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Phase diagram of the t-J model: A semiclassical calculation
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The results of a semiclassical variational calculation of the t-J model are presented. The general-
ized staggered flux phases are introduced. It is found that these flux phases are stable for a large pa-
rameter range of the phase diagram. An interesting feature of these flux phases is that for small

doping they have the best potential energy and for larger doping they have the best kinetic energy.
It is also found that only those flux phases that do not break the local time reversal and parity sym-

metries are energetically favored. For sufficiently small J/t and doping the spiral phase is stable.

I. INTRODUCTION

The delicate competition between the holes in a doped
quantum antiferromagnet to minimize their kinetic ener-

gy and for the spins to minimize their exchange energy is
both a fascinating and difficult problem and one which is
likely to lead to novel magnetic coherence. It has also
been qualitatively argued' that the basic physics of the
copper-oxide planes of the high-temperature supercon-
ductors may be described by the strongly correlated Hub-
bard model. For small doping this is equivalent to a
model Hamiltonian which describes the motion of holes
in an antiferromagnet, the so-called t-J model. In this
paper we present a semic1assical variational calculation
which shows a rich phase diagram for this model.

We define the t -J Hamiltonian as

H=t g c, c +H. c.+J g(S; SJ ,'n;nj), ——

where c; creates a fermion with spin o. on site i,
S; = —,c, o c; ~ and n, =c; c; are spin and number
operators, respectively, and (ij ) represents nearest
neighbors. (Throughout this paper the Einstein summa-
tion convention will be assumed for all Greek indices. )

The Hamiltonian is understood to operate on empty or
singly occupied states only. This Hamiltonian has been
extensively studied. There is a wide body of evidence
from studies of the nonlinear o. model to exact diagonali-
zations and quantum Monte Carlo calculations which in-
dicate that, at half-filling, there are long-range antiferro-
magnetic correlations. Experimentally, the undoped
high-temperature superconductors show antiferromag-
netic order. However, there is much less concensus on
the expected ground state as holes are doped.

By taking the continuum limit of this Hamiltonian,
Shraiman and Siggia found that, for small doping, the
holes introduced a spiral distortion into the staggered
magnetization. Kane et al. came to a similar conclusion
in a mean-field theory. Following Aleck and Marston,
other mean-field theories have suggested the possibility of
"flux phases" in which parity and time-reversal sym-
metries are either locally or globally broken. However,
one has to be cautious with 1/N mean-field theories as

the Gutzwiller constraint is not correctly dealt with.
Other studies have also suggested the stability of flux
phases for certain parameter ranges.

In an attempt to understand the phase diagram of this
Hamiltonian by making well-controlled approximations,
we construct variational wave functions which will pro-
vide rigorous upper bounds to the ground-state energy.
We choose semiclassical wave functions, namely wave
functions for which the spin orientation at each site is
fixed and we11 defined, so quantum fluctuations are ig-
nored. This enables us to strictly impose the Gutzwiller
projection on the wave functions. Quantum fluctuations
in the undoped quantum antiferromagnet merely renor-
malize the spin variables from that of the classical result.
Hence, for reasonably small doping, we expect that the
neglect of quantum fluctuations will not qualitatively
alter the phase diagram.

The plan of this paper is as follows: In the next section
we derive an eA'ective Hamiltonian which describes holes
moving in a fixed spin background and present our varia-
tional procedure. We will show that the coupling of the '

holes to the spin background is equivalent to the motion
of holes in a fictitious flux. Thus, in Sec. III we discuss
the motion of spinless fermions in a generalized staggered
flux. As we will see, certain flux arrangements can
significantly lower the kinetic energy of the holes. The
phase diagram within this scheme is presented in Sec. IV
where we discuss the various phases. Finally, we con-
clude.

II. HOLES IN A STATIC SPIN BACKGROUND

A. The efFective Hamiltonian

The Hamiltonian (l) acts only on the empty and singly
occupied subspace. To take this constraint explicitly into
account, we adopt the slave-fermion Schwinger-boson
representation, which is to factorize the real electron
operator

c; =fb;
where the ft are fermion operators If;,ft}=5;,while
the b,tare boson operator. s, [b;,b ~ ]=5,"5 . The fer-
mions and bosons necessarily satisfy the constraint

43 1991 The American Physical Society



43 PHASE DIAGRAM OF THE t-J MODEL: A SEMICLASSICAL. . . 3541

b; b; +f; f; =1 for each site. Notice that the represen-
tation (2) automatically projects out doubly occupied
sites since

c;c; =ffb; b;:—0.

(4)

where b, t (z; ) creates an up spin on the ith site quantized
along the direction z;. z; is denoted by the Euler angles

and 8; (i.e., the azimuthal and polar angles) with
respect to the global axis of quantization z. In terms of
the global axis of quantization we may write

6i;
cos

2
in, & =bt, (z, )io) =

i re,.e 'sin
0;
2

We may identify f; as creating a hole on the ith site
while b, creates a spin. Substituting (2) into (1) the
Hamiltonian now reads

8 = —t g(f,~f;b; b)+H. c. )
(ij )

+—g (1—n, )(1 nf)—(b, eb; bo b. —1), (3)
J

&ij )

where o is the Pauli spin matrix, n f=f, f, is the fermion
number operator, and we have introduced the spinor no-
tation for the bosons

b, )
b;=

b;)

It is clear from (3) that the spinless fermions and spin-
ney bosons are intimately coupled. Ideally one would
like to diagonalize this Hamiltonian for both the hole and
spin degrees of freedom. Since we cannot do this it is
necessary to make some simplifying assumptions. Our
assumption is that, in the presence of strong antiferro-
magnetic correlations, the key physics is that the hole
movement is renormalized due to its coupling to the spin
background. We will take a semiclassical approximation
and assume that the spin degrees of freedom are frozen
and study the consequences of particular spin
configurations on the hole dynamics. (On the other hand,
to investigate the spin dynamics the hole background
may be fixed. ) The spin background will be taken as vari-
ational parameters.

We wish to show that the Hamiltonian (3) diagonalized
in a Hilbert space of Axed spin orientations is equivalent
to an effective Hamiltonian in which there are only hole
degrees of freedom. Let the fixed spin background
through which the holes hop be denoted by

(6)

In general, for n doped holes, the basis states are of the
form

i[i j,k, . . . ])
=[f,f~f„][b,t(z, )b/t(z/)b„t(z„) . . ]Iq, &

where there are n terms within the square brackets.
The matrix elements of H within the subspace are

readily calculable. Consider first the HKE and only one
hole; the representative basis state is denoted by li ) (6).
Then the action of the hopping part of the Hamiltonian
on this state will be to hop the hole from site i to a neigh-
boring site j and transport the spin on the jth site
coherently to site i:

&~Elt) = tf, f;b—;t bj f; b;T(z;)If, )

tf& b, t—(z; ) i&, & .

Within the fixed spin configuration subspace the only
nonzero overlap is with the basis state ij ) and it is

which is a product of the orbital wave-function overlap
and spin wave-function overlap.

Using (5) it is easily shown that

t, ,
—:t(n, in, &

=t [cos(8, /2)cos(8 /2)+e ' ' sin(8, /2)sin(8 l2)]

where Q;=(sin8;cosP;, sin8;, sing;, cos8;) is the unit vec-
tor along the local axis of quantization z; for the ith spin.
Evidently the magnitude of the hopping amplitude is re-
duced by a factor depending on 0;-0 - while the phase is
proportional to co, the solid angle subtended by the two
spins and the global axis of quantization. This phase is
manifestly ambiguous as the global axis of quantization is
arbitrary —this corresponds to a gauge degree of free-
dom. The invariant quantity is the solid angle spanned
by the four spins surrounding a plaquette which corre-
sponds to twice the Actitious Aux threading the plaquette.

In a similar manner we may calculate the matrix ele-
ment of HPE between any two basis states. This will only
give a diagonal contribution. For example, if ii,j )
represents a basis state in which there are only spins on
sites i and j then

(t,j lHPEit, j ) =
—,'(Q;.Q, —1) . (10)

in the coherent state representation.
Holes are created by annihilating spins; for a single

doped hole the ith basis state is

Consequently, we may introduce an effective Hamil-
tonian in which the spin degrees of freedom are taken to
be classical,
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II,tt
= —g ( t, f, f +H. c. )

&ij )

J+—g (1 —n; )(1—nf)(Q; Qj —1),
(iJ)

and where the Hilbert space is spanned by the hole basis
states of the form

0 0 0 0

li, j,k, . . . &=f fj'fk (12) 0 0 0 0

B. The variational wave function

Even though the spin degrees of freedom have been
frozen, we are still left with the formidable problem of
solving (11). Our approach will be to construct a varia-
tional wave function which will be an eigenstate of HzE
only, and then calculate the expectation value of HpE.
Provided that the I t, }are chosen so th"at there is transla-
tional symmetry, HKE can be trivially Bloch diagonalized
and its ground-state wave function

~ g & is formed by
filling up the Bloch states fk „& of energy Ek „ to the
Fermi level Ej (n is a band index),

(13)
k, n f

We can calculate the expectation value of the energy,

&E(I~; P;I)&=&/(I~; P;I)IH,sli)'j(I();, y;I)& . (14)

The kinetic part is the sum of the spinless fermion spec-
trum up to the Fermi energy

«~E&= X
E.k

while the exchange energy is

(15)

(16)

Given the Bloch wave function (13), the expectation
value of the particle-particle correlation function can be
calculated. Its derivation and resulting expression are
shown in the Appendix.

From the e6'ective Hamiltonian it may be observed
that the spin background aftects the hole motion in two
ways. Firstly, it introduces an efFective attractive interac-
tion between two holes on neighboring sites: this may
serve as a possible pairing mechanism for holes. Second-
ly, an almost antiferromagnetically correlated spin back-
ground dramatically reduces the hole-hopping amplitude
(~t,j ~

(t) The. re is therefore a tendency for the spins to
distort away from being antiferromagnetically aligned
when the doping is increased —this is just the Nagaoka'
tendency to drive the spins ferromagnetic. Furthermore,
the hopping amplitude of the holes may be chosen to be
complex and hence a spin configuration can be construct-
ed which mimics a fictitious Aux. We will show presently
that such spin configurations can significantly lower the
kinetic energy of the holes. It is this competition between
the kinetic energy and exchange energy which gives rise
to the richness and the complexity of the problem.

0 0 0 0

FIG. 1. An example of the (1,1) spiral phase. Arrows indi-
cate the local spin direction projected onto the x-z plane. All
spins have the same azimuthal angle and therefore the Aux

through every plaquette is zero. The z axis is out of the paper.

We now have a prescription for calculating the expec-
tation value of the energy for a given spin configuration
which is to be minimized with respect to I 0;,P; ]; all that
remains is for us to construct some suitable spin
configurations. We consider two broad classes of spin
configurations.

(i) Fluxless phase configurations. In this case t; may
be complex but ii; t; around a plaquette is real, thus
the holes have a tight-binding spectrum. Spiral and cant-
ing configurations fall into this class. Figure 1 shows the
spin configuration for a (1,1) spiral phase. Let 6;j be the
angle between two neighboring spins, viz. ,

9,j=cos '(Q; Q. ),
then from (9)

(17)

0;
[t~jI =t cos

(ii) Flux phase configurations. In general,

II' =II~' ~"

where we may interpret @ as the fictitious Aux which
couples to the holes and, from above, is half the solid an-
gle subtended by the four spins surrounding the pla-
quette.

Of the possible spin configurations, the Aux phase is of
particular interest and has been extensively studied in
both a mean-field approach and Monte Carlo simula-
tions. But why should they be relevant? One clue comes
from the interesting work of Hasegawa and co-workers"
who showed that the kinetic energy of spinless fermions
in a uniform magnetic field is an absolute minimum when
there is one Aux quantum per particle. This is the so-
called commensurate flux phase (CFP). This suggests the
possibility that, in spin configurations which mimic a
Aux, the kinetic energy of the holes is lowered. However,
a CFP cannot be constructed from a fixed spin back-
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ground near the Neel state because the CFP breaks the
global time-reversal ( T) symmetry. In contrast, the
time-reversal symmetry is only broken locally in the Neel
state and it may be restored by a lattice translation (R).
This suggests that the staggered flux phase (SFP), which

has an alternating Aux through nearest-neighbor pla-
quettes, will be more relevant for our problem. Indeed,
such a phase can be constructed.

Consider the spin configuration shown in Fig. 2(a).
The azimuthal angles of neighboring spins di6'er by w/2.
If the polar angles are a and P for spins on the A and 8
sublattices, respectively, then the solid angle subtended
by the four spins around a plaquette is

co=8 tan '[tan(a/2)tan(P/2)] (19)

and the fictitious Aux threading the plaquette is &=co/2.
If P=m —a then N = sr( —1)"and we form the vr staggered
fiux phase. In this paper we will take 13=~ a if—the rela-
tive angle 0 (17) is ~ vr/2 and /3= a if 8 is (~/2.

In constructing various spin configurations as candi-
dates to minimize the energy of the Hamiltonian (3), we
are naturally led to the concept of the generalized stag-
gered fiux phase (GSFP) for which the translation opera-
tor R, which restores time-reversal invariance, is not re-
stricted to a nearest-neighbor lattice vector, but is a finite
lattice translation vector

0

R =[x~x+m, y~y+n] .

As we will see, this gives rise to a variety of Aux phases
which become important for small doping.

Since, as we have said, the variational wave functions
are eigenstates of the kinetic energy, we obtain useful in-
sight about the structure of the phase diagram by consid-
ering this term alone. In the next section we will there-
fore study the problem of spinless fermions moving in a
generalized staggered Aux.

III. SPINLESS FERMIONS
IN A GENERALIZED STAGGERED FLUX

The Hamiltonian which describes the motion of spin-
less fermions in a staggered Aux can be written as

+ 0 0 + i/iHKE= —g e 'f; f +H. c. ,
(ij )

(20)

0 0 0 0 0

0 + 0

0 0 0 0 0

where P; is the gauge potential on the link ij It is i.m-
portant to notice that, although the definition of P;~ de-
pends on the particular gauge, the physically relevant
quantity is the gauge invariant Aux 4 through a plaquette
P

(21)

+ 0 0 +

(c)
FIG. 2. The spin configurations corresponding to (a) the

q =2, (b) the q =4, and (c) the q =8 Aux phases. In all cases ar-
rows indicate the projection of the spins onto the x-y plane.
The spins on the A and B sublattices have polar angles a and P,
respectively. + and —represent the polarity of the Aux thread-
ing the plane and z points out of the paper.

We consider Aux arrangements for which the magnetic
unit cell contains q plaquettes but where only two are
pierced with alternating Aux of magnitude 4 . The aver-
age fiux magnitude per unit cell N,„ is then 2~@ ~/q.
Among the various Aux patterns examined, we found that
the ones with the highest symmetry have the lowest ki-
netic energy. We denote these as generalized staggered
Aux phases. The well-known example is the q =2 case
shown in Fig. 2(a), the q =4 and 8 examples are shown in
Figs. 2(b) and 2(c).

Table I shows the kinetic energy per site for various
dopings as a function of q when ~@~~ is rr so that
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TABLE I. The kinetic energy per site for spinless fermions in the q generalized ~ staggered Aux for
filling x with various values of q.

1

32
1

16

1

32
1

16
1

8
1

4
1

2

—0.118956
—0.226 264
—0.408 076
—0.656 427
—0.810 755

—0.117320
—0.223 518
—0.404 783
—0.656 250
—0.817 117

—0.112216
—0.221 948
—0.402 156
—0.652 540
—0.820 120

—0.104 996
—0.207 129
—0.401 658
—0.652 075
—0.831 108

—0.088 378
—0.176 650
—0.351 971
—0.677 473
—0.833 707

—0,086 227
—0.168 393
—0.321 258
—0.589 499
—0.958 092

&&„=2m/q We. observe that, for hole dopings of less
than —,', the tight binding (zero Aux) phase has the best en-

ergy whereas for hole doping of greater than —,', a fiux

phase always has better energy. Indeed, for the latter
case, given a doping x, the best kinetic energy occurs
when @„is commensurate with the doping. For exam-
ple, at a doping of one-quarter, the best kinetic energy
occurs for the q =4 Aux phase which has an energy of—0.6675 versus —0.6562 for the tight-binding case. The
density of states for the q =2 case is shown in Fig. 3(a).
There are two bands which are degenerate at E =0. The
q =4 density of states is shown in Fig. 3(b); here there are
four bands. Notice that this problem bears a resemblance
to the uniform Aux problem in so far that the best kinetic
energy of the holes at a quarter filling is the q =4 phase
where the lowest band is filled and for one-half filling, the
q =2 phase is best with the lower band full. However,
there are no gaps between the bands as in the uniform
Aux problem' and, unlike that problem, there is no Aux
pattern which can lower the kinetic energy for suSciently
small doping. Figure 4 shows the kinetic energy per site
for the tight binding q =4 and 2 cases as a function of
doping when 4

~

=~. For 0.23 ~x ~0.39 and
0.61 ~ x + 0.77, the q =4 phase has the lowest kinetic en-
ergy while for 0.39~x ~0.61, the q =2 phase is lowest.
If C is decreased from m then the energy differences be-
tween the Aux phases and tight binding monotonically de-
crease to zero as illustrated in Fig. 5.

Finally, we should observe that, in general, the Hamil-
tonian (20) breaks local parity and time-reversal sym-
metries which may be restored under a suitable lattice
translation, however, if N =~, then local parity and
time-reversal symmetries are not broken. ' Indeed, the
current of spinless fermions around each plaquette,
defined as

0.32

0.24—

o 0.16—

0.08—

2.8

2.4—

1.6—
C5

Energy

gh&le
E ( e iyftf e iiftf)''(22)

0.8—

is found to be precisely zero. This has important implica-
tions in the next section [see (32)I.

Since for sufficiently high doping the q =2 and 4 GSFP
have lower kinetic energy than the tight-binding spec-
trum, we may anticipate the next section by stating that
spin configurations which correspond to such fiux phases
are good candidates to minimize the total energy for cer-
tain parameter ranges.

0.4—

Energy

FIG. 3. (a) Density of states for the q =2 ~ Aux phase. (b)
The same for q =4.
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IV. THE PHASE DIAGRAM

-0.3

-0.5

In this section we calculate the expectation value of the
Hamiltonian (11)at a given doping

1x=— g 1
&.„.&.,(-)

for the various spin configurations considered in Secs. II
and III. Using Eqs. (15)—(18), the total energy per site as
a function of the angle 0 between two neighboring spins
can be written as

-0.7

e(0) =tg(x)cos(0/2)+ —p(x)cos0,J
2

where

lg(x)= — g e„„
ck & c&(x)

and

(23)

(24)

0.2 0.4 0. 6 0.8

FIG. 4. Kinetic energy per site as a function of doping when

4~ =m. The solid curve is for zero flux and the dashed and dot-
ted curves are for the q =4 and 2 ~ flux phases, respectively.

p(x)=((1 n,/)(1 ——nf)) . (25)

The average in (25) is taken over the ground state of the
Hamiltonian (20), and Vk „ in (24) is its spectrum. The ex-
plicit calculation for p is given in the Appendix. For the
spiral, canting, and ~ Aux phases, q and p are indepen-
dent of 0.' Minimizing E(0) with respect to 0 gives

ill 0
ao

= —sin(0/2) —g+ J'p cos
2 2

(26)

whence

0.06—

and

0, (x)=2cos tq(x)
Jp(x)

g (x)t Jp(x)
4Jp(x) 2

(27)

0.04— 100

10—

0 ~

—0.02—

0.2 0.4 0.8

FIG. 5. The difference in kinetic energy per site between the
q =4 flux phase and tight binding at one-eighth (dotted), one-
quarter (solid), and one-half (dashed) filling as a function of
[e, [/2~.

0.1
0 0.2 0.4 0.6 0.8

FIG. 6. The phase diagram for the t-J model.
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4tx
0, =~—0, =

2J(1—x)
(29)

This rederives the results of Shraiman and Siggia. Notice
that the only important quantity is the relative angle be-
tween neighboring spins and therefore there is no distinc-
tion between canting and spiral phases, for example. In-
cluding quantum fluctuations will favor the spiral distor-
tion. We can see that, in order to minimize their kinetic
energy, doped holes introduce a long-range spiral or cant-
ing distortion in the Neel background.

The Nagaoka limit can also be found from (27) for
small doping; this is defined as the limit that L9eq~0 or

upon setting (26) to zero.
The phases with the lowest energy are shown in Fig. 6.

There are four competing phases: (1) spiral, (2) q =4 Aux

phase, (3) q =2 ilux phase, and (4) the Nagaoka fer-
romagnet. The Nagaoka ferromagnet is stable when the
kinetic energy of the holes completely dominates, this
occurs for J/t ((J/t)„where (J/t), progressively in-
creases as the doping increases. When J/t is large, 0, is

close to ~, the hole-hopping amplitude is strongly renor-
rnalized, and the Heisenberg energy dominates. We find
that, for 0+x ~0.39 and 0.71 x 1, the q =2 flux
phase has the best energy whereas for intermediate dop-
ing, the spiral phase is stable. This result coincides with
previous studies which showed that flux phases were
stable for small doping at large J/t. For intermediate
values of J/t [namely O(1)], the kinetic energy of the
holes becomes important in determining the magnetic
coherence especially for large doping. We find that, as
the doping is increased, there is a phase transition from a
spiral to a q =4 phase at x -0.23, and at x -0.39 the
q =2 phase is entered. As the doping is further in-
creased, there is a reversal of this trend. This may be
easily understood from the analysis of the last section
which showed that, for hole dopings between 0.23 and
0.77, a flux phase always has better kinetic energy than a
fluxless phase.

Let us now examine how O,„behaves as a function of
doping and J/t. When the doping is small g= —4x and
p=(1 —x), then from (27) the distortion away from Neel
order is

180 ~

150

120—

O(deg)90—

60—

30—

e

I ~

0.2

I

I

I

I

I

I

I

I

I

I i l

0. 6 0.8

180

150—

120—

spiral to the q =4 and then to the q =2 phase. Initially
0, decreases smoothly, however, notice that 0, plateaus
at ~/2 in the flux phases for x between 0.36 and 0.51. At
x =0.51, O,„discontinuously falls to zero.

Similar features are shown in Fig. 7(b) for 8, as a func-
tion of J/t at x =

—,', —,', and —,'. x =
—,
' cuts through the

q =2 flux and spiral phases; aside from the small discon-
tinuity at the phase boundary, L9,q

varies smoothly to
zero. However, for x =—' and —,', when J/t is small, the
cuts pass through the q =4 and 2 flux phases, respective-

2tx o
J(1—x)

implying that

(30)
Q (deg)

90

J
(1 —x)

60—

Turning to the more quantitative results, in Fig. 7(a),
we p lot Oeq versus x for three values of J/t: 0.5, 1 .5, and
30. J/t=0. 5 corresponds to a cut through the spiral
phase to the Nagaoka state. As expected, 0, decreases
as the doping is increased. J /t =30 cuts through the
q =2 flux phase, spiral phase, back to the q =2 flux
phase, and finally to the Nagaoka phase Oeqz decreases
smoothly but more slowly as a function of x until it
reaches ~/2 whereupon it jumps to zero. The third plot
for J/t = 1.5 is very interesting. Here we cut through the

30—

0
0.1 10

I I I I I I I I

100

FIG. 7. (a) 0,~ vs hole doping (x) for J/t =0.5 (dotted), 1.5
(dashed), and 30 (solid). (b) 0 q vs J/t for dopings of —,

' (solid), 4

(dashed), and —' (dotted).
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ly. Once again there are plateaus over a significant pa-
rameter range where H, q

remains at ~j2 before jumping
to zero.

At first sight these plateaus seem rather surprising.
Naively one would argue that as J/t is lowered, the ki-
netic energy becomes more important and so 0, de-
creases. The hole-hopping amplitude therefore increases
with no discontinuous behavior at ~/2. However, for the
Aux phases we must remember that, when 0,„~m/2, the
polar angles of the spins on the sublattices 3 and 8 are a
and /3=sr a, r—espectively, so the fiux through a pla-
quette is always m. But when 0, (m j2, we have a=@ so
the fiux is less than m (19). Hence, g [defined in (24)] in-
creases with decreasing 0, and so the gain in kinetic en-
ergy cannot compete with the loss of the potential ener-
gy. This accounts for the remarkable stability of the
0, =~/2 plateau. There is a significant consequence as-
sociated with this plateau, namely that the Aux through a
plaquette 4 is always ~. We thus come to an important
conclusion that the "Aux" phases are stable only if the lo-
cal P and T symmetries are not broken. As a result the
current of electrons around a plaquette

hole (32)

is always zero. These results suggest that the ground
state of the t -J Hamiltonian does not break local P and T
symmetries.

shown, by taking the Gutzwiller projection explicitly into
account, that at x —

—,
' and Jjt —O(1), the novel flux

phases are stable because the fictitious Aux, generated by
the spins, can significantly reduce the kinetic energy of
the holes. We expect that the introduction of quantum
fluctuations will not alter this result. However, for
sufficiently large doping, the picture of holes moving
through a spin background becomes invalid. We would
then expect that the phase diagram is no longer qualita-
tively correct. Indeed, it is known that when x &0.864,
the Nagaoka ferromagnet is not stable.
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APPENDIX

It is the purpose of this appendix to derive an expres-
sion for the expectation value of the nearest-neighbor
particle-particle correlation function. That is, we require

p =
& @ I (1—f; f; )(1 f,~f) )

I g &—
=1 &Plf f; I@&

—&@If,f, I@—&

V. CONCLUSIONS
+ & glf; f;f,'f, I@&, (Al)

In this paper we presented a variational calculation of
the phase diagram of the t -J model within the semiclassi-
cal approximation. Generalized staggered Aux phases
were introduced. We found that these Aux phases are
stable for a large parameter range. This can be under-
stood by considering the essential physics: for small dop-
ing the Heisenberg term dominates while for larger dop-
ing it is the kinetic energy which is important. The re-
rnarkable feature of the GSFP is that, for small doping,
they have the best potential energy and for larger doping
they have the best kinetic energy. Indeed, there is a win-
dow of J/t for which the GSFP is stable over a large
range of doping. For suKciently small J/t and doping,
we found that the spiral phase is stable, in agreement
with earlier work. ' Another important result is that
only those GSFP states which do not break the local
time-reversal and parity symmetries are energetically
favored. This appears to be consistent with most of the
experimental measurements on time-reversal symmetry
breaking in the high-T, materials. '

In our analysis we have neglected quantum Auctua-
tions. It is expected that, at a certain doping, the spins
will become disordered but on short length scales they
would still remain correlated. The semiclassical varia-
tional calculation will therefore encapsulate the key phys-
ics of the competition between the kinetic energy of the
holes and the potential energy of the spins. We have

so that

1= ik R.
X

unit cells

(A3a)

—ik R,.fr =
~—ge ~fk

k
(A3b)

then the quasiparticle creation operator is

fkn =a.;(I )fj';

and the inverse relation is

(A4a)

(A4b)

where P= a
Let us first calculate & QI f; f; I g &

=
& n f&. This is

where Ig& is constructed by filling up all the allowed
states to the Fermi energy:

f .Io&
Fk (cf

Here fk„creates a quasiparticle with crystal momentum
k in the nth band.

Generally it will be necessary to consider more than
one atom per unit cell. Let f t; create a spinless fermion
on the ith atom of the yth unit cell. Iffk, is the Fourier
transform offz, , namely,
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0 rtf„„— z P;„,(k, )P,"„,(k, )f,„,f ... ' ' 'iif„„O)
k, n kl, k2, nl, n2 k, n

upon substituting Eqs. (A2), (A3b), and (A4b). This is identically zero unless [k„n, j = [kz, n2 j & Ef whereupon

(nf) =—g P,„(k)P,*„(k) .=1
k, n &cf

The two-site correlation function ( g ~ftf,f tf ~ lT ) = ( n fn ) is

(t, X
kl, k ),k2, k2, n), n j,n2, n2

(A5)

Unless either (i) [k„n, j
= [ki, n', j and [k2, n2 }

= [k2, n2 j or (ii) [k„n, j =[kz, nz j and [k2, n2 }= [k'„n', j, this term is
also identically zero. Considering (i) first, we have

P;„(k i )P,*„(k i ) g PJ„(kz )/3*.„(k2 ) = ( n f ) ( nf),
k), n& &cf k2n2 Ef

and (ii) gives

(A6a)

p;„(k))p~„(ki)e ' g p „J(k )2p,*„(k~)e
, nl &F k2, n2 )cf

which is the correction to the mean-field term.

(A6b)
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