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Dynamics of patterns in ferroelastic-martensitic transformations. I. Lattice model
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A lattice model and its nonlinear dynamics for ferroelastic-martensitic transformations is pro-
posed. The lattice model presented involves the necessary interactions required in a cubic-
tetragonal transformation for proper ferroelastic materials for which the strain tensor is merely the
order parameter. Basically, the lattice model is a two-dimensional system including both nonlinear
and competing interactions. The latter are considered as two kinds: (i) interactions by particle pairs
and (ii) noncentral interactions or bending forces. A one-dimensional version is derived from the
two-dimensional system, with the former possessing the anisotropic nature of the original lattice.
The equations of motion are deduced as a set of difference-differential equations placing thus the
discrete macroscopic and microscopic stresses in evidence. Moreover, upon investigating homo-
geneous states of deformation of the lattice, a comparison can be made with the Landau theory for
ferroelastic phase transitions. On the basis of this reduced one-dimensional model the softening of
the transverse-acoustic-phonon branch is examined, leading to two important results: (i) the partial
softening of this branch of dispersion at a nonzero wave number and (ii) the positive curvature of
the dispersion curve at the long-wavelength limit. All these effects are usually observed by means of
neutron-inelastic-scattering techniques and this suggests pretransitional effects characterized by
modulated lattice distortions.

I. INTRODUCTION

The goal of the present study is to examine the non-
linear dynamics of microstructure patterns made of elastic
domains involved in ferroelastic martensitic -transforma
tions. Our main purpose is the understanding of the un-
derlying microphysics which induces special kinds of
strain transformations associated with the elastic domain
formation. With this in mind, we consider a reduced
one-dimensional model extracted from a real two-
dimensional lattice model and its continuum approxima-
tion. The paper is devoted especially to the microscopic
model and the phonon dispersion associated with the lat-
tice vibration, whereas the quasicontinuum model and
nonlinear excitation solutions will be proposed in the
companion paper. From the physical point of view,
within the overall class of displacive diffusionless phase
transformations, martensitic transformations are charac-
terized by involving lattice distortion and shear displace-
ments. ' That means the transformation is mostly dom-
inated by strain energy. As a consequence, the transition
is of first order, where the spontaneous strain is the order
parameter in the Landau theory of phase transition and
the ferroelasticity is called proper. ' For instance, In-T1,
Ni-Ti, Fe-Pd, and others are good candidates of such al-
loys. Crystals undergoing such transformations exhibit
particularly interesting effects: elasticity, pseudoelasticity,
and ferroelasticity, which are intimately connected with
phase-transition phenomena as well as shape-memory
sects of which the technological applications are espe-
cially promising. All these effects are only observed at
the scale of the crystalline specimen. On the other hand,
the continuum thermodynamics approach of such trans-
formations is often built by introducing internal variables

which characterize the percentage of austenite and mar-
tensitic variants in the crystal. Moreover, these effects
are particularly monitored by the dynamics and forma-
tion of twin interfaces (walls) and twin bands which are a
common occurrence in structural and martensitic phase
transitions. As a consequence of the erst-order phase
transition, the symmetry of the low-temperature phase or
the parent (untransformed) phase allows for forming a
few distinct variants or twins of the product (transformed,
i.e., lattice distortion) phase. Moreover, an external
stress causes the twin boundaries to move in order to ac-
commodate the internal stresses. However, stress release
results in a return of boundaries to their original posi-
tions, which may explain the memory effect. The twin
formation and nucleation are usually observed by means
of electron microscopy ' and the morphology of the mar-
tensitic twinning (deformed lattice) seems to be very rich
and interesting.

In the present study we focus on ferroelastic-
martensitic transformations and examine an intrinsic
mechanism of the elastic twin formation as well as their
dynamics. A nucleation process can be seen as a pretran-
sitional modulated structure developing in the high-
temperature or parent phase which thus forms a periodi-
cally modulated array of parallel twin bands. The latter
can be incommensurate with the parent phase. It fol-
lows, therefore, that coherent motions of twin boundaries
are of great importance in understanding the transforma-
tion. Indeed, upon cooling a single crystal of austenite,
different martensite variants are induced and the applica-
tion of a stress gives rise to interfacial movements which
lead to a macroscopic permanent strain. Upon heating
towards the high-temperature phase, the initial single
crystal is recovered and initial shape, too. We point out
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the interest of the lattice model, because the latter
possesses the underlying physical ingredients which are
the basis of the phenomena. Many macroscopic proper-
ties of materials, mechanical responses to external stimuli
for instance, are often the homogeneous result of complex
structures or microscopic textures occurring in materials.
These microstructures are well described at an interrnedi-
ate scale where the background microscopic scale pro-
vides competing or cooperative interactions and strongly
nonlinear lattice potentials giving rise to nonlinear
coherent and complex structures.

Many works both experimental and theoretical have
been devoted to martensitic transformations and a variety
of models have been considered. The traditional
metallurgist's point of view usually introduces the dislo-
cation concept' to explain the growth mechanism relat-
ed to a critical size of martensitic embryos. Some micro-
scopic models have been examined for martensitic twin-
ning and are devoted to acoustic-phonon softening and
the stability of lattice structures. " ' However, special
attention is paid to the work of Barsch and
Krumhansl' ' and Mazor and Bishop, ' who have
developed a general model from the continuum mechan-
ics point of view in order to describe the structure of twin
boundaries in cubic-tetragonal ferroelastic transforma-
tions as kink-type solitary waves. In the second part of
this work, a quasicontinuum model will be presented in
this spirit and twin boundaries will be examined.

We focus our attention on a lattice model which en-
ables us to describe a cubic-tetragonal transformation; for
instance, the In-Tl or Fe-Pd crystal undergoing a ferroe-
lastic transition of the first order has fcc (m 3m) symme-
try above the transition point and fct (4/mmm)
below. ' ' Based on a complete two-dimensional lattice
easily extended to a three-dimensional system, we consid-
er the following types of interactions between particles:
(i) interactions by particle pairs between the first-nearest
neighbors and (ii) interactions of the three body type (be--
tween three adjacent particles) or noncentral interactions.
In addition, the lattice anisotropy which derives from the
dimensionality of the model allows us to place the
predominance of the [110] direction in evidence. In a
cubic-tetragonal transformation [110] is the direction of
the close-packed atomic planes stacked in the [110]direc-
tion. Because of the anisotropy and of course of the spe-
cial type of interactions, the material then exhibits anom-
alously low anisotropy shear modulus softening
(transverse-acoustic branch in the [110]direction) which
is strongly temperature dependent; nevertheless, the
mode softening never takes place completely because of
the first-order transition. ' Structural modulations can
develop within the parent phase with periodic deforma-
tion patterns of which the wavelength corresponds to
that of phonon anomalies. ' ' The origin of such pat-
terns can emerge from competing interactions (account-
ing for the nearest-neighbor and noncentral interactions).
Accordingly, a rather fine scale of lattice description
seems to be necessary.

The paper is organized as follows. Section II is devot-
ed to the construction of the lattice model itself. Starting
with a complete two-dimensional system, particular in-

teratomic interactions are introduced: (i) interactions be-
tween next-nearest neighbors and (ii) interactions describ-
ing noncentral forces. Although we begin with a two-
dimensional lattice model, which is essential to introduce
the correct interactions, the one-dimensional version, de-
rived in Sec. III, enables us to describe the shearing
motion of the close-packed atomic planes (110) in the
[110] direction. The equations of motion for the micro-
scopic model are deduced from the Hamiltonian of the
one-dimensional system in Sec. IV. A comparison with
the Landau theory of phase transition is made next in
Sec. V for homogeneous states of deformation. The
dispersion of transverse-acoustic phonons is examined in
Sec. VI, which reveals the softening of the shear mode
propagating in [110]with polarization in [110]related to
the martensitic transformation. By way of conclusion,
the quasicontinuum model, which will be tackled in the
following paper, is finally evoked.

II. CONSTRUCTION OF THE LATTICE MODEL

A. Geometrical considerations

Let us consider an atomic plane extracted from a cubic
lattice, such as the fcc symmetry of In-Tl (undeformed
state). Nevertheless we assume that the deformation of
the lattice along a perpendicular direction to the atomic
plane, say the [001] direction, is homogeneous, which
means that we deal with plane deformation in the (001)
plane. The geometry of the lattice plane, in its unde-
formed state, is made of squares parallel to the [100] and
[010] crystallographic directions (see Fig. 1). A particle
of the plane is then located by (i,j) in the coordinate sys-
tem {[100], [010]} or (i, j) or by (I,J), in {[110], [110]}
or (I,J) deduced from the former by a rotation 45' clock-
wise. Then, the absolute position of a particle of the un-

f100] x

FIG. 1. geometry of the lattice model: two-dimensional sys-
tem made of squares. Interactions of the particle at (i,j) with
the first-nearest neighbors.
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where u (i,j) and v(i,j) are the longitudinal and trans-
verse displacements, respectively. Since the coordinate
system (I,J) can be useful for further developments, the
corresponding displacements in the system (I,J) are

U(I, J)= [u (i,j )+v (i,j ) ]/3/2,

V(I,J)= [u (i,j)—v (i j )]/3/2,

and we have the associated indexes

(3)

I=i+j, J=j —i . (4)

Accordingly, the position of any particle in the deformed
lattice is in the system ( I,J ),

x(I J)=[Ib + U(I J)]I.+[Jb+ V(I J)]J,
where now b =a /3/2 is the lattice spacing between atom-
ic planes along the directions [110]and [110]. In partic-
ular, if the problem concerns only the relative shearing
displacements of atomic planes (110) stacked in the
direction [110],we will choose the second coordinate sys-
tern.

deformed lattice at (i,j ) is given by

X(ij ) =(ia)i+(ja )j,
where a denotes the lattice spacing. After deformation of
the lattice the same particle takes on the new position

x(i j)=X(i j)+u(i, j)i+v(i j)j

long range of electronic covalent atomic interactions.
The lattice potential must then account for the change in
angle between bond segments joining particle pairs.
These interactions describe, at the microscopic level, the
twisting and bending of the unit crystalline cell.
Roughly speaking, we can say that they are equivalent, in
some sense, to the interactions between first neighboring
"elastic dipoles" since these interactions include
differences of the discrete deformations themselves. Since
the lattice energy must be translationally and rotationally
invariant, it depends only on the modulus of the relative
lattice positions. In fact, after some algebraic manipula-
tions we are able to show that the lattice energy must be
a function of the discrete Lagrangian deformation tensor
including geometric nonlinearities and also a function of
the first-order finite differences of those discrete deforma-
tions. Furthermore, it is noteworthy, by dropping the
discrete functions, that the discrete description is some-
what similar to that of continuum mechanics ' involv-
ing weakly nonlocal behavior or strain gradient elasticity.

III. ONE-DIMENSIONAL MODEL

Because we are interested in the one-dimensional prob-
lem here, we assume that the lattice displacements de-
pend only on the I index. With the use of the coordinate
system (I,J) and the displacements U and V along the
[110] and [110] directions [see Eq. (3)], respectively (or
the I and J directions), we can prove first that the dila-
tional part of the deformation is zero, which, in turn, im-
plies that

B. Interatomic potentials U(I)= Uo =const . (6)
We define the interatomic forces acting on the particles

of our lattice next. We assume that the particle at the
site (i,j) interacts with the first-nearest neighbors sur-
rounding it. We first consider the interatomic interac-
tions leading to potentials which are functions of particle
pairs between the nearest particles in the four directions
i, j,I,J. We consider next a second kind of interaction
acting on particles as noncentral forces (or three-body in-
teractions), which is equivalent to bond bending or tor-
sional forces and involves three center forces due to the

Equation (6) means that the lattice deformation along the
I direction is homogeneous. Second, the lattice deforma-
tion is now described by the relative shear deformation
along the [110]direction given by

sr = [ V (I + 1 )
—V (I) ]/a . (7)

Under these hypotheses and by using the deformation
(7), the lattice potential of the two-dimensional system
can be written as

V=+(pi[a(1+3/2sr+sr )' j+qrz[a(1 —+2sr+sr )'r ]+ip3[v'2a[1 —
—,'(sr+, +sr)~]'r2]

I

+Pi(olsr sr il )+42(olsr—+sr-+i sr, sr 2I)) .— —

The potentials y (a = 1,2, 3 ) are functions of particle
pairs between the first- and second-nearest neighbors in
the [100], [010], and [110] directions, respectively. The
potential g, emerges from the noncentral interactions in
both [100] and [010]directions and the potential gz is due
to the action of the noncentral forces in the [110] direc-
tion. We note that the lattice potential (8) does not de-
pend on the [110] direction since the lattice motion is
hoxnogeneous in the J direction. Now the next step con-
sists of expanding the interatomic potentials with respect

+ —,'d, (sr sr i)—
+ 2d2(sr+sr+i sr —i sr —z) ]

2 (9)

In the expansion (9) the coefficient a „a2, a3, c„d„and
d2 are connected with the potential derivatives through

to the discrete strains up to the fourth order and second
order in their first-order finite differences, to yield

V VQ g[ ,'a, sr ,'a2sr + ,'a3—sr+ —ci—(sr+i+s—r)
I
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the relations
2

(mi'+ v»" »
2

(10a)

a2—
2

g
&2 V'i' —~2'+ 3(&i"—Vz") (10b)

a
a

8

2
i' —V2'+2a(q i"+0 2")+ (m(1')+V(2'))

ci = —a)/2y3(2&2a ),
di =a'(4i'+02»

(10c)

(10d)

(10e)

(10f)

where all the derivatives are defined at the equilibrium of
the lattice, that is when all s~ are zero. So that
y'(=yz=0, 1(',(0)=1(z(0)=$3(0)=0 but p3&0. Note
that we have not specified the form of the interatomic po-
tential and the model is then valid for all sorts of poten-
tial. Now, the physical meaning of each term of (9) can
be explained. The first three terms of (9) are derived from
the nonlinear interatomic potentials between next-nearest
neighbors, including a cubic term. The fourth term of (9)
describes the interaction between second-nearest neigh-

bors and the last two terms emerge from the three-body
interactions between first- and second-nearest neighbors.
The lattice deformation is now well described by s~ which
represents the relative shear disp/acement of the close-
packed atomic planes (110) in the stacking direction
[110]. It is noteworthy that the original two-dimensional
lattice model which involved only interactions between
first-nearest neighbors leads to a reduced one-dimensional
lattice model accounting for interactions between first-
and second-nearest neighbors. This means that even if
we deal with a one-dimensional lattice, it is worthwhile
starting from a complete two-dimensional lattice. We no-
tice that the cubic term which plays an important role in
the phase-transition process is derived from the anisotro-
py of the lattice, even in the one-dimensional version.
Indeed, the lattice anisotropy implies y)"Wyz" yielding
a~&0. We add to the interatomic potential (9) the kinet-
ic energy associated with the transverse displacement
U (I)

K =g (Mi) —(I),
I

where M holds for the mass of any particle of the (110)
plane. The Lagrangian of the system can now be rewrit-
ten as (in dimensionless notations)

X=+—,
' V (I)—g[ ) aS (I)——,'S (I)+—'S (I)+—,'P[S(I+1)+S(I)]+ —,)5[S(I)—S(I —1)]

I I

+ ) i)[S(I+I)—+S(I)—S(I —1)—S(I —2)] ], (12)

where we have introduced the following new variables:

r=cut, [u(I),st]=A[V(I),S(I)] (13a) o(n)=aS(n) —S (n)+S (n)

+P[S(n +1)+2S(n)+S(n —1)], (15b)

co= ~az~/+Ma, , Il=a, /a3

a=a)a3/az, P=c2a3/az,

6=d, a3/az, q=dza3/az .

(13b)

The new strain S(I) is related to the displacement V(I)
through the relation

g(n)=56 S(n) +ihl[S(n +2)+4S(n +1)+6S(n)
+4S(n —1)+S(n —2)] . (15c)

Equation (15b) defines the discrete macroscopic stress,
and the microscopic stress due to the bending forces is
given by Eq. (15c). The operators b, and b+ hold for
the backward and forward first-order finite difterences
defined bys(I)= v(I+I) v(I) . — (14) f (n) =f (n) —f (n —1), b, +f (n) =f (n +1) f (n), —

We assume that a3 is positive and a2 is nonzero. More-
over, the lattice spacing can be set to the unit without
changing the results.

S(n) = b, [o.(n) —b, +g(n )],
where we have set

(15a)

IV. EQUATIONS OF MOTION

The equations of motion for the transverse displace-
ment V(n) are easily obtained from the Lagrangian (12)
and the definition of the discrete strain (14). However, it
is more convenient to work with the equations governing
the shear deformation S(n). These equations read as

respectively. Equation (15a) is a set of coupled nonlinear
ordinary differential equations which governs the shear
deformation traveling perpendicularly to the close-
packed atomic planes. Note that the nearest four neigh-
bors are involved in the shearing of the plane at n. In the
discrete case, these equations are complicated to solve ex-
cept for the linear problem which will be examined in
Sec. VI. The strongly nonlinear feature of Eq. (15) can be
tackled, however, by means of numerical simulations
with appropriate initial and boundary conditions at the
ends of the atomic chain. An alternative situation occurs
in the case of the continuum approximation; this side of
the problem will be studied in the following paper.
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V. HOMOGENEOUS STATES OF DEFORMATION

We examine the lattice potential (12) for homogeneous
strains S(I)=So. Then the potential per volume unit is
reduced to

V(SD, T) = —,
' A —(T)SO —

—,'So+ —,'So,
where we have set

A (T)=a+4P . (17)

Note that the potential parts coming from the three-body
interaction do not contribute to the potential (16) for the
homogeneous states. In fact, it is not surprising that we
obtain the free energy of the Landau type, where S0 is
merely the order parameter and the associated elastic
modulus A ( T) defined in Eq. (17) corresponds to
(C» —C&2)/2. Furthermore, along with the Landau
theory of phase transitions for ferroelastic crystals the
elastic modulus A depends on temperature according to
the Curie-Weiss law A ( T)= 2 0( T —T, ), where T, is
some temperature of transition. The free-energy expan-
sion (16) possesses a cubic term which violates the usual
Landau condition of symmetry, ' but this extra term
induces a first-order phase transition. If this term is ab-
sent, for some symmetry considerations, we must consid-
er an expansion of the free energy (9) up to the sixth or-
der in shear deformation. ' We must note that the lat-
tice potential for homogeneous deformations [Eq. (16)]
deduced from the present lattice model is quite similar to
that obtained by means of an irreducible representation
of a functional of the symmetric strain tensor for the
space group of the high-temperature phase [i.e., fcc
(m 3m)] and where the result has been reduced to the
particular deformation characterized by the shear
S.' ' ' The lattice energy is sketched in Fig. 2 for
different values of A. For A )—,', S0 =0 is the only stable
minimum corresponding to the underformed lattice or
the austenitic phase. Next, for —', ( A (—,

' the potential
has a stable minimum at S =0 (austenitic state) and a
metastable minimum at nonzero strain. When 0( A (

9

we still have two minima, but the minimum at S =0 is
now metastable whereas the minimum at SWO is stable
and it corresponds to the deformed lattice or the marten-
sitic phase. Finally, if A 0, only the nonzero strain
minimum remains and the martensitic phase is predom-
inant. The associated shear stress is given by

o = = A (T)So —So+So .
av

0
(18)

It is worth commenting on the stress strain relation (18-).
The latter is not single-valued and this yields the notion
of hysteresis which characterizes ferroelastic materials.
For S small enough, in particular in the vicinity of the
minimum S =0—austenitic phase —the material is near-
ly linear and the linear elasticity is valid. At lower tem-
perature the material has a strongly nonlinear behavior
and it is a so-called pseudoelastic displaying unstable re-
gion associated with the nonconvex parts of the elastic
potential (16). At much lower temperature, the hysteresis
is growing and a vanishing stress can be reached for a
nonzero strain and the martensitic phase is then dom-

0.0

FIG. 2. Lattice energy for a homogeneous state of deforma-
tion. According to the value of A, curve (a) the high-
temperature phase is stable ( A & 4 ), curve (c) there exists one
austenitic stable phase and metastable martensitic phase
( —& A &

4 ), curve (e) metastable high-temperature phase and
stable low-temperature phase (3 & 9 ), curve (f) (3 &0) the
martensitic phase is predominant. Particular cases for A = —'

[curve (b)j and A = —[curve (d)].

inant. Macroscropic phenomenological models have
been devoted to a complete study of this rich behav-
ior' ' of which many technological applications are in-
teresting. In the forthcoming sections, for convenience
sake we prefer to use A as the transition parameter in-
stead of temperature.

VI. ACOUSTIC-PHONON DISPERSION

Although we are interested in nonlinear excitations
(see paper II), the linear problem is nonetheless instruc-
tive. We then consider the linearized equation (15) about
a uniform deformation S0. But we choose S0 satisfying
one of the minima of the lattice potential (16). So is then
given by

S0=0 if A )
1+V 1 —4A

0S =0 or S0= if A( —,'. (19)

—128' sin (q/2)+64' sin (q/2)]sin (q/2),

where

A (So)= A —2SO+3SO (21)

Small harmonic sinusoidal wave solutions traveling along
the stacking direction can be looked for. This yields the
dispersion relation for the linear waves

2

=[A (So)—4(f3—5 —16')sin (q/2)
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dip in the transverse-acoustic-phonon dispersion curve
[see Fig. 3(d)] at a high-symmetry point qo leads to the
lattice instability against a perturbation with a wave vec-
tor in the vicinity of qo, which is observed by the
neutron-inelastic-scattering technique. ' ' ' This pro-
duces a modulated lattice distortion within the parent
phase with a period qo which is detected by electron mi-
croscopy and electron or x-ray diffraction. Transmis-
sion electron micrographs exhibit a fine scale, diffuse,
striated microstructures which are commonly referred to
as "tweed" patterns developing within the parent phase
(cubic phase). '

VII. CONCLUSIONS

0.0
0.00 t.60

Wave number
3.20

FICx. 3. Dispersion curves for the transverse-acoustic pho-
nons in the [110]direction.

If we keep only the first term in (22), we recover the clas-
sical phonon dispersion of the transverse elastic waves
where QA (So) is the transverse elastic velocity when
A (So))0. This is exactly the convexity condition of the
lattice potential since A (S&&)=(Bo./BS)s =(8 4/BS )s
which is the effective shear elastic modulus induced in the
martensitic phase. In addition, this condition is fulfilled
since So given by Eq. (19) is one of the minima of the lat-
tice potential. The second term in (22) controls the con-
vexity of the transverse-phonon branch. Curve (b) in Fig.
3 has an upward convexity at the long-wavelength region
if the condition

A (So ) /12+ (P—5 —16' ) (0 (23)

is satisfied. This condition wil1 be quite useful for the ex-
istence of coherent structures of the soliton type. More-
over, condition (23) depends firstly on the free energy of
the Landau type (16) through A (So) [see Eq. (21)] and
secondly on the three-body interaction (through the pa-
rameters 5 and q). Curve (a) difFers slightly from the
classical case. The dispersion branch (c) has a small bend
at a nonzero wave number and this curve undergoes a
softening at a nonzero wave number which can be inter-
preted as a precursor of martensitie transformation or
premartensitic transitions. ' The existence of a sharp

represents the induced elastic modulus in the martensitic
phase. ~ is the angular frequency and q is the wave num-
ber (q &[0,m]). The dispersion relation curves are de-
picted in Fig. 3 for different values of the lattice parame-
ters a, p, 5, and rl, which places the importance of the
competing interactions in evidence. The effects of these
interactions can be examined more precisely if we consid-
er the long-wavelength limit of the dispersion relation
(20). For small q Eq. (20) can be expanded up to the
fourth order

ar = A (So)q —[A (So)/12+(P —5—16')]q"+O(q ) .

(22)

The aim of the first part of this work was to build and
study a lattice model including a fine-scale description for
elastic domain patterns occurring in ferroelastic-
martensitic transformations. Since our model is applied
to proper ferroelasticity, the order parameter is properly
defined by the strain tensor associated with the elastic
transformation. In addition, comparison with the Lan-
dau theory of transition has been considered in order to
identify the shear modulus (C» —C,2)/2. More precise-
ly, we have presented a nonlinear model for cubic-
tetragonal transformations. Although this work is most-
ly devoted to a one-dimensional model, we have pointed
out the necessity of starting from a two-dimensional sys-
tem leading to a one-dimensional version which contains
the lattice anisotropy and competing interactions. The
one-dimensional lattice system, which corresponds to a
volume-preserving transformation, describes the shearing
motion of the atomic planes (110) stacking in the [110]
direction. It has been shown that the lattice potential
[see Eqs. (9) or (16)] contains a third-order term with
respect to the shear deformation which induces a first-
order transition and we recover the well-known descrip-
tion of the ferroelastic crystals. ' ' ' ' The Landau sym-
metry condition is not satisfied, but this is not surprising;
indeed, even if scalar quantities are concerned in the
model, the ten sorial feature of the deformation is
nonetheless present and nonlinear terms of the second or-
der exist in the stress-strain relation.

The pertinent results of the microscopic model are (i)
the partial softening of the transverse-acoustic phonon at
nonzero wave number and (ii) the upward convexity of
the dispersion branch in the vicinity of the long-wave
length limit. These phonon behaviors given by the
present model are observed by means of neutron-
scattering techniques for various alloys such as Ni-Ti,
In-T1, Nb3Sn, Fe-Pd just to quote few examples. ' '

Although the discrete problem of nonlinear excitations is
interesting and very important in the case of microtwin-
ning effects, we will attack in paper II the quasicontinu-
um approximation in order to study movement of elastic
domain structures as strain solitary waves.
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