). In the con-
densed state the coherence is long range because of the long-
range order of the condensate.
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on the size of anharmonic terms. Experimentally a small
and (when detected) very sample-dependent isotope shift
has been reported.”” 8" These isotope shift experimental
results appear to contradict other experiments, which
show a large electron-phonon coupling relevant to super-
conductivity.®! 78 Within the two-component theory the
large electron-phonon coupling is consistent with the
small isotope shift.

A signature of the two-component theory, which can

take the place of the isotope shift, is “structural coher-

ence.” Structural coherence arises because of the quan-
tum superposition of the two separated locations of the
nuclei in a negative-U center. The two locations of the
negative-U center are basic to the electronic coherence of
the superconductivity. Locally, the negative-U center
undergoes transitions between the two states in both the
uncondensed and condensed states. The quantum state of
the center is a linear combination of the occupied and
unoccupied states. Thus there is a quantum coherence
between the two sets of atomic locations in the uncon-
densed and condensed states. However, the long-range
coherence of the electronic wave function in the con-
densed state leads to a long-range coherence of the atom-
ic locations as well.

There are three types of experiments which are con-
sistent with this structural coherence. The first type of
experiment —infrared?®! and Raman spectrosco-
pies®?83__have shown the relevance of electron-phonon
coupling to the superconductivity. The second type of
experiment is the high-accuracy x-ray- and neutron-
diffraction studies which reveal large oval-shaped atomic
locations rather than small thermal, more spherical,
shapes.® 8 In 1:2:3:7 material ovals do not appear in
the full-plane atoms but are specifically associated with
the atoms around the oxygen vacancies—the chain Cu-O

and the O above and below the chain. Experimentally it
is difficult to know whether these reflect dynamic coher-
ence or static disorder. A direct test of the structural
coherence is provided by channeling experiments. In
these experiments a beam of ions is directed near to a
crystallographic axis. The backscattering of these ions is
sensitive to the cross section for encountering an ion. If
the nuclear locations become correlated then the cross
section should be dramatically affected. Recent experi-
ments®”8 show that the cross section indeed changes
dramatically through the superconducting transition.

Note added. New neutron-diffraction experiments®’
measuring the atomic pair distribution function show
direct evidence for the presence of dynamic local-
structural correlations which change at T, in a high-T,
Cu-O-based material. New extended x-ray-absorption
fine structure (EXAFS) measurements®® suggest that the
oxygen atoms bridging between the chains and the plains
in YBa,Cu;0, tunnel between two sites 0.13 A apart
(compare Fig. 20). These results appear to correspond
directly to the dynamic structural correlations discussed
above.
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