
PHYSICAL REVIEW B VOLUME 43, NUMBER 4 1 FEBRUARY 1991

Size dependence of coherent anomalies in self-consistent cluster approximations
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The behavior of coherent anomalies in gneiss-type and Bethe-type cluster approximations is
studied. In the Weiss-type case, logarithmic corrections to the naive coherent-anomaly-method
(CAM) scaling relation, which have been ignored in previous works, play an important role in
the CAM analysis. A phenomenological theory of the Bethe-type approximation is proposed to
show that a logarithmic correction term also exists in this approximation. The correction has,
however, smaller inhuence on the CAM analysis in this case.

I. INTRODUCTION

A = ) o;os (energy of 0), (2)

B = ) cr; (magnetization of 0),
ipA

c= )
i&BA

(4)

The parameter P (= 1/knT) denotes the inverse temper-
ature and I& denotes PJ. The quantity to; in (4) denotes
the number of free bonds at site i. The value of h,~ is
determined by the self-consistency condition,

(crp) = h,tr,
where (. . ) on the left-hand side denotes the thermal
expectation value under the Hamiltonian, (1), and op
denotes the Ising spin at the center of the cluster, Q.

Mean-field and effective-field theories have b een used
frequently to study cooperative phenomena. These theo-
ries include an essential feature of phase transitions, but
they produce only classical critical exponents. We are
now interested in estimating true critical exponents. Re-
cently one of the present authors (M.S.) proposed the so-
called coherent-anomaly-method (CAM) theorys ~~ in
order to estimate nonclassical critical exponents based on
systematic mean-field and effective-Geld approximations.

The formulation of Weiss-type cluster approximations
is given in the following. 5' The ferromagnetic Ising
Hamiltonian on a d-dimensional lattice is considered
here. A sphere cluster, 0, with radius r is considered,
and its boundary sites are denoted by OB. The Weiss-
type mean-field Hamiltonian, IIw, ;„,is given by

I~—PHw„„= I~ A + hB + I&h, t—rC,J
where

The critical point is determined by the equation

api —1= 0,
where

It has been observed and proved that the critical temper-
ature obtained by (6) is always greater than the true one
and converges to the true one when the cluster becomes
large. The critical behavior of susceptibility, ywejss is

given by '

7 gneissGyp C
+Weiss —

)TWejss TWejss
C C

where

b=
i

('B(1 —ap&)
BT g —g &f

—P

Therefore the critical behavior is always classical, that is,
p=l, irrespective of the cluster size, and it has been be-
lieved for long years before the discovery of the coherent-
anomaly-method (CAM) theory that this approximation
is not useful to estimate the values of true critical expo-
nents.

It has been, however, found by one of the present au-
thors that the critical amplitudes of this approximation
show anomalous behavior when the cluster size is in-
creased and that their divergence has information on the
true critical behavior. This divergence of critical ampli-
tudes is called the "coherent anomaly, " and the analysis
of the true critical behavior using this coherent anomaly
is called the "coherent-anomaly method, " which is abbre-
viated as CAM. The scaling relation between the critical
amplitude and the difference, bT„of the critical point
and the true critical point, is assumed to hold, and it
claims that the amplitude diverges with the exponent,
which is equal to the difference of the true exponent and
the classical exponent. For example, the critical ampli-
tude of susceptibility, gwej„, is supposed to diverge as
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TAB I.E I. The Monte Carlo estimation of |A'eiss-type
cluster approximations cited from our previous paper (Ref.
7). Thirty-two diR'erent temperatures are simulated for each
cluster. Sixteen temperatures of these 32 are near the Weiss
critical point, which is estimated by short and coarse simula-
tions. The rests are near the Bethe critical point. The cluster
0 is defined by ji P Z"; ji~ ( r + 0.01) for d-dimensional
lattice. The value of d is 2 now.

1
2
5

10
15
20
25
30
40
50

WeissTC

3.415 732
3.093 1 (14)
2.663 O5(62)
2.496 24(23)
2.432 68(17)
2.398 44(19)
2.376 63(17)
2.361 65 (17)
2.341 66(20)
2.329 39(23)

+Weiss

0.321 861
0.404 09 (33)
O.662 7(12)
0.941 3(16)
1.167 0(23)
1.357 8(42)
1.530 5(72)
1.695 7(80)
1.997(19)
2.25O(27)

Monte Carlo
steps

Analytic
1.1 x 10
1.1 x 10
1.0 x 10
1.0 x 10
1.0 x 10
8.1 x 10
1.0 x 10
1.0x108
1.0 x10

Katori and Suzukis studied the cluster Weiss approxi-
mation for the ferromagnetic Ising model on square and
cubic lattices with several clusters. For the square lat-
tice, the shape of their clusters is square or octagonal.
The size of their maximum cluster is 13 in linear dimen-

sion and contains 145 sites. They calculated the critical
points and critical amplitudes of susceptibility numeri-

cally by using the brick-laying transfer-matrix method

with respect to the most singular term, where denotes
the equahty except the multiplication of a constant (and
less significant terms, of course). The gw, ;„of(8) is

Qyo
W61SS $T~elSS

1
(~o) =

(~~ )(D)

where D is defined by

(12)

) 0, (boundary magnetization) .
ig BA

The critical point is determined by the equation

&os —~ox —O

and estimated the value of p to be 1.622(8) first directly
from the CAM scaling assumption, (10). They also es-
timated the value of y as 1.8(1) using a modified trial
function including a higher-order term. Although the
expected value of p is 1.75, this result was regarded as
plausible because the deviation of y from p=l. 75 seemed
to be owing to the restricted size of the clusters. Thus a
further study with larger clusters has been expected.

We have studied the Weiss-type approximations for
larger clusters by the Monte Carlo method. 7 Vector pro-
cessors made large-scale and accurate Monte Carlo sim-
ulations possible. i i5 Our cluster shape is a sphere.
The maximum radius of our clusters is 50 for the two-
dimensional lattice. The results of T, ""and y~, ;„are
cited in Table I for further analyses of the present pa-
per. The data of our clusters are listed in Table II. With
the CAM scaling assumption (10) the estimated value
of y is, however, 1.66(1), which is not consistent with
1.75. This diKculty was also reported by Patrykiejew
and Borowski. 6 They pointed out that the value of v is
not estimated correctly from the fitting of bT,
These results indicate that the naive CAM analysis of
Weiss-type cluster approximations does not work success-
fully.

On the other hand, we proposed and studied the Bethe-
type cluster approximation, and it was found that the
CAM scaling for magnetic susceptibility (10) seems to
work successfully for it. This approximation is almost
the same as the Weiss-type one except for the self-
consistency requirement. It uses the same Hamiltonian
as (1). The self-consistency equation is

TABLE II. The features of the clusters used in our calculations of square lattice. In this table,
nb „d and nf b d denote the numbers of bonds in the cluster and the number of free bonds from
the boundary of the cluster, respectively. n, (i=o, 1, 2, and 3) denote the numbers of sites that
have i free bonds.

1
2
5
7

10
15
20
25
30
40
50

5
13
81

149
317
709

1257

2821
5025
7861

JDA/

4
8

28

56

112
140
168

280

'+bond

16
140
268
592

1356
2432
3820
5520
9888

15 520

&free bond

12
20
44
60
84

124
164
204
244
324
404

Ap

5
53

113
261
625

1145
1821
2653
4801
7581

n1

0
0

16
16
32
48
64
80
96

128
156

n2

0

8
16
20
32
44
56
68
92

124

n3
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1
2
5

10
15
20
25
30
40
50

TBethe
C

2.885 42
2.698 9{17)
2.462 58(89)
2.382 35(20)
2.351 58{14)
2.334 86 {12)
2.324 05{13)
2.316 914(85)
2.307 14(19)
2.301 01{16)

+Bethe

0.500 0
0.650 01(38)
1.153 1(25)
1.713 8{26)
2.169 2{39)
2.568 9{52)
2.919 3{63)
3.234 8(91)
3.837{24)
4.369(27)

where a;z has the same form as (7) and

( 8'+~ (D) )
i'it l~fI i i,w, *ah? )„„

The critical amplitude of magnetic susceptibility is

aoi~io —a~o~o&
+Bethe — ~Bethee e

where ro is

f(aPr bpr ) &
!

gg=Q

The Monte Carlo method is used to solve the approxi-
mation for the clusters whose radius are 2—50. The re-
sults thus obtained are also cited in Table III. The esti-
rnated value of p based on the simple CAM scaling (10)
is 1.745(3).

Now there remains a problem concerning the relation
between the critical temperatures and critical amplitudes
of Weiss- and Bethe-type approximations in order to esti-
mate correctly the true critical point and the true critical
exponents. The purpose of this paper is to clarify this
relation.

In the next section, a phenomenological theory for the
Weiss-type approximation is studied. This phenomenol-
ogy is already proposed by Suzuki et a/. We have con-
firmed this theory based on our Monte Carlo data. This
theory produces a logarithmic correction in CAM scaling,
which has been ignored in the previous study, but we will
point out that this correction is important in CAM anal-
ysis. In Sec. III, the phenomenological theory for Bethe-
type approximation is proposed. The three-dimensional
Ising model is analyzed based on these theories in Sec.
IV. The critical amplitudes of other quantities are stud-
ies in the Sec. V. Section VI contains the surrunary and
discussion.

TABLE III. The results for Bethe-type cluster approxi-
matious, cited from our previous paper (Ref. 7). The data of
Monte Carlo steps are the same as Table I.

of the critical point of cluster approximation T, and the
true critical point T,*. The second problem is the rela-
tion between the cluster size r and the critical amplitude
of susceptibility y~„„.To answer them, we study phe-
nomenologically how the factors in expressions (6) and

(ll) behave following Suzuki ef al.4

A. g depe~de~ce of &

The explicit form of apr is obtained from (7). It is

ap r —IC(o p C') p —Ix ) to; (o'p o, )p

i&BR
(18)

where (. )p denotes the thermal expectation value under
the Hamiltonian (1) with h, rr

—0. In other words, it is

the expectation value on a free boundary cluster. Near
and above the true critical point, the correlation function
(opo';) may be written as

apr - Nr exp( —r/(), (20)

where u = 1 —g„. If the temperature lies in the re-
gion where the cluster size is large enough compared with
the correlation length of an infinitely large lattice (Q, the
above ( seems to diverge with the same exponent as that
of (Q. The Weiss critical point lies in such a region as is
observed in the relation (23).

Therefore we can replace ( by a(T —T,*),and the
expression of ao~ is rewritten as

ap, - mr" exp[ —r(T —T; )"/aj (21)

near the Weiss critical point. We have confirmed by using
the scaling plot of ao~ the above-mentioned argument.
In the square lattice case, the Monte Carlo estimations
of ao~ near the Weiss critical point of each cluster for
r = 2 —50 are used. The values of In(aprr ) are plotted
versus r(T —T; )". The exact value of v, namely 1, is

used. The plots are given in Fig. 1. These figures support
expression (21). The value of the exponent u is estimated
to be roughly 0.30. Therefore the value of the exponent,

g„, may be 0.70.
From (6) and (21), the critical point is obtained as

I' ln N + ~ ln r

)
'~"

bT, =T, —T, =a

(o Qo.;) = „* exp(-r/(),

where C, is a constant that may depend on site i in a
nonsingular form. The form of the exponent, d —2+ g„,
follows the convention. Then the dependence of ao~ on

the cluster size and temperature is written as

II. WEISS-TYPE CASE (22)

The Weiss-type cluster approximation is studied in this
section. We study two problems. The first one is the re-
lation between the cluster size r and the difference bT,

where ai and ag are constants. It is concluded that T,
converges to T,' when the cluster is large. The leading
singularity of this bT, is not (1/r) ~ but (ln r/r ) ~'. The
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FIG. 1. The scaling plot of the summation of center-to-boundary correlations ao& of the two-dimensional clusters. The
Monte Carlo estimations of aoj of the clusters whose sizes are r=2—50 are used for the plot, . For every cluster, the estimations
at 32 temperatures that are near the Weiss or Bethe critical point of each cluster are used. The value of v in (21) is 1. The
three figures, (a), (b), and (c) correspond to u1=0.2, 0.3, and 0.4, respectively. The results of r=2 and 5 have large deviations.
This plot supports the phenomenological description (21), and the value of ur is about 0.30.

ratio of the cluster radius to the correlation length of the
infinite lattice at the Weiss critical point is

p
lnr .

This ratio diverges to infinity when the cluster size is
increased in the gneiss-type approximations. Thus the
cluster has to be large enough for expression (19) of the

correlation function to be correct.
The results in Table I are fitted by the function (22)

to estimate the critical exponent v and to test the valid-

ity of this theory. The value of the true critical point,
T, = 2.269185. . ., is used for the fitting. The obtained
estimations are listed in Table IV. These results are con-
sistent with the true value v=1. The logarithmic term in

(22) is crucial for the correct estimation of the value of v.
Without this term, an incorrect estimation is obtained.
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B. Critical amplitude of y~„,, y=1.75, v=1.0

The expression of a~0 and the derivative of ao~ are
necessary to get the behavior of gw, ;„given in (ll). The
factor api has already been studied, and we can use (21).
Its temperature derivative b is

I I I

I
I I I i

(24)

The quantity aip is obtained from (7) as

(25)

I

3.2
I

"O

This a~0 will behave as

aip —M(bT, ) ~,
because the cluster is larger than the correlation length
of the infinite lattice at T, ""as is shown in (23).

Thus, from (11), the asymptotic behavior of yw„„ is
given by4

2.8

1.5 2.5

y=1.75, v=1.0
1

r(bT, ) (bT, )&
(27)

pP
Xweiss —

( I ) +i (28)

From the r bT, relat-ion (22), this is expressed using only
as

1.3

D
A

O
where p denotes (7 —1)jv. On the other hand, if this
y~;„ is expressed using only bT„ it has essentially sin-
gular behavior because there is the lnr term in (22).
Therefore, for the gneiss-type approximation, r is the
better parameter to analyze the critical exponent than
6T, . The factor r(bT, )" of Eq. (27) is the logarithmic
correction for the CAM scaling assumption (10) because
of the relation (23). The existence of this correction may
be harmful to the estimation of the critical exponent be-
cause this log correction is diFicult to distinguish from
the power-law behavior for the clusters whose sizes are
presently tractable. This correction term is responsible
for the previously estimated value of y, 1.66, based only
on the power-law behavior (10). The correction term is
plotted in Fig. 2 using the results in Table I. If the power-
law form is fitted to these corrections, the estimation is
(bT,),which coincides with the observed deviation,
1.75—1.66=0.09. Therefore we can conclude that this
correction term is responsible to the deviation observed

1,2
I

"O

I i i i I 1 I i I I I I I I I i I i I I i I i I I i i I

—1.5

1n 6T,

FIG. 2. The observed logarithmic corrections for yyy„.-.-
by Monte Carlo analysis. For this purpose, the values of
1/(yw, ;.-,bT, '

) are plotted in (a) vs the values of r5T, from
the results in Table I. The values of 1 (1/ny „;w6T,s)are''
plotted in (b) vs the values of lnbT, The solid line sh. ows
the function, 2.87(bT, )

' . This plot indicates that these
logarithmic corrections are dificult to distinguish from the
power-law behavior.

TABLE IV. The estimated values of v from the relation
between r and T, "".Function (22) is fitted for the results
in Table I. The exact value of v is 1.

Used region of r

TABLE V. The estimated values of p from the fitting of
(28) to the results in Table I are listed. The expected value
of p, = (7 —1)/v is 0.75.

Used region of r

5 50
10 50

1.027(9)
1.02(2)

5 50
10 50

0.76(2)
0.74(6)
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in the simple CAM analysis.
The function (28) is fitted for the results in Table I.

The estimations are given in Table V. These results are
consistent with the expected value of p = (p —1)/v =
0.75. The value of y is obtained from the estimated values
of p and v. The errors of statistical estimations in the
present paper indicate one standard deviation.

PLOT OF boy

III. BETHE-TYPE CASE

The Bethe-type cluster approximation is studied in this
section. A phenomenological theory ls p1'op osed. It ls
necessary to describe the behavior of the summation of
b oundary-to-bound ary correlations.

1.6

ependence of T

The expression of bpi is calculated from (15) as

K
bpi —— (Dc)p —— ) ) w, (o.;o;) . (29) 1.4 I I I I I I I I I I I 1 I I I I I I I I I I I I

—2.5

Therefore, if the cluster is large enough, this is rewritten

I'» - ).(~*~~)p
j&BA

(30)

where o;. is any (but the typical) boundary spin. If the
cluster radius r is much larger than the correlation length

(, the correlation function (o;cd)p will be approximated
as

ln 6T

FIG. 3. Plot of the values of ln boy of two-dimensional clus-
ters. The Monte Carlo estimations near the I3ethe critical
point of each cluster are shown. The cluster sizes are the
same as those in Fig. 1. The power-law dependence (33) is
clearly observed.

N'
expI —»(b'T, ) /aj = (6T,)

) - exp( —
I» -~li&. )

old —2+ass
j&»9A

Therefore bol is written as

bpi ——N'(bT)

(32)

where the exponent cu' may be diA'erent from (1—»I„)v, /v
because some unnegligible correction may appear from
the integration over the surface. The condition that the
ratio»'/( be large is satisfied, which is shown in the fol-
lowing.

This behavior (33) is confirmed by the Monte Carlo
results for a two-dimensional lattice. The values of bol
near the Bethe critical point of each cluster are plotted
in Fig. 3. The power-law dependence is clearly observed.
The value of w' is roughly estimated to be 0.20.

With (20) and (33), the equation that determines the
critical point, (14), reduces to

1
( * ~)p-. .. „„,. exp(-I» —~IA'. )

where (, is the correlation length of boundary-to-
boundary correlation function and is smaller than the
bulk correlation length (. If the cluster size is infinitely
large, this (, diverges at T, , and its critical exponent is
denoted by v, . The bpi is estimated from (31) to be

This is transformed using the variable, z = »/(
r(bT, )'/a, as

I
z e 4) 4) —4J

N

The exponent, ~' —u, on the right-hand side is non-
positive, and the rhs converges to 0 when the clus-
ter size becomes large because the sum of boundary-to-
boundary correlations is smaller than the sum of center-
to-boundary correlation and their exponent will be diAer-
ent. This is correct in two dimensions where the values of
u and ~' are estimated to be 0.30 and 0.20, respectively.
Therefore this equation has two solutions as shown in
Fig. 4. One is near @=0, and it has power-law depen-
dence on r. This is a fictitious solution because the sus-
ceptibility diverges to negative. Furthermore, the phe-
nomenological description, (20) and (33), is not correct
when the parameter x = »/( becomes zero. The other
solution logarithmically diverges to infinity if r becomes
large. This solution determines the Bethe-type critical
point. It behaves as z —In». + O(l l n),nw»hich is the
same form as the Weiss approximation, (23), as far as the
leading term is concerned. In this case, however, more
subtle correction terms appear. The bT, and r depend
singularly on each other. Then the estimation of v based
on this relation is diKcult.
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TABLE VI. The estimated values of v and p from the
fitting of (38) to the results in Table III.

Used region of r

5 50
10 ~ 50

0.6(5)
0.5(3)

1.75(1)
1.75(1)

3
y= 1.75, v= 1.0

0

FIG. 4. The shape of the graphs of Eq. (35). There are
two solutions, I" and T, for large cluster, because the exponent
in the rhs of Eq. (35) is negative. The solution I" is fictitious
and not physical. The solution T determines the critical point
of the Bethe-type cluster approximation.

3.05 C)

C3

t'=J

td

g 2.9

B. Critical amplitude of XBethe
I I I I I I I I I I I I I I I I I I I

The critical amplitude of susceptibility, (16), is

boi(aio —~io)
+Bethe —

Bethe (36)
C

The factor bio is calculated using (15) to be

K
by() = (DB)o (37)

This is the summation of the boundary-to-bulk correla-
tions, and it is smaller than the summation of the center-
to-bulk correlations. The center-to-bulk summation a~o
diverges as bT, &. Therefore ago —byo diverges as bT, &.

The behavior of gB,th, is derived from (17), (20), (25),
and (33) as

+Bethe—
r(bT, )" + ai (bT.)~

38

where a~ and a~ are constants. The correction term to
the ordinary naive CAM scaling, r(bT, )' + ar, appears
again, and this correction is not simply logarithmic as is
observed from (35) in this case. This correction term is
plotted in Fig. 5 for the results in Table III. When this
correction is fitted with a power-law function for these
corrections, we get a function (bT, )

o oi. This order of
deviation is consistent with the result of the naive CAM
analysis, 1.745(3).

The influence of the correction terms on the estima-
tion of the value of p in the Bethe-type case is smaller
than in the Weiss-type case. This is explained quali-
tatively from our phenomenology. The correction term
comes from the size dependence of r(bT, ) or z = r/(.

O. B 1.2 1.4 1.6

y= 1.75, v= 1.0

I I I

I

I I I ~
I

I I I I

I

I I I I

I
I I I I

I

I I I I

1.12 (b)
O

C)

I

I

D 1.08

1,06

I I I I I I I I I I I I » I I

—35
1n hT,

—1.5

FIG. 5. The corrections for the CAM s«li»g, (1o) «
Bethe-type cluster approximations plotted in the same man-

ner as Fig. 2. The results in Table III are used. The solid

line in (b) shows the function 2.91(bT,) . When only the'
power-law behaviors are assumed, these correction terms are
regarded as bT . Therefore the deviations of exponent is
0.01, although it was 0.09 in gneiss-type case.
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TABLE VII. The critical points and critical amplitudes
of Weiss-type cluster approximations for cubic lattice.

1
2
5

10
12
15
20

WeissTC

5.446 78
5.074 27(69)
4.721 18(73)
4.602 68 (52)
4.584 07(53)
4.566 04(26)
4.548 41(37)

gneiss

0.193942
0.230 55(13)
0.302 40(91)
0.371 3(29)
0.389 5(36)
0.420 3(54)
0.446 1(69)

Monte Carlo
steps

analytic
1.0 x 10
1.0 x 10'
1.0 x 10
1.0 x 10
4.0 x 10
5.0 x 10"

The Weiss-type solution, z~„„,behaves like ~ Inr. On
the other hand, the Bethe-type solution, zB,th, behaves
like (u —u')Pn r + 0(ln ln r)]. Therefore the infiuence
of the correction term is expected to be smaller in the
Bethe-type than in the Weiss-type. If the values of cu

and u' are equal, there exists no such correction term, as
was discussed in the case of the confluent transfer-matrix
method in the generalized cactus trees. The situation
is, however, diferent in our Bethe-type approximation.

Function (38) is fitted for the results in Table III, and
the estimations of v and p are given in the Table VI.
The estimation of p works correctly. The estimation of v
is, however, not good, and it is accompanied by a large
error, which is understood from the fact that v appears
as the logarithmic corrections in (38).

Function (21) is fitted for the r and T, "" in Ta-
ble VII. The estimated values of T; and v are 4.508(2)
and 0.64(3), respectively, from r=2 to 21. Function (28)
is fitted for r and g~ejss in Table VII. The used cluster
size r is 2—20, and the estimated value of y, is 0.30(1).
The value of p is estimated from these estimations of v
and p [=(y —I)/vj as 1.19(2).

The results for Bethe-type in Table IX are fitted by
the function (38) and the estimated values of T,* and

p are listed in Table X. The logarithmic correction for
the CAM scaling is expected to be small for the three-
dimensional Bethe-type approximation as is analyzed in
the last section. Thus the power-law function (10) is
fitted for the results in Table IX. The estimated values
of T,* and p are listed in Table XI.

The precise estimations of the critical point and ex-
ponents of the three-dimensional Ising model have been
made. Although there are small deviations depending
on the estimation methods, the values of T,*, p, and v
are 4.5116(1), is 1.24, and 0.63, respectively. The
critical temperature is estimated correctly from our data
by the present theory. The pre ent estimations of p
have some deviations. These deviations may originate
in the smallness of clusters. The maximum size of three-
dimensional clusters is smaller than half of that of two-
dimensional clusters in linear dimension in this study.

IV. ANALYSIS OF THE
THREE-DIMENSIONAL FERROMAGNETIC

ISING MODEL

The Weiss- and Bethe-type cluster approximations for
a cubic lattice have been also studied by the Monte Carlo
method. For the clusters, r=l5 and 20, further simula-
tions were tried and the results have been given in Ta-
bles VII and IX. The results for r = 15 of the Weiss- and
Bethe-type approximations and for r=20 of the Bethe-
type approximation are improved, and other results are
cited from our previous paper. The data for the used
clusters are listed in Table VIII. These results are ana-
lyzed on the basis of the present phenomenological the-
ory.

V. OTHER QUANTITIES

We have discussed only the critical behavior of suscep-
tibility in the second and third sections. These arguments
can be generalized to other quantities.

As is understood easily, the singular behavior of
self-consistent approximations originates in the self-
consistency equation, which determines the critical point:

(30)

This equation is linearized near the critical point T, as

(4o)

where

TABLE VIII. The features of the clusters used in our calculations of cubic lattice. The notations are the same as those of
Table II.

1
2
5
7

10
12
15
20

515
1 419
4169
7 153

14 147
33 401

(BAj

6
26

222
446
978

1 410
2 262

~bond

60
1 302
3 810

11 556
20 136
40 314
96 432

'+free bond

30
78

486
894

1 902
2 646
4 254
7 542

1
7

Z93
973

3 191
5 743

11885
29 375

0
0

72
144
384
576

1 008
1 728

0
12
72

168
300
444
552

1 116

0
8

48
128
264
384
672

1 152

A4

0
0

24
0

24
0

24
24

A5
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TABLE IX. The critical points and critical amplitudes of
Bethe-type approximations for cubic lattice. The numbers of
Monte Carlo steps are the same as those in Table UII except
for r=20 whose number of Monte Carlo steps is increased up
to1.0x10 .

1
2
5

10
12
15
20

~BetheC

4.932 6070
4.747 3(17)
4.599 89(75)
4.551 78(43)
4.543 43(47)
4.535 97{24)
4.529 23(35)

+Bethe

0.25
0.297 20(39)
0.389 l(11)
0.479 8(26)
0.500 3(40)
0.539 2{33)
0.589 5(92)

OF(T, r)
T

Consider any quantities, A, whose true and classical
critical exponents are ( and (,i, respectively. The classi-
cal singularity comes from the factor F(T, r). Thus the
classical critical coeKcient A of A may be expressed in
the form

A = Af(r)~" . (42)

The coeKcient A show a coherent anomaly corresponding
to the true critical behavior of A. The j(r )&" reduces the
true critical divergence of A by (T, T,*)~" and—a singular
form of f(i ) introduces the correction term to naive CAM
scaling in some cluster approximations discussed in this
paper.

For the Weiss-type approximation, from (2l) or (22),
it is expressed as

The nature of the VVeiss- and Bethe-type cluster ap-
proximations has been studied phenomenologically in the

TABLE X. The estimated values of T, and p from the
fitting of (38) to the results in Table IX.

Used region of r

2 20
5 ~ 20

T:
4.5O9(1)
4.5O6(1)

1.267(2)
1.286(1)

(43)
where p = (( —(,i)/v.

For the Bethe-type approximation, from (35), it is ex-
pressed as

A =~,(~v )~ ~ [.(~r,) +.,]~ . (44)
If the values of ( and ( i are —p and —I, respectively,

expressions (43) and (44) reduce to (28) and (38), re-
spectively. The expressions for the coherent anomalies of
spontaneous magnetizations are obtained when the val-
ues of g and gci are P and 2, respectively.

VI. SUMMARY AND DISCUSSION

TABLE XI. The estimated values of T' and p from the
fitting of the naive CAM scaling (10) to the results in Ta-
ble IX.

Used region of r

2 ~ 20
5 ~ 20

T:
4.507(2)
4.5O8(5)

1.28(1)
1.27(3)
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present paper. Their critical temperatures give the up-
per bound of the true one and converge to the true value
when the cluster is infinitely large. For the gneiss-type
approximation, the leading terms are given in (22). The
values of v and T,* can be estimated correctly with this
expression. On the other hand, the correction is a com-
plicated and subtle essentially singular form in the Bethe
case as is observed in (34) or (35). It is difficult to obtain
a good estimation of v from the relation between r andT.

The critical amplitude of magnetic susceptibility, y,
diverges as the cluster size is increased. The exponent
of this divergence in terms of bT, is p —1 as is generally
insisted on in the CAM theory, s but it is accompanied
with correction terms. For the gneiss-type case, the cor-
rection has practically appreciable inhuence on the esti-
mations of the critical point and exponent. The g~„-„ is
compactly expressed as a function of cluster size r, but an
essentially singular expression is necessary if we express
it only using bT, . For the Bethe-type case, the correc-
tion to the CAM scaling is small for the present range
of cluster size. Therefore the CAM scaling works suc-
cessfully without considering this correction. When the
cluster is large, the use of relation (38) produces correct
estimations of T,* and p, although the estimation of v is
diKcult. These theories have been applied to the results
of the three-dimensional Ising ferromagnet to obtain the
estimation of T,* and p, which are consistent with the
estimations based on other methods.

There have been proposed cluster-type eA'ective theo-
ries for many models, for example, the spin glass, quan-
t, um spin systems and percolation. The present ar-
gument can be extended to these approximations easily
and appropriate expressions for critical point and coher-
ent anomalies are obtained.
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