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Spin-2 nearest-neighbor Heisenberg antiferromagnet on a square lattice is studied via a large-

scale quantum Monte Carlo simulation. We developed a fast and efficient multispin coding algo-

rithm on a parallel supercomputer, based on the Suzuki-Trotter transformation. We performed

high-statistics simulations on lattices as large as 128X128 spins, in the temperature range from

0.25J to 2. 5J. We calculated energy, specific heat, uniform and staggered susceptibility, and stag-

gered correlation function, from which we deduce the correlation length. For temperatures higher

than J, the results are in excellent agreement with high-temperature series expansion. At low tem-

peratures the long-wavelength behavior is essentially classical. Our data show that the correlation

length and staggered susceptibility are quantitatively well described by the renormalized classical

picture at the two-loop level of approximation. From the divergence of correlation length, we

deduce the value of quantum-renormalized spin stiffness, p, /J =0.199(2). We give evidence that

the correlation function is of Ornstein-Zernike type. By comparing the largest measured correlation

lengths with neutron scattering experiments on La2Cu04, we deduce the value of effective exchange

coupling J = 1450+30 K.

I. INTRODUCTION

The discovery of high-temperature superconductors'
has brought about a resurgence of interest in two-
dimensional (2D) quantum antiferromagnets. There are
experimental and theoretical indications that spin dy-
namics plays a crucial role in the new superconducting
mechanism, which is believed to originate from purely
electronic degrees of freedom. Neutron scattering ex-
periments on the parent compound La2Cu04 reveal a
rich magnetic structure. ' Over a wide temperature
range, copper spins in Cu-0 planes exhibit strong two-
dimensional antiferromagnetic correlations, but without
broken symmetry. As the temperature is lowered
through the three-dimensional Neel ordering temperature
(T~), weak interlayer coupling drives the system into a
unique 3I3 ordered state.

The simplest theoretical description of the system is
provided by the spin- —, antiferromagnetic Heisenberg
model (AFHM), which is the strong coupling limit of the
Hubbard model at half-filling:

H =J g (S,'S;+SfS~+S S') . (I)
&ij&

The summation g&;l &
goes over all the nearest-neighbor

pairs on a square lattice and S, is the spin operator at the
ith site. The energy scale is set by the effective exchange
coupling J (J)0 for an antiferromagnet). In what fol-
lows we will also express temperature in units of J and set

k~ =%=1.
Being one of the oldest models of quantum statistical

physics, AFHM has merits of its own, apart from its
relevance for high- T, superconductivity. The highly
quantum nature of spin- —,

' systems is difIicult to capture.
Analytical approaches employ different perturbation
schemes (e.g. , spin wave theory, renormalization group
approaches, series expansions, ' large-X expansions, "

etc. ), variational treatments, ' ' ' or exact diagonalizations
for small systems. '

On the other hand, Monte Carlo methods can provide
nonperturbative results for finite systems. If the system
size is large enough, quantitatively reliable conclusions
can be drawn about the thermodynamic limit. Monte
Carlo methods have been successfully applied to study
both ground-state' and finite-temperature properties of
AFHM. ' ' Recently, we carried out a large-scale
Monte Carlo calculation of spin correlations in the low-
temperature regime. By comparing directly with neutron
scattering experiments we determined the exchange con-
stant to be J =1450+30 K. The divergence of the corre-
lation length revealed an essentially classical behavior, in
accordance with the elegant picture advocated by
Chakravarty et al. Part of this work has been previous-
ly reported in Ref. 19.

The purpose of this paper is twofold: to present details
of the computational method (which we believe is a more
eKcient variation of the previous ones) and to provide ad-
ditional results, including the behavior of thermodynamic
quantities: energy, specific heat, and susceptibilities. The
organization of the paper is as follows. In Sec. II we give
an outline of the Suzuki-Trotter quantum Monte Carlo
method, and explain how it was implemented in our cal-
culation. Section III pertains to the thermodynamics of
the system, while Sec. IV deals with spin correlations and
staggered susceptibilities. Experimental implications are
discussed in Sec. V. Section VI is a summary.

II. THE COMPUTATIONAL METHOD

A. Suxuki-Trotter transformation

The Suzuki-Trotter method is a powerful device for
investigating quantum spin systems without frustration.
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We begin by breaking the Hamiltonian into four pieces,
H = +4, ,H, , each containing a commuting subset of
nearest-neighbor bonds on a square lattice, as shown in
Fig. 1. H, contains odd bonds in the x direction, H2 con-
tains odd bonds in the y direction, H3 contains even
bonds in the x direction, and H4 contains even bonds in
the y direction. Then, to obtain the partition function,
we apply Suzuki's generalization of the Trotter formula:

—h~ H,.=Tr lim g e
m ~ oo

m

where I is an integer (Trotter number) and b,r= 1/mT.
After 4m resolutions of unity are inserted between adja-
cent exponentials, we obtain

Z= lim g (C, ~e '~C2)(C2~e '~C, ) . (C, ~e '~C&)
5~~0

I gI
(3)

The intermediate states C which are chosen to diago-
nalize S„may be regarded to belong to dift'erent time
slices. Therefore, the original 2D quantum system of size
L XL is mapped onto the equivalent 3D classical system
of size L XL X4m. Since the exponential of H; factorizes
into a product of exponentials involving only two spins
on a bond, the classical system consists of interacting
four-spin plaquettes. The Boltzmann weight, associated
with an interacting plaquette configuration is given by
the following matrix element: '

(4)

where i,j correspond to a particular bond, while t, t + 1

denote two adjacent time slices. Due to conservation of
S., only 6 out of 16 spin configurations of a four-spin pla-
quette have nonzero Boltzmann weights. ' They are list-
ed in the Appendix.

In the early stages of this work we also experimented
with another basis set: the coherent spin states. A par-
ticular set of coherent spin states can be obtained by ap-
plying the spin rotation operator, parametrized by angles
8 and P on the unit sphere, to the spin down state:
~9$) =R (9,$)~S,= —

—,
' ). The continuous labels 8 and P

may be regarded as generalized quantum numbers of the
ordinary basis sets. The coherent states, though not or-
thogonal, are overcomplete. Hence, they can provide a

i

j

I I

I I

FIG. 1. The breakup of the Hamiltonian: In the x direction,
Hl includes bonds indicated by the solid links; H3 includes
bonds indicated by the broken links. Similarly for H~, H4 in the

y direction.

valid resolution of unity. Being continuous, it is conceiv-
able that they would be more appropriate to capture the
dynamics, which is dominated by spin waves. However,
they lead to complex transition probabilities and the
phase Auctuations destroy the statistics.

B. The updating procedure

The updating procedure has to be ergodic and must
not violate the quantum conservation laws. Any allowed
update can be achieved as a sequence of updates of pairs
of spins on plaquette edges. Since each spin is shared by
two plaquettes, it follows immediately that one has to Aip
a closed loop of spins. ' The conservation of S, imposes
the following constraints. If two spins on a horizontal
edge of an interacting plaquette are being updated (both
spins on the same time slice), the conservation law re-
quires that the two spins be opposite. If two spins on a
vertical edge of an interacting plaquette are involved, one
may update the spins only if they are both up or both
down.

We generate all possible closed loops under these con-
straints by exponentiating a set of four types of elementa-
ry updates that mimic the generators of the fundamental
homotopy group on a torus, with the conservation law
built in. The toroidal geometry is the consequence of
spatial periodic boundary conditions (to preserve transla-
tional invariance) and periodic boundary conditions in
the time direction (required by the trace operation).

We have two types of local updates and two types of
global updates. The local updates are homotopic to the
unit loop. The simpler local update ("space" flip) is
shown in Fig. 2. One searches for a noninteracting loop
("space" loop), bounded by the edges of four interacting
plaquettes. A "space" loop belongs to a single time slice.
Due to the constraint, one may attempt to Aip the four
spins on a "space" loop [according to the Boltzmann
weight in Eq. (4)] only if they are in a Neel configuration,
as shown in Fig. 2.

Another local update ("time" fiip) is shown in Fig. 3.
It involves a noninteracting loop, extending in the time
direction ("time" loop), bounded by eight interacting pla-
quettes. There are eight spins involved in the Aip.
Again, the Aip is attempted only if the spins are in a Neel
configuration; i.e., the four spins on one vertical edge are
all the same and opposite from the four spins on the oth-
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FIG. 2. A "space" flip. The dashed line denotes a nonin-
teracting plaquette lying in spatial dimensions. The four shaded
plaquettes extending in the time direction are the interacting
ones. After the four spins are flipped, the two world lines
(denoted by the heavy solid lines) twist around each other.

er edge, as shown in Fig. 3.
The global update in time direction is shown in Fig. 4.

One searches for a straight line of all up or all down
spins, and Aips them all. This move is responsible for
generating fluctuations of the total magnetization. The
efficiency of this type of update depends on how many
straight lines of up (down) spins are available. Naively,
one would expect that it is increasingly difficult to find
such lines as temperature is lowered and number of time
slices increased. This is not true, however, since the spa-
tial correlation length grows faster than the system width
in the "time" direction L, . Hence, at low temperatures,
in the renormalized classical regime, temporal correla-
tion length always saturates around g, =L, . Indeed, we
find that the straight lines are abundant enough at all
temperatures we used in the simulations. This enabled us
to obtain correct results for the uniform susceptibility,
which we calculate from magnetization fluctuations gen-
erated by these straight line Hips.

In Fig. 5(a), the other type of global update, extending
in either spatial direction, is shown. Assuming that the

FIG. 4. A "global" flip in the time direction. Only four in-
teracting plaquettes surrounding a straight world line are
shown.

numbering of time slices starts from zero, let us choose
two adjacent time slices, denoted by t, and t2, such that
t, is even and t2 is odd. Consider now a pair of neighbor-
ing straight lines, belonging to t, and t2, respectively,
such that they run in the y direction, i.e., x ( t, )

=x (t2) =const. It is easy to see that this pair consists of
segments that involve only edges of interacting pla-
quettes. The same is true for a pair y (t, ) =y(t2 ) =const,
but, in this case, the lower time slice t, must be odd and
the upper one t2 must be even. Therefore, global Aips in
the x and y directions are interleaved. Furthermore, to

(a)

FIG. 3. A "time" flip. The dashed line denotes a nonin-
teracting plaquette. The eight shaded plaquettes surrounding it
are the interacting ones. After the eight spins are flipped, the
worldline (denoted by the heavy solid line} is distorted. Notice
that all plaquettes go in the time direction.

FIG. 5. (a} A "global" flip in spatial directions. The dashed
line indicates the string of spins being flipped. The plaquettes
shown are all interacting. (b} A configuration with different
winding number is reached.
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satisfy the conservation law, the two lines must have the
same Neel-like spin configurations, as shown in Fig. 5(a).

By employing a well-known connection between spin
and boson algebra, this updating procedure can be
given a useful alternative interpretation. Let b;, b, denote
ordinary Bose operators on site i. By using a projector
P;(0) onto a state with 0 particles on site i, one defines
the operators a; =P;(0)b, , a, =b,"P;(0), which vanish
outside the subspace with 0 or 1 particle. After the
identification ~1)—~+) and ~0) .

~

—), one has the
equivalence a .o. and a =o.+, where o. and o. + are
spin-lowering and -raising operators. Since
X =a a =(1 cr—')/2, the conservation of S, may be in-
terpreted as number conservation in this language.

By connecting the sites with spins down (or up, due to
particle-hole symmetry), one obtains the world lines of
bosons with infinite on-site repulsion (hard core provided
by the projector), propagating in imaginary time. There
is a unique way of doing this, since the hard core prevents
two lines from crossing each other. The updating of the
spin system is equivalent to generating all possible
configurations of world lines.

The elementary moves have a more transparent inter-
pretation of the boson world-line picture. The "time" Aip
locally distorts a world line in both spatial directions. Its
effect is shown in Fig. 3, and it involves a single world
line. The "space" Hip involves two nearby world lines,
and its effect is to exchange them and wrap them around
one another, as shown in Fig. 2. Due to this permuta-
tion, the world lines do not necessarily close on them-
selves, although the spin configuration is periodic in time.

The global move in time direction destroys or creates
static particles (holes) (Fig. 4). It connects subspaces with
different particle numbers (magnetization). This global
move is easily generalized to the world lines of any shape
(mobile particles), but the program is much more efficient
for straight world lines.

Since the world lines are on a torus they will belong to
different homotopy classes, characterized by their wind-
ing numbers N and N . The global move in spatial
directions is responsible for connecting these distinct to-
pological subspaces. It breaks and reconstructs a number
of world lines of order L, and its effect is shown in Fig.
5(b).

C. Multispin coding and parallel implementation

To achieve a high level of speed and efficiency, we im-
plemented this Suzuki-Trotter method via a multispin
coding algorithm. The spins, which are one-bit objects,
are packed into 32-bit computer words, along the imagi-
nary time direction. The algorithm is most efficient if the
words are completely packed, which means that the num-
ber of time slices has to be a multiple of 32 (or, alterna-
tively, the Trotter number m should be a multiple of 8).

All the necessary checks and updates can be imple-
mented through bit-wise logical operations on words.
The same principles are applied for both local and global
moves, but it is easier to illustrate them for local moves,
as shown in Fig. 6.

A pair of adjacent words contains eight "time" loops

N5 N4

N6 Si~ S~2

N2

A ~&i

31

30

29

27

26

, 25

24

23

FIG. 6. The vectorized "time" Aips are shown. Spins along
time direction are packed into computer words. The two 32-bit
words S1 and S2 contain eight "time" plaquettes, indicated by
the dashed lines. The plaquettes shown are all interacting ones.

(see Fig. 6). Because every two adjacent "time" loops
share an interacting plaquette, we update all four odd
"time" loops simultaneously in a vectorized fashion. The
other four even "time" loops are updated next. Many of
the useful quantities obtained in updating the four odd
ones will also be used for the four even ones. We now
briefly illustrate the scheme. We want to update the odd
"time" loops 1, 3, 5, and 7 of the spin words S1 and S2 in
Fig. 6. We first compute F=S1 [XOR], S2, and then
&=F [AND] MASK1, where MASK1 has ls located at
the proper position of the "time" loop 1

MASK1 =(0 01111), [AND] is the conjuctive and
[XOR] is the exclusive or Boolean operators. The fiip of
"time" loop 1 is allowed if W [AND] MASK1=MASK1
and (Sl [AND] MASKl)+(S2 [AND] MASK1)=16
(which means that all four spins in S 1 must be down and
the four spins in S2 must be up, or vice versa). Sl is also
XOR-ed with N1, N6, and N5 to obtain E1, E6, and E5,
the information needed to compute the energy due to the
three interacting plaquettes on the Sl side (see Fig. 3).
Similarly, S2 is XOR-ed with N2, N3, and N4. Finally,
Sl or XOR-ed with (Sl [right-shift] 1) to obtain C, which
contains the information about the upper and lower in-
teracting plaquettes (which are shared by adjacent "time"
loops). After masking Nl N6 and C with app—ropriate
masks, we SHIFT, OR them together, to obtain X1 and
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X2, which contain the information about the eight
"time" loops shared by S1 and S2. Notice that Ã1 —X6
are used only once for all of the eight "time" loops.

To retrieve the information specific to the "time" loop
1, we calculate I 1 =Xl [AND] MASK1 and I2
=X2 [AND] MASK1. (Il, I2) is a pair of small integers
in one-to-one correspondence with the spin configuration:
it uniquely determines the transition probability. Thus
(I1,I2) is used as an index to fetch the transition proba-
bility stored in a small lookup table calculated at the be-
ginning. Upon acceptance, the proper four spins in Sl
are flipped by Sl =Sl [XOR] MASK1, and similarly for
S2. The update of the "time" loop 3 proceeds in the
same manner as for loop 1, after left-shifting MASK1 for
8 bits, and similarly for loops 5 and 7. Once "time" loops
1,3,5,7 are completed, we need to recalculate C only, and
the entire process is repeated for even loops. Notice that
the only floating-point operation in these updates is a
random-number comparison, required for the Metropolis
accept/reject test.

Four adjacent words contain eight "space" loops,
which can be even more easily vectorized. They can be
updated without alternating even and odd ones, since
they are decoupled.

The global move in time direction is very easy to im-
plement with this type of spin packing. One has to check
whether bits are all either 0's or 1's, then to XOR the
word to be flipped with four neighboring words to get the
transition probability. The same principles are used to
implement the global flip in spatial directions, but the ac-
tual procedure is much more complicated. It is desirable
to have the simplest possible spin interaction in order to
minimize the complexity of the various tests needed to
determine the transition probability. For this reason, we
believe that a "bond-type" decomposition is preferable
due to the simplicity of spin interactions, although the
spin packing could be done with any other decomposi-
tion, such as "cell-type" breakup, which leads to more
complicated eight-spin interactions.

The code was adapted for a parallel supercomputer,
the 32-node Caltech/JPL MarkIIIfp Hypercube at Cal-
tech. The nearest-neighbor interaction in the system al-
lowed for an efficient parallelization. The hypercube to-
pology of the processor-node system is mapped onto a 2D
grid. Then, the processor nodes were configured as
disconnected rings, so that several independent systems
were running at the same time [see Fig. 7(a)]. Each pro-
cessor is assigned a piece of the 3D lattice, consisting of a
number of (x, t) planes, as shown in Fig. 7(b). The com-
munication between processors is required only if the
boundary spins are updated and involves only nearest-
neighbor processors.

A good measure of the degree of parallelism in an ap-
plication is the speedup, defined as $(M) =t, /tM, where
t~ is the time elapsed on a parallel computer with M
nodes, while t

&
is the time required for the same applica-

tion, but on a sequential computer. The concurrent
efficiency is defined as speedup per node, E=S(M)/M,
and its maximum theoretical value is 100%. The
efficiency of our program is very high (around 90%). In
the simulation we used a parallel version of the general-

PROCESSOR NODES

HOST

(a) (b)

FIG. 7. (a) The configuration of the hypercube nodes. In this
example, 32 nodes are configured as 4 independent rings, each
consisting of 8 nodes. Each ring runs an independent simula-
tion. (b) The decomposition of the physical space of each lattice
among the nodes in a ring.

ized Fibonacci additive random numbers generator,
which has a period longer than 2'

On a 32-node hypercube, for a 64X64X 128 equivalent
classical system, the "time"-flip updates are running at an
average speed of 1.8X10 trials per second. The other
local update, the "space" flip, has the average rate of
2.6X 10 trials per second. The average rate of the global
flips in the temporal direction is about 1 ~ 7X10 trials per
second. The computations presented here took about
1000 h of central-processing-unit (CPU) time on a 32-
node hypercube (roughly equivalent to about 1200 h on
the Cray Research, Inc. X-MP supercomputer).

D. Simulation and measurements

where A ( oo) is the correct value. Commonly, only the
leading order term is retained, so one extrapolates linear-
ly in (1/m T) . A different approach, the one we adopt-
ed, is to fix the value of (1/mT) =(b,r) to a very small
number at every temperature, by choosing appropriate
values of m. Our choice of Az ~ 0.07 is small enough to
ensure that the systematic error is within the statistical
errors of the simulation. To prove this, at T =0.45, we
used three difFerent values of the Trotter number:

We tested the algorithm on a 4X4 system, where the
exact results are available. It is necessary to include all
types of updates to obtain correct results, since the sys-
tem is far away from the thermodynamic limit. However,
in Table I, we show the results with and without the spa-
tial global moves for a much larger system (32 X 32). We
also plot the correlation functions for the two cases (Fig.
8). It is apparent that this system size is large enough to
eliminate any systematic difFerences.

The equivalence between the quantum system and the
classical one is exact only in the limit of infinite m. In
practice one works with finite values of m (or, equivalent-
ly, Dr&0), which is a source of systematic error. The er-
ror thus introduced is small and well controlled. It is of
order (br), and it is volume independent for sufficiently
large systems, being proportional to the norm of commu-
tators [H, ,H~]. For a wide class of observables, one
may use the extrapolation

3 (m)= 2 ( ~ )+a/(mT) +b/(mT) +
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TABLE I. Temperature, Trotter number, linear size, energy, specific heat, uniform susceptibility, correlation length, and exponent

2.5
2.0
1.5
1.2
1.0
0.85
0.75
0.60
0.50
0.45
0.45
0.40
0.35
0.35
0.30
0.30
0.27
0.25

16
16
16
16
16
16
24
24
32
16
32
40
24
48
24
48
48
48

24
24
24
24
32
24
32
32
32
32
32
64
64
64
96
96

128
32

0.1600(2)
0.2003(3)
0.2666(6)
0.328(1)
0.3885(8)
0.439(2)
0.4812(9)
0.5498(8)
o.s946(s)
0.6263(2)
0.6208(5)
0.6341(2)
0.6529(1)
0.6507(2)
0.6655(1)
0.6597(7)
0.6642(1)
0.6669(1)

0,067(1)
0.102(1)
0.168(3)
O.248(3)
0.322(4)
0.393(1)
0.43(1)
0.452(5)
0.425(3)
0.412(4)
0.386(5)
0.353(5)
0.283(7)
0.23(1)
0.21(3)
0.19(3)
0.175(3)
0.091(4)

0.201(1)
0.227(2)
0.256(3)
0.275(1)
0.281(2)
0.281(2)
0.274(1)
0.259(2)
0.236(2)
0.219(1)
0.221(2)
o.2o7(2)
0.191(1)
0.190(2)
O. 178(1)
O. 182(3)
0.173(3)
0.155(7)

0.569(2)
0.68(3)
0.83(4)
0.968(2)
1.21(3)
1.44(2)
2.20(4)
3.5(1)
5.2(2)
4.6(2)
6.5(2)
9.9(4)

10.1(5)
18.0(5)
17.s(s)

28.0(1.2)

0.5
0.51(9)
0.47(16)
0.36(22)
0.42(6)
0.46(9)
0.47(3)
0.51(3)
0.51(3)
o.47(s)
0.47(4)
0.44(6)
0.36(5)
0.38(2)
0.40(2)
0.39(2)

0.2 I I I I

)
I I

0.15

0.05

H
H

H f g

10 15
r

20

m =16,I =24, and I =32. In Table I we show the cal-
culated values of energy, susceptibility, and specific heat
for the three cases, and the extrapolated values. The re-
sults show a weak m dependence, and the differences be-
tween the extrapolated values and those obtained with
the largest value of m =32 are within the statistical er-
rors. Additional checks are given below.

Simulations were done on (2+1)-dimensional systems
as large as 128 X 128 X 192 spins, in the temperature
range from T=2.5J to T=0.25J. During the simula-
tion, we have carefully monitored the thermal relaxation
and the autocorrelation lengths. At each T we did
several suKciently long runs. For example, at T=0.3,

on the 96X96 lattice, we did 4X 350000 sweeps (four in-
dependent runs, 350000 sweeps each). The thermaliza-
tion took about 5000 sweeps and the autocorrelation
length is about 4000 sweeps. (This all refers to the spin
correlation functions for local quantities like energy, both
relaxation and autocorrelation times are much shorter. )

At higher temperatures and for smaller systems, the runs
are slightly shorter. For each of the concurrently run-
ning independent systems we calculate the mean and the
variance using the correlated sample error analysis. The
final result for the measured observable is then obtained
by averaging over the independent systems. The vari-
ances of independent systems o.;, i = 1,2, . . . , N, are used
to calculate the pooled estimator of the common vari-
ance, Xa. =g,' =, o, , which yields the quoted error bars.

The global move that changes the magnetization
significantly improves the relaxation rate, by about a fac-
tor of 3, and its acceptance is quite reasonable (10—50%,
depending on T) as explained earlier, contrary to many
reports in the literature. In all the simulations, we used
this global move. On the other hand, we find that the
global move that changes the winding numbers is not
efficient and does not improve significantly the relaxation
time, so we dropped it in our simulations. Since the
quantities we measure do not depend on winding number
fluctuations, it follows from standard thermodynamic ar-
guments that this global move may be dropped, and the
averages will not be affected in the infinite volume limit.

We calculate energy, specific heat, and uniform suscep-
tibility, as the derivatives of the partition function. They
are given by the following averages: '

FIG. 8. Correlation functions on the 32 X 32 lattice at
T=0.45, m =24. Squares denote the run with winding num-
bers N and N~ restricted to 0. Crosses denote the run with
nonconstrained winding numbers. The data points clearly
overalp. The error bars are of the symbol size.

E=(zFIj~)),

CT=Fj —Gj — Fj

(6)
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yT=((XS') +(XS ) +(XS~) )

(8)

0.2
x: m=16

+: m=24

The summation goes over all the interacting four-spin
plaquettes, labeled by p, and j is a label of a particular
spin configuration on a plaquette. The functions I'(j )

and 6 (j ) represent contributions of individual pla-
quettes to the total average. The functions F and 6, for
the allowed four-spin configurations are listed in the Ap-
pendix.

More detailed information about the system may be ac-
quired by studying spin correlations. We measured the
static staggered spin correlation function

0.15

0.1

0.05

o: m=32

8~

I I I I I ] I I I I I I

10
r

along the x and y directions [a factor of 4 appears in the
definition due to the normalization C(0) = I]. This corre-
lation function is a diagonal operator, hence one can
choose any time slice for the measurement, make a mask
that has a single 1 bit at the location of that time slice,
and just XOR the two spin words at positions (n„,n )

and (n +r„n~+r~) We u.sed a slightly more compli-
cated procedure. Due to the decomposition, the transla-
tional invariance of the Hamiltonian is broken and we
want to partially restore it during the measurement. This
effect, of course, vanishes in the limit of infinite Trotter
number. Since the Hamiltonian is decomposed into four
pieces, the spin interactions are periodic in time with
period 4, so we calculate the correlation function at four
adjacent time slices, corresponding to the lowest four bits
in a spin word. All the Trotter numbers in the simulation
are larger or equal to 16, thus we have at least two words
stacked on top of each 2D lattice site. To improve statis-
tics, we do such a measurement for each word and then
average them. Therefore, we do the measurement on a
fraction ( —,') of the total number of time slices. The corre-
lations are calculated separately along the x and y axes,
and then averaged. We check whether they agree within
error bars, to ensure that the result is indeed isotropic
and as an additional test of thermalization.

Furthermore, we check whether the finite value of the
Trotter number will lead to significant systematic effects.
At T=0.45, we calculated the correlation function using
three different values of m, m =16,24, 32. In Fig. 9 we
show these correlation functions. The correlation func-
tion has very weak m dependence for such large values of
m. We calculated the extrapolated correlation function
from these three Trotter numbers using the extrapolation
formula of Eq. (5). The extrapolated correlation function
and the one with the largest value of m =32 are practi-
cally indistinguishable. At T =0.35 and 0.3 we calculat-
ed correlation functions with two different values of
m, m =24 (b,v=0. 14) and m =48 (b,&=0.07). In Fig. 10
we show the correlation functions at T=0.35. Although
the width of the time slice is halved, the correlation-
function differences are very small. The results at
T=0.3 are quite similar. The parameters of the fits to
these data are given in Table I. The correlation lengths
are practically the same. These results show that the

FIG. 9. Correlation functions on the 32 X 32 lattice at
T =0.45, with different Trotter numbers m.

values of hr= 1/mT we are working with are small
enough to yield the systematic errors buried within the
statistical errors of the simulation and that the extrapola-
tion to m = oo is unnecessary.

Finally, we calculate the staggered susceptibility,

(10)

following the same approach as outlined for the correla-
tion function. Note that we define the staggered suscepti-
bility to be simply equal to the antiferromagnetic struc-
ture factor C (n, vr).

III. THERMODYNAMIC PROPERTIES

A. Energy

The energy as a function of temperature is given in Fig.
11. The size dependence of the energy is negligible. The

0.2

o: m=24

x: m=48

0.1—

0—
0 10 20 30 40 50

FIG. 10. Correlation functions on the 96 X 96 lattice at
T=0.35 with m =24 and m =48.
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FIG. 11. Energy measured as a function of temperature.
Squares are from our work. Pluses are from Ref. 13. The curve
is the 10th order high-T expansion (Ref. 30).

FIG. 12. Uniform susceptibility measured as a function of
temperature. Symbols are as in Fig. 11.

results are in good agreement with the calculations per-
formed by other authors on much smaller lattices. The
rotational invariance of the Heisenberg Hamiltonian
should be preserved by the Monte Carlo simulation. We
check this requirement by calculating the energy in two
ways: using Eq. (6) and from the nearest-neighbor spin
correlation (S S') assuming full isotropy in spin space.
This rotational invariance requirement is satisfied within
error bars for all of our data points.

Takahashi developed a modified spin-wave theory,
which is expected to be valid in the low-temperature re-
gime, by constructing a variational spin-wave density ma-
trix. ' The agreement with our calculation is rather good
for T~0.6. In the high-temperature limit, accurate re-
sults can be obtained with high-temperature expansion. '

We plot our data along with Takahashi's calculation for a
64X64 lattice and high-temperature expansion up to
x' (x =J/T). Our data smoothly interpolate between
these two asymptotic regimes. At T &1, the agreement
with the high-temperature expansion is excellent. A note
is in order here about the singular-coupling problem.
At high T, we used m =16, leading to mT=30. Thus,
we are working in the strong-coupling regime, but we do
not encounter the "premature convergence" problem,
which, in our opinion, may be attributed to insu%cient
statistics in the earlier simulation.

B. Uniform susceptibility

The data for the uniform susceptibility are presented in
Fig. 12. The susceptibility saturates around T=J and
then connects smoothly to the high-temperature form. '

Again, the agreement with high-T expansion is excellent
for T ) 1. For T~0.6, we obtain reasonable agreement
with Takahashi's result. ' A major source of the small
systematic difference is the incorrect temperature depen-
dence of the variational parameter that determines the

spin-wave gap. Note that at T =0.35J and 0.40J the sys-
tem size is exactly the same as in his calculation, 64X64
spins, so this cannot be attributed to a systematic size
dependence. As one goes to higher temperatures, the
spin-wave theory fails. The magnetization fluctuations
are overestimated, because the ideal density of states
overemphasizes the short wavelength spin waves. This is
not felt at lower temperatures, since temperature acts as a
cutoff.

At temperatures higher than T =0.25J, we attempt to
work on system sizes large enough to practically elimi-
nate the finite-size effects. The finite-size effects are ex-
pected to get worse at lower temperatures. At T =0.25J,
we deliberately simulate a 32X32 lattice, which is 16
times smaller than the lattice used at T =0.27J
(128 X 128). The sharp drop in the susceptibility is the in-
dicator of a significant finite-size effect for the lattice of
this size. This demonstrates that quantitatively reliable
results for the zero-temperature limit cannot be obtained
by studying relatively small systems (up to 16X16), as
was attempted in recent literature.

C. Specific heat

The specific-heat data are shown in Fig. 13. It peaks
around T =0.6. The agreement with the high-
temperature expansion, in the range T & 1.0 is excellent.
Specific heat is expected to behave as ~ T, from spin-
wave theory, in the low-temperature regime, but we are
not going low enough to be able to accurately extract the
proportionality constant. Again, we point out that quan-
titatively accurate results cannot be obtained on small
lattices for the T=O limit. We illustrate this again by
plotting the data point for a 32X32 lattice at T =0.25,
next to the 128X128 lattice at T=0.27. It is very
difFicult to obtain accurate results on large lattices in the
extreme low-temperature limit due to thermalization
problems.
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FIG. 13. Specific heat measured as a function of temperature.
Symbols are as in Fig. 11. FIG. 14. Correlation functions on the 32X32 lattice at four

different temperatures.

IV. SPIN CORRELATIONS

In an infinite system, the correlation function behaves
asymptotically as

C„(r)-Ar e "~& as y~co .

This expression may be regarded as a definition of the
correlation length g. In Ornstein-Zernike theory, for a d
dimensional system, the exponent A, is equal to (d —1)/2.
In order to incorporate periodic boundary conditions, for
a system of linear size I., we use the following sym-
metrized form:

CL (r) —A [r e "~~+(L —r) e ~ "'~~] as r ~ ao

(12)

The correlation length g, the exponent A, , and the ampli-
tude 3 are treated as fitting parameters. We are not
aware of any previous attempt to infer A, for the present
model from Monte Carlo data.

We start on a 24X24 lattice at T=2.5, where the
correlation length is less than a lattice spacing. As the
temperature is lowered, we increase the lattice size up to
128 X 128, to keep L ) 5$, so that the finite-size effects are
very small. The correlation functions at several tempera-
tures are plotted in Fig. 14, along with the best fits. The
results of the best fits for g and A, are summarized in
Table I.

The shortest-range correlations were not included in
the fit, since they cannot be described by the asymptotic
form of Eq. (11). For larger correlation lengths, usually
four or five shortest-range correlations were excluded,
while for shorter correlation lengths we discard one or
two points. Also, a few points close to half-system size
were discarded as the least reliable ones. After these
points are discarded, the fits are excellent and are very
stable for both long- and short-range cutoffs.

Since the measured values of the exponent A, are very
close to (d —1)/2= —,', we conjecture that the correlation
functions are of Ornstein-Zernike (OZ) type, as expected

on general grounds. This indicates that the puzzling re-
sult X=1 (as in 3D), suggested by Schwinger boson
mean-field theory" and modified spin-wave theory, ' may
be an artifact of the approximations involved.

For temperatures less than T=0.35, A, drops slightly
below —,'. This is not unexpected, since the OZ behavior is
found only asymptotically, for r/g)) 1. This condition is
no longer true for our data points, as T is lowered g be-
comes large and r,„=2/. The surprisingly good fit to
Eq. (12) shows that an effective value of A. can accommo-
date these not-so-distant points. This gradual decrease of
effective k is, of course, consistent with g=0 in an or-
dered ground state. In previous calculations, ' ' the
correlation functions were described by pure exponen-
tials. Our approach allows for a more consistent compar-
ison with experiment, since the correlation lengths in
neutron scattering experiments were obtained by fitting
the structure factor data to Lorentzians.

The correlation length as a function of inverse temper-
ature is shown in Fig. 15. The data points fall onto a
straight line throughout a wide temperature range. This
naturally leads to the exponential fitting form

g(T)= Ae

Similar behavior is found in the classical Heisenberg
model in 2D (Ref. 33) and is typical for systems at lower
critical dimensionality. The fit is indeed very good (y
per degree of freedom is 0.62). The parameters of the fit
are listed below [see Eq. (14)].

It was argued by Chakravarty, Halperin, and Nelson
(CHN) that, in the parameter regime where the ground
state is ordered, the hydrodynamic description is provid-
ed by the nonlinear o. model, which has the correct sym-
metry and excitation spectrum. A perturbative
renormalization-group calculation carried out in this
model leads to a classical picture, but with the parame-
ters renormalized by quantum Auctuations. Essentially
the same result is obtained by Arovas and Auerbach"
within the framework of a large N expansion, but the
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dO ity of the fit given in Eq. (13). The parameters of the fit
are

~ io—

0
C
CD

0

0.5
0

A =0.276( 6 ),
p, =[0.199(2)]J IZED=0. 265(2)] .

(14)

/=AT

These considerations are illustrated in Fig. 15, where
we show our data, along with the best fits obtained with
different powers T, o. = —1,0, 1. Clearly, only the con-
stant prefactor renders a good description of the data.
We also fit the data with a general form

FIG. 15. Correlation length measured at various tempera-
tures. The straight line is fit to Eq. (15). The other curves are
the fits corresponding to 3 =T, a=1 and —1. The +=0.03
upper bound curve is also plotted, but is indistinguishable from
the straight line.

connection with the classical model is not so transparent.
Takahashi's variational spin wave theory also turns out
to be equivalent to the one-loop result of Ref. 9. Howev-
er, we show later that the one-loop result is not quantita-
tively correct.

Our calculation is in very good agreement with the re-
normalized classical picture. Besides verifying the quali-
tative picture, we provide quantitative results.

In particular, we find that the long-wavelength spin
stiffness p, is significantly reduced due to quantum
effects, which leads to a much slower growth of the corre-
lation length when compared to the classical case. This
renormalization of spin stiffness for a quantum spin 5 is
most conveniently expressed in terms of the renormaliza-
tion factor ZI. ', defined by p, =J'S (S+ I )ZP'.

The spin stiffness governs the leading exponential
divergence, but its value can be accurately calculated
only if the leading temperature behavior of the pre-
exponential factor A (T) is known. In analytic calcula-
tions, A (T) depends on the level of approximation. For
instance, in the classical 2D XI.o.M, at the one-loop level
this prefactor is temperature independent, 3 ( T) ~ const,
while at the two-loop level 3 ( T) o- T.

In a numerical simulation, the extraction of correct
temperature dependence is computationally very
demanding, since it requires spanning a wide range of
correlation lengths and high statistical quality of data.
For this reason, our calculation is the first one that can
clearly identify the functional form of the correlation
length from the numerical data. Since the correlation
lengths we measure range from 1 to 28, with statistical
uncertainties always smaller than 5%%uo, we can easily dis-
tinguish between different powers of T in front of the ex-
ponential. Our data show that the pre-exponential factor
has to be a constant. This follows from a very good qual-

regarding o. as an additional free parameter. From such
a fit, we obtain 0.=0.03, which may be regarded as an es-
timate of the upper bound on this exponent. This fit is
also shown in Fig. 15, although it is completely indistin-
guishable from the straight line.

This is in complete agreement with the calculation of
CHN, where the classical two-loop term and 1/T factor
coming from quantum to thermal crossover conspire to
give a consant prefactor. The excellent fit to Eq. (13) up
to T= 1.0 indicates that the renormalized classical region
is quite wide. This classical picture remains valid up to a
crossover temperature where the Josephson and thermal
length scales become compatible. This implies that
2vrp, =T„; i.e., Eq. (13) should be valid while the ex-
ponent is of order 1 or less.

Let us compare the renormalized spin stiffness we ob-
tained to those obtained in previous Monte Carlo simula-
tions' ' ' on much smaller lattices ( ~ 20 X 20).
Manousakis and Salvador' gave p, =0.22. Gomez-
Santos, Joannopoulos, and Negele' obtained p, =0.159.
At lower temperatures, the former will overestimate the
growth of the correlation length, while the latter will un-
derestimate it.

Singh and Huse' estimated the spin stiffness constant
by expanding around the Ising limit. They obtain
p, =0.18(1), in reasonable agreement with our calcula-
tion. Auerbach and Arovas" obtained p, =0. 185
(Z&-—0.246), quite close to our result. This is a little
surprising considering the mean-field nature of their
theory. It is interesting that our calculation gives a
higher value than the mean-field theory, implicating that
the inclusion of fluctuations of all orders in 1/N in these
SV(N) generalizations of the Heisenberg model actually
increases the spin stiffness.

The results for the staggered susceptibility are plotted
in Fig. 16. The Ornstein-Zernike form of the staggered
spin correlation function implies that y„(T) ~ b (T)g' .
The function b (T) is known to behave as b (T) ~ T in
the classical 2D XLo.M at low temperatures. Our data
show that this scaling form applies to the quantum
Heisenberg model as well. We plot the staggered suscep-
tibility as a function of T g . The data points are reason-
ably well described by the scaling form y„~aT g . The
constant of proportionality a is around 1.65, and can be
related to various quantum renormalization factors.
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I I I I I I I remains the exchange coupling J, which is to be deter-
mined. Choosing J =1450 K, we plot our data points,
the best ftt [Eqs. (13) and (14)], and the data from neutron
scattering experiments in Fig. 17. The agreement is ex-
cellent, since our data points are nested between the ex-
perimental points. This is a strong indication that the
magnetic behavior is indeed dominated by the nearest-
neighbor Heisenberg Hamiltonian. Thus, we provide, by
a direct comparison with experiment, an independent
determination of the exchange constant J:

J =1450+30 K .
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FIG. 16. The scaling plot of the staggered susceptibility. The
solid-line fit corresponds to the NLcrM result, y„=aT g, with
a =1.65.

V. COMPARISON WITH EXPERIMENTS
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FIG. 17. Inverse correlation lengths of La204 measured in
neutron scattering experiments (Ref. 4), denoted by crosses, and
those measured in our simulation, denoted by squares [in units
of (1.178 A) '], J= 1450 K. At T= 500 K, LazCu04 undergoes
a structural transition. The curve is the fitting form of Eq. (16).

It is believed that the Heisenberg model can provide a
good description of the undoped high-T, materials in the
insulating phase. We investigate this by comparing the
correlation lengths from our calculation with those ob-
tained in neutron scattering experiments.

The effective exchange coupling J and the lattice spac-
ing a are the free parameters in our calculation. Al-
though the Hamiltonian of Eq. (1) is an eff'ective model,
the most straightforward approach is to identify the mi-
croscopic length scale a with the distance between copper
atoms on Cu-0 planes (neglecting the orthorhombic dis-
tortion): a =aH=3. 79 A. The only unknown parameter

The uncertainty of +30 K is estimated by plotting our
data points for various values of J, until the deviation
from the experimental data points becomes noticeable.
This value of J is in very good agreement with the one de-
rived from the spin pair Raman spectrum, by Singh
et al. : J =1480+70 K. The agreement between esti-
mates derived from both short- and long-wavelength
physics is another indication that the Heisenberg model
captures the essential physics. Also, the measurements of
spin-wave velocity on a different sample, combined with
the quantum renormalization factor for spin-wave veloci-
ty, ' yield a slightly higher estimate, J=1550 K.

The fitting form of Eqs. (13) and (14), with the value

g( T) O 276a e 1.25x 1450~T(K) AaHe (16)

of J can reproduce some of the experimental data at
lower temperatures, which are not accessible to direct
simulation. Our choice of J yields a very good agreement
with experiment over a wide temperature range and
achieves the best agreement between our data points and
experimental data points. Note, however, that as the 30
Neel temperature is approached, the theoretical curve
gives systematically larger correlation lengths than exper-
iment, due to a multitude of small effects, which are not
taken care of by the pure Heisenberg Hamiltonian. The
very existence of a finite T& is a manifestation of small
symmetry breaking perturbation s and interlayer cou-
pling, because the pure Heisenberg model does not have a
finite transition, as our simulation demonstrates.

The correlation lengths are very sensitive to the value
of spin stiffness, due to the exponential dependence.
However, if an error is made in the calculation of p, in
units of J, it is possible to adjust the amplitude 3 and the
exchange J, and still obtain reasonable agreement with
experimental data. Because of that, the values of J that
were used in the literature to fit the experimental data
vary from 900 to 1600 K. We believe that our calculation
provides an accurate determination of J, in the sense that
it is the optimal value, as long as one is satisfied with the
description of the real system via the single-coupling
model. It is a first principles calculation on the model,
with all possible sources of error under control. Our esti-
mate is derived from the data of very high statistical
quality, and is based on a direct comparison with experi-
ment. Furthermore, our values of p, [Eq. (14)] and J [Eq.
(15)] are in very good agreement with two independent
series estimates of p, (Ref. 10) and (Ref. 35).
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VI. CONCLUSION APPENDIX

The behavior of the 2D quantum Heisenberg antifer-
romagnet over a wide range of temperatures is investigat-
ed via a large-scale quantum Monte Carlo simulation.
We developed an efficient multispin coding algorithm on
a parallel supercomputer, based on the Suzuki-Trotter
transformation. The system sizes are almost 2 orders of
magnitude larger than those that were previously
achieved. We presented results of high statistical quality
for standard thermodynamic quantities like energy,
specific heat, and susceptibilities, and compared them
with analytical results in appropriate asymptotic regimes.
The staggered susceptibility is found to obey the scaling
form of the 2D classical XI.o.M.

By studying the spin correlations, we showed that the
quantum Heisenberg antiferromagnet with nearest-
neighbor exchange coupling behaves very similarly to its
classical counterpart, as suggested by the renormalized
classical picture of CHN. We have recently performed a
similar analysis of the 2D quantum XY model, where we
established the presence of Kosterlitz- Thouless phase
transition. In other words, these nonfrustrated quan-
turn models are in the same universality classes as their
classical analogs.

We show evidence that the correlation functions are of
Ornstein-Zernike type. We accurately determine the
functional form of the divergence of the correlation
length and the renormalization effects due to quantum
Auctuations. By comparing the calculated correlation
lengths directly with those obtained in neutron scattering
experiments, we give an accurate estimate of the ex-
change coupling, and show that spin correlations in the
insulating phase of La2Cu04, not too close to the 3D or-
dering temperature, can be well described by the Heisen-
berg model.

Our results also provide quantitative assessments of
various approximate methods, ' which may be useful
for their further improvements.
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perform a canonical transformation on one of the sublat-
tices, say 8:
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where the unitary operator U=exp(imp;~~$ ) maps
S = & —S and S~= ) —S . There are six nonvanishing
matrix elements and six corresponding allowed spin
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