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Lattice softening and melting characteristics of granular particles
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We present results of phenomenological calculations on the thermal characteristics of small
granular particles. By using the self-consistent Einstein model with a Morse interaction potential,
we show that as the particle size decreases, the lattice expands and the Debye temperature (as
characterized by the atomic mean-square displacement) drops significantly for particle sizes below

0

50 A, in good agreement with Mossbauer data on Fe particles. Variation of the melting point with
particle size is calculated both by the self-consistent Einstein model, using a generalized
Lindemann's criterion, and by a generalized Lennard-Jones —Devonshire (LJD) cell model. Depres-
sion of melting point by as much as 60%%u~ is obtained from the mean-field solution of the generalized
LJD model for extremely small clusters. Sensitivity of the results to lattice structure has been exam-
ined. We found that the normalized melting temperature (in terms of the bulk melting temperature)
is insensitive to lattice structure and exhibits a nearly universal behavior. The constraining e6'ect of
the matrix is also considered by defining a free energy, whose minimization yields the stable thermal
state of small particles in the matrix environment. Mean-field LJD-model calculations using the
defined free energy show that under the condition of tight coupling with the matrix the melting
point of small particles may be significantly enhanced.

I. INTRODUCTION

The thermal behavior of small granular particles has
been a subject of continued theoretical and experimental
interest since the beginning of this century. En particular,
melting temperature depression in small-particle systems
has been predicted' and later seen experimentally in a
wide variety of metallic particles. Liquids trapped in
porous media have also been observed to have lowered
melting temperatures and very broad specific-heat
peaks, a phenomenon that has come to be known as
the "melting anomaly. " Related to this melting-point
depression at the fundamental level is the suggestion of
lattice softening in small particles. Here direct observa-
tion is rare; although indirect evidences, e.g. , lattice ex-
pansion, have been seen in granular systems, and the
enhancement of superconducting critical temperature in
granular superconductors was often attributed to lattice
softening.

In recent years, a combination of better measurement
techniques and sample preparation, in particular the con-
trol over particle size, has enabled the experimental study
of small-particle thermal behaviors to become much more
quantitative. It is the intention of this work to present
the results of theoretical calculations that address some
of these data on the lattice softening eAect and the melt-
ing characteristics of small particles. Since the particles
in granular systems usually consist of more than a few
thousand atoms, they are generally beyond the capability
of numerical simulations. We are therefore limited to
phenomenological calculations. By using the self-
consistent Einstein model with a Morse interaction poten-
tial, ' it is shown that the eA'ect of lattice anharmonicity
can lead to enhanced lattice expansion and softening as
the particle size decreases. Both the magnitude of the re-

suiting Debye temperature drop and its variation with
particle size are in reasonable agreement with the
Mossbauer data on iron. However, the predicted lattice
expansion is somewhat larger than the observed value.
For the calculation of melting characteristics, the cell
model of Lennard, Jones and Devonshire" (LJD) is gen-
eralized for application to small particles. Here a direct
Monte Carlo evaluation of the cell model yields only a
smooth transition from the solid state to the liquid state
for small particles, which is expected since first-order
phase transition, in its strict definition, does not occur in
finite systems. However, if the mean-field transition tem-
perature is used as indicating a "melting" temperature,
then its variation versus particle size is shown to be in
reasonable accord with data. A separate self-consistent
phonon calculation, employing a melting criterion similar
to that of the Lindemann's criterion, ' has also been car-
ried out and is shown to yield a melting temperature
versus particle size curve similar to that of the cell model.
Our results are noted to agree qualitatively with those of
Chui's density-functional calculations. '

Since in many granular systems the particles are em-
bedded in a solid matrix, the constraining eQect of the
matrix on the melting behavior of the particles could be
non-negligible. This is especially the case since the elastic
modu1i of solids are generally in the range of 10 —10 at-
mospheres, and therefore large constraining pressure can
be generated if the expansion of a small particle upon
melting is not matched by the expansion of the matrix. Et

is shown that taking into account the effect of the con-
straining matrix, which is neither a constant-pressure nor
a constant-value environment, requires the definition of a
"free energy. " By using the defined free energy in con-
junction with the cell model, our calculations yield melt-
ing temperature enhancement over the free-standing par-
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ticles. The melting temperature enhancement for small
particles has just recently been observed. ' However, its
systematics, i.e., variation with matrix type and particle
size, are sti11 to be investigated.

In what follows, formulation of the self-consistent Ein-
stein model for finite particles are presented in Sec. II.
Numerical calculation of the mean-square displacement
for small Fe particles and the comparison with
Mossbauer data are given in Sec. III. This is followed in
Sec. IV by the formulation and numerical evaluation of a
generalized cell model for the thermal melting behavior
of small granular particles. The constraining effect of the
solid matrix is considered in Sec. V.

II. SELF-CONSISTENT EINSTEIN MODEL

In the present model, the atoms in a particle are as-
sumed to interact via the Morse potential

v(x; )= E[ex p[
—2a(x; —ro)] —2exp[ —a(x,"—ro)]] .

Here E, ro, and a are material constants, and x; is the
separation between atoms i and j:

x;~ =
I x;1 I

=
I R;+u; —R~. —uj. I

= IR, —R.I+A, ;i(u; —u ),
R, —RJ

IR, —R, I

'

(2a)

(2b)

where R; denotes the coordinate of the equilibrium posi-
tion for atom i, and u; denotes its displacement from that
equilibrium position. The minimum of v(x; ) occurs at
x, =ro for two atoms. However, for a lattice of atoms
the minimization of the sum of all the interaction poten-
tials can result in a zero-temperature atomic separation
ao that differs from ro. In addition, for a finite particle
the value of ao can vary from the center of the particle to
its surface. For simplicity, in our model we will assume
that (1) the atomic structure of the particle is known, and
(2) a single ao applies to the whole particle whose value is
to be obtained by minimizing the total energy of the par-
ticle at zero temperature.

At finite temperatures, the effective potential g; be-
tween two atoms in a particle is expected to differ from
that of Eq. (1) due to the fact that v (x, ) contains anhar-
monicity. P, may be evaluated as

Rj +u uj exp —
—,
' „u„

n n

f &d .uepx—P & —,'y. Iu. I'
(3)

f du;exp( —A, ; .u;)exp ——
P, Iu, I

f du;exp ——P, Iu, I

1

2PP,

where we have used the fact A, , =1. Therefore,

where /3=1/kT, the angular brackets denote thermal
averaging as shown, P„denotes the effective force con-
stant at atomic site n in the particle, and the index n runs
over all atomic sites in the particle. Equation (3) is based
on using the approximation of harmonic expansion for
the local potential. By substituting Eq. (1) into Eq. (3)
and using the approximation given by Eq. (2a), it is im-
mediately seen that all integrals involving u„, with
n Wi,j, result in 1 since the numerator and denominator
are the same. What remains are integrals of the type

g V~ Q,J=0, (sa)

(5b)

Here Eq. (5a) represents the condition of minimum ener-
gy, and Eq. (5b) is the definition of P, . (The factor —,

'

represents averaging over the three directions. ) In this
work, we assume that the structure is known and make
the approximation that

dR;.

T~O

It can be shown in Appendix A that

In Eq. (4), E, a, ro, and P are the given parameters, and

P;, and R; are the unknowns to be determined self-

consistently by the conditions

g~ =EJ.[exp[ —2a(R, —r, ) ]

—2 exp[ —a(R,"—r, )]J, "
where

2

E~ =E exp — (P, '+P, ')

R,) = IR, —R)I,

(4a)

(4b)

(4c)

(4d)

dR," d7ij

dT z -o d& z.-o
Therefore,

R,, =R I, ,+ (y +y ) .
2P

By substituting Eq. (8) into Eq. (4a), we get itj;, as a func-
tion only of P;, P, and R; (T =0). The zero-temperature
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value of R, is determined by carrying out a one-
parameter (minimum atomic separation ao) minimization
of the total interaction energy, i.e., the one-parameter
solution of Eq. (5a) under the assumption of a given lat-
tice structure. Equation (5b) then represents a set of self-
consistent equations for the determination of {P,I. They
can be solved iteratively by Newton's method.

III. I.ATTICK EXPANSION AND SOFTENING

nearest neighbor interactions are very important.
Lattice expansion directly leads to lattice softening.

While the amount of expansion is small, yet it can have a
significant eA'ect on the potential as experienced by the
atoms because the lattice parameter appears in the ex-
ponent of the Morse potential, i.e., the potential is very
sensitive to changes in the lattice parameter. By follow-
ing the calculational procedure as outlined in Sec. II, we
obtained the {P,I, for atoms in the particle. The mean-
square displacement of an atom is then given by

Experimental data on lattice expansion and softening
have been obtained for small particles of Fe, with a
body-centered-cubic (bcc) structure. To compare with
data, we use a bcc lattice in the calculation with the fol-
lowing parameters for the Morse potential

ro=2. 8453 A,
E =0.41716 eV,

o,' = 1.388 59 A

Averaged over the atoms in the particle, we have

&u') =3y kT .

Since

(9)

(10)

(1 la)

These values have been obtained in prior works by fitting
the various calculated results to bulk thermal properties
of Fe. For simplicity, the particle shape is taken to be a
cube with sides of length 2aom /&3, where m is the num-
ber of atoms on a side and ao, the minimum atomic sepa-
ration, is obtained by the minimization of the total ener-

gy. The variation of ao as a function of particle size (or
diameter) D, where

1/3

D =4 mao/&3,
4~

is shown in Fig. 1. The maximum variation, from 2.48 to
2.59 A, is about 4%. However, for a 20-A particle the
lattice expansion is seen to be -2.5%. This is somewhat
larger than the expansion of —1.5% measured by x-ray
data. It is interesting to note that for the smallest cluster
in Fig. 1 there are only three atoms across each side of
the cube, or a total of 27 atoms. Even in that case the
value of ao is still less than ro. What this points out is the
fact that the next-nearest neighbor and the next-next-

for T & O„where Oz denotes the Einstein temperature
kez=hcoo, ~o being the Einstein oscillator frequency,
and

&u')a 0 (1 lb)

for the Debye model, where OD denotes the Debye tem-
perature, we have

8D(D) 8~(D)
OD(co) 8~(m) (1 lc)

Therefore, a calculation on [(u ) /(u )D j'~~ can
directly yield OD(D)/8D(~). The results are shown in
Fig. 2 together with the Mossbauer data. It is seen that
the magnitude of the drop, -30% for —15-A particles,
is in excellent agreement with experiment. The variation
of OD(D)!8D( ~) with particle size is also in reasonable
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FIG. 1. Calculated zero-temperature lattice constant ao of Fe
plotted as a function of inverse particle size. The solid line con-
nects the calculated point, denoted by open squares.

FIG. 2. Normalized Debye temperature of small Fe particles
plotted as a function of particle size. The solid line connects the
theoretical results calculated from the self-consistent Einstein
model, denoted by solid triangles. Experimental data by Chien
et al. (Ref. 8) are denoted by open squares.
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agreement. However, the experimental data seem to indi-
cate a more abrupt approach to the bulk value as the par-
ticle size increases than that predicted by the theory. We
also note here that although in our calculation a single ao
is used for the whole particle, yet the P, is individual to
every atom of the particle. Since P, is smaller for atoms
on the surface, there is thus a surface relaxation effect at
finite temperatures. We expect the further relaxation of
ao to enhance the magnitude of the Debye temperature
drop.

IV. MELTING CHARACTERISTICS

Lindemann' has proposed a criterion for melting
based on the value of (u ), i.e. , melting occurs when
(u ) exceeds a certain empirical value ( —0.01ao). One
way to generalize such criterion for small particles is to
assume that the melting of a small particle begins when
the mean-square displacement of the surface atoms
reaches the critical value. For Fe particles, a critical
value of (u )' =0.15 A is obtained by performing a
separate calculation evaluating the surface mean-square
atomic displacement of bulk iron at its melting tempera-
ture of 1788 K. In Fig. 3 we show the calculated varia-
tion of melting temperature as a function of inverse parti-
cle size, measured in % '~ (X being the number of
atoms in the particle), by using the (u ) criterion. For
simplicity, the lattice in this case is taken to be simple cu-
bic.

A drawback of the above approach is that it is too
empirical. The correct criterion for melting transition
should be the crossing of the liquid and solid free ener-
gies. Here we will generalize the phenomenological
theory of Lennard-Jones and Devonshire" to the calcula-
tion of sma11-particle melting.

Consider a particle consisting of atoms arranged in a
simple-cubic lattice at T=0. The starting point of the

LJD theory is the assumption that there are two sites, o.;
and /3, , for the atom within each cell i A. n order parame-
ter S, is defined as having value +1 when the atom is in
site a, and having value —1 when the atom is in site /3, .
A lattice version of the LJD theory has been formulated
in a prior work, ' and the Hamiltonian of the system is
given by

H=E„——,
' g W; S;S, ,

V

EJ

W' '=(r ' 2r— )WEJ tJ 0
—12 ~o .

(12a)

(12b)

(12c)

(12d)

Here the lattice constant is taken to be 1. Equation (12a)
essentially tells us that when two atoms, at cells i and j
and separated by r;, are both in a sites (or both in /3 sites)
the energy is lower than that when one is in o, and the
other one in /3. E corresponds to the energy at T = ~,
when there is equal chance for the occupation of cz or /3

site in each cell, and WJ [Eq. (12d)] is the extra energy
incurred by one atom being at o: site of cell i and another
one being at /3 site of cell j.

The theory as applied to periodic simple-cubic lattice
involves two parameters —the lattice constant a and the
average order parameter (S ). The value of Wo is chosen
to be 0.35 so that the bulk melting temperature T' '=1.
Our generalization of the LJD theory recognizes the fact
that in absence of periodicity, each cell can have a dis-
tinct (S; ) and a, . We make the simplifying assumption
here that the nth simple-cubic shell of atoms is separated
from the (n+1)th shell by a, . When a„Wa„+,Wa„
(such as at T ) 0), each cell is noted to be noncubic in
shape. In the generalized model, therefore, there are as
many (S; )'s as the number of atoms in a particle and a
smaller number of a, 's, given by the number of shells.

The mean-field solution of the model is obtained by
writing

n 1000 100
I S, =S;+5S, . (13)
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Here S,W(S, ), the true thermodynamic average, but
may be a good approximation to (S, ). To first-order ac-
curacy, we have

S;S =-S;S +S-6S, +S,6S- .

The mean-field Hamiltonian is then'
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Ho=E —g V;(S;——,'S, ),
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FIG. 3. Variation of the melting point as a function of N
where N is the number of atoms in a particle. The melting tem-
perature is calculated by using the generalized Lindemann's cri-
terion as described in the text and the self-consistent Einstein
model. Parameters used are those for Fe. However, simple-
cubic-lattice structure is assumed. The solid line connects the
calculated results, denoted by open squares.

Fo= —kT ln Tr exp( /3Ho)—
(15)=E„+—,

' g V, S, kT g in[2 cosh(/3V—;)I,
I

At zero pressure, i.e. p =0 [S, I and [a„] are determined

The free energy I'o in the mean-field approximation is
given by
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by the conditions

BE() =0,
as,

BE, =0.
Ba,

Equation (16a) can be explicitly written out as

(16a)

(16b)

S, =tanh(13V;)=tanh —g 8;"S
J

(16c)

fS;exp( PH) gdS;da„—
(s) =—y f exp( PH )Q dS;da„—

Equations (16a) and (16b) constitute a set of coupled non-
linear self-consistent equations for IS; ) and Ia„ I. When
there are multiple solution sets, the physical one is
chosen by the condition of minimum free energy. It
should be noted that the summation over the i and j in-
dices extends over all atoms in the particle, not just the
nearest neighbors.

Mean-field equations (16a) and (16b) have been solved

by using Newton's iterative method. The results were
substituted into Eq. (15) to get the free energy. In Fig.
4(a), S =g;S, /N of a particle is plotted versus tempera-
ture for the lowest free-energy solution. The correspond-
ing lattice constant values are plotted in Fig. 4(b) for two
temperatures: one below and one at the mean-field tran-
sition point. It is seen that the lattice tends to expand
faster near the surface, which is an intuitive result. The
abrupt jump in S is of course the result of the mean-field
approximation. In reality the transition is smooth as
shown below. However, if we denote the mean-field jump
temperatures of S as the melting temperature T in a

p =0 environment, then the variation of T /T' ' versus

, where X is the number of atoms in a particle of
cubic shape, is summarized in Fig. 5. It is seen that the
melting point of small particles can be depressed by as
much as -60%%uo from that of the bulk. Such large
depression has indeed been observed in Monte Carlo
simulations of small atomic clusters. ' Also shown is the
calculation using a body-centered-cubic lattice instead of
the simple-cubic lattice. It is seen that the results seem to
be independent of lattice structures. Comparison be-
tween Fig. 5 and Fig. 3 also indicates that, for larger par-
ticles, the amount of depression is almost the same when
calculated by two radically different approaches. The
difference of the two approaches only becomes manifest
for smaller particles. The magnitude of the calculated
melting temperature depression is also noted to be in
reasonable agreement with experimental data on Bi and
Sn particles. ' Figures 3 and 5 therefore tell us that for
not-too-small particles, there is a degree of universality to
the size variation of T /T'

Since the mean-field solution is only an approximation,
its accuracy has to be assessed. For this purpose we have
evaluated (S) directly from the model Hamiltonian, Eq.
(12a), by using the Monte Carlo method. That is,
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The results are plotted as the dashed line in Fig. 4. Com-
pared with S of the mean-field calculation, the variation
of (S ) is seen to be more continuous and smooth. This
is the finite-size fluctuation effect as expected for any
finite system. The "transition" temperature is also slight-
ly lower than that indicated by S due to the fact that (S )
is calculated with the exact Hamiltonian H and therefore
contains fluctuation effects. As a function of the particle
size, the ratio of the two transition temperatures is almost
a constant. That means when we calculate T /T' ', the
results are practically the same for the Monte Carlo as
for the mean-field solution. The Monte Carlo evaluations
therefore confirmed that the mean-field results are not
too much out of line with the actual predictions of the
model.

FIG. 4. (aj Comparison of the temperature dependences of
mean-field S and the actual (S), evaluated by using the Monte
Carlo approach. The solid line denotes S. The dashed line
denotes (S). Open triangles are the Monte Carlo results. The
particle used in the calculation is a cube of 125 atoms with a
simple-cubic lattice. For the purpose of this comparison calcu-
lation only the nearest-neighbor interactions are considered in
the LJD model. The value of 8'o is set equal to 0.67 so that T'
remains at 1. (b) Variations of the lattice constant at two
different temperatures as evaluated by the mean-field theory for
a N =1000 particle. The surface layer is seen to expand more
than the interior layers as expected. The lower curve is at
T/T' '=0.55. The upper curve is at the melting temperature
of the particle, T/T' '=0.81.
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V, and its magnitude can be large since p is generally
large.

It should be noted here that in the present calculations
the interfacial tension efFect is already included (by the
absence of atoms on the other side of the surface), since
we have considered all the atomic interactions in the par-
ticle. However, interactions between the matrix and the
particle surface atoms have not been included. In this
work we have assumed that the particle surface atoms in-
teract incoherently with the matrix atoms, and therefore
the matrix only acts as an elastic constraint on the parti-
cle.

The second law of thermodynamics states that

Tds +dU+p dV,
FIG. 5. Variation of the mean-field melting point as a func-

tion of N ' ', where N is the number of atoms in a particle.
The particles used in the calculation are cubic in shape with ei-
ther a simple-cubic (open squares) or a body-centered-cubic
(solid circles) lattice structure. The eff'ect of the lattice is seen to
be negligible. d(U —Ts+pV)=do ~0, (20)

where s denotes entropy and U denotes internal energy.
For p =const and T =const, Eq. (19) implies

V. EFFECTS OF THE ELASTIC MATRIX

AV
p —

3
A'p

p
(18)

where p is the shear modulus of the elastic matrix,
6V = V —

Vp denotes the deviation of the particle volume
from Vp, and o. is a dimensionless factor, given in Appen-
dix B, that takes into account the presence of other parti-
cles in the composite. As expected, a = 1 for P —+0,
where P is the volume fraction of particles. Equation (18)
tells us that in the matrix environment p is a function of

In the melting calculations above we have assumed
that p =0, i.e., the particles are either free standing or
decoupled from the matrix. Atmospheric pressure is
neglected since it is only 10 —10 times the elastic
moduli of solids (which are also in pressure units). How-
ever, if the particles are closely coupled to the matrix,
then the elastic matrix would superimpose a very special
environment on the resulting transition that is neither
constant pressure nor constant volume.

To see how the matrix constraint would affect the melt-
ing transition, we first assume that there is a temperature
at which the matrix exerts no pressure on the particle,
i.e., the hole in the matrix exactly matches the particle.
This temperature could be related to the formation condi-
tions of the composite. The volume of the particle at that
temperature is denoted as Vp. We assume in addition
that the particle has a larger coefficient of expansion than
that of the matrix. This is usually the case for metallic
particles in an insulator matrix, especially near the melt-
ing point of the metal particles. Therefore the matrix
would act as a pressure constraint on the particle as the
temperature is raised beyond the matching point. The
pressure experienced by a spherical particle may be ob-
tained by solving a simple elastic boundary value problem
as shown in Appendix B. The result is

i.e., Gibb's free energy G =U —Ts+pV has to mini-
mized. However, if p is a function of V as given by Eq.
(18), then the p V term has to be replaced by F2.

F,= f p(V)dV
0

v V —
Vp

,'ap f—dV
= ——2ap ( V —Vo)—

V —Vp

2Vp
(21)

The total new free energy Z is given by

Z = kT ln Tr[exp—( PH))+F2 .— (22)

The minimum of Z is the criterion for thermodynamic
equilibrium of a small particle in the matrix environment.

Calculations based on the minimization of Z have been
carried out for small particles, within the framework of
the generalized LJD theory. The additional parameter p
can be nondimensionalized by expressing it in units of
kT' '/ao, where ao is the bulk lattice constant at zero
temperature. Vp is taken to be the unit-cell volume at
T=0, calculated individually for each particle size. In
Fig. 6 the melting temperature of Pb particles embedded
in the MgO matrix, calculated by the mean-field LJD cell
model, is plotted as a function of N ' . The value of
—', p/(kT' '/ao) used is -250. It is seen that compared
with the p =0 case, there is considerable enhancement of
T . For the larger particles the melting point is seen to
exceed T' '. Precisely this behavior has been recently ob-
served, '" although in the case of the experiment the pre-
cise origin of the enhanced T' ' is still not completely
clear.

In Fig. 7 we examine the effect of p on the melting
point of a suSciently large particle so that at p=O the
melting temperature T = T' '. As p increases, the melt-
ing point is seen to saturate at about 1.9 T'
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FIG. 6. Mean-field melting point variation as a function of
' ', where X is the number of atoms in a particle, for parti-

cles tightly coupled to the embedding matrix. The dimension-
less parameter —p/(kT' 'ao) used is 254, suitable for Pb parti-
cles in a MgO matrix. The calculated results are denoted by
open triangles. The concentration P of the particles is assumed
to be small so that a=1. For comparison, the p=o results are
also plotted as open squares. Particles used in the calculations
are cubic in shape with a simple-cubic-lattice structure.

VI. CONCLUDING REMARKS

We have performed phenomenological calculations on
the thermal characteristics of small particles and evalu-
ated the effects of the constraining matrix. What
emerged from these calculations are some relatively
universal behaviors that include lattice expansion and
softening, Deb ye-temperature lowering, melting-point
depression, and enhancement of T due to matrix con-
straint. In particular, for the melting-point calculations
the results seem to be insensitive to lattice structure and
to calculational approaches. These aspects of the predic-
tions, plus the matrix enhancement effect on the melting
point, are subjects for further experimental verification.

It should be noted, however, that our calculations
neglected kinetic effects. Phenomena such as supercool-
ing, responsible for the asymmetry observed between
freezing and melting, are therefore outside the realm of
the present theoretical framework. Considerations on
these kinetic effects in freezing and melting are presently
underway. Our present formalism is also inadequate for
treating the size dependence of thermal properties in ma-
terials where many-body forces are captive. An example
could be gold, where the dimer separation is actually
smaller than the bulk atomic separation. This presum-

p,

3

FIG. 7. Enhancement of the bulk melting point as a function
of —', p/(kT' 'ao) for large particles, calculated by the mean-field
solution of the LJD model. The solid line connects calculated
results, denoted by open squares.

ably is due to the fact that as the number of atoms in a
cluster increases, the electronic screening becomes more
effective than that of the dimer. A direct manifestation
of this effect is seen in the particle-size dependence of the
lattice constant, which decreases as size decreases, oppo-
site to those presented in this paper.
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APPENDIX A

Here we show that in the self-consistent Einstein ap-
proximation,

dR;. dr;

dT T-O dT T-O

where R, is the separation of the atoms i and j in a parti-
cle, and r, is the separation that minimizes the thermal-
averaged pair potential f;

The value of R," is determined by Eq. (5a):

gV~ P;, =0,
J

dR;0= g E Vlt exp —2a R; l T o+ T T~O

dr).~.

T~O

dR; dr~—2exp —a R; lT o+ T &;llT o
T—+O T~O

(A1)
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If we assume that as T~0 (D;~ ~D as T +—0) R;.
~ T

satisfies Eq (Al), then dR;1 /dT~ T o=dr;~/dT~ T o would
ensure that Eq. (Al) continues to be satisfied at finite T,
provided E; =.E exp[ —a (P, '+P ')//3] is relatively
constant, i.e., independent of i and j. This is expected to
be the case because P, 's represent the spring constants of
interatomic interaction and vary at most by 10—20% as
T is raised. Therefore, to the same degree of accuracy we
expect dR; /dT =dr, /dT

represented by

u=u (r)e„, (81)

or

where e, denotes the unit radial vector. That means
V Xu=0, and the static elasticity equation' gives

V'(~/' u) =0,

APPENDIX B

V'.u =const .

Solution of Eq. (83) in radial coordinate yields

(83)

Consider a spherical particle of radius Ro embedded in
an elastic matrix characterized by Poisson ratio o. and
Young's modulus E as shown in Fig. 8(a). The size of the
hole in the matrix is assumed to fit the particle exactly.
Suppose now the particle expands radially by a small
amount so that the displacement in the matrix may be

b
u (r) =ar +

r 2 (84)

The coefficient a =0 because u(r) has to stay finite at
infinity. That means

b =R2uo, (85)

where uo =u (r =Ro). The pressure p on the particle sur-
face is given by'

E
[(1—o )u„„+2oups]i„

(a)
where

du (r)
rr

/
/

/ ~ /
/

I

/ \

I i
\--( /

) /
t

t

I
'I

I
i 1

I 1

1

2E uo 2 E AV 2 AV
(1+o') Ro 3 1+tr Vo 3 Vo

(87)

u (r)
uo6 =

r

are the radial and angular derivatives of the displace-
ment. Combining all the factors yields

(c)

FIG. 8. (a) Schematic depiction of a particle of radius Rp em-
bedded in an elastic matrix with Young's modulus E and Pois-
son ratio o.. Expansion of the particle, shown by the dashed
line, would encounter the constraining pressure of the matrix.
(b) Schematic depiction of a dispersion of particles embedded in
the matrix. The dashed lines segment the composite into rough-
ly equivalent units of coated spheres. (c) For the purpose of cal-
culating the constraining pressure, the dispersion shown in (b) is
replaced by a coated particle embedded in an effective medium
characterized by an effective bulk modulus a' and an effective
shear modulus p'. The coating thickness t is determined by the
condition of Ro/(Ro+t) =P.

b'
u'(r) =

r2 (88)

Inside the coating, we have

b
u (r)=ar+

r 2 (89)

Boundary condition fitting at r =Ro+t, i.e., u =u' and
p =p', yields

So far we have considered only one particle in a homo-
geneous matrix. Suppose now there is a concentration P
of particles dispersed in the matrix as shown in Fig. 8(b).
For the purpose of calculation, the dispersion geometry
of Fig. 8(b) may be replaced by the siinpler geometry of
Fig. 8(c), where the effective composite shear and bulk
moduli are denoted as p' and K', respectively. The prob-
lem to be solved now is that of a coated particle of radius
R o and coating thickness t embedded in the effective
medium. The concentration P of the particles is given by
R o3 /(R o + t ) Let the. displacement in the outer
(effective-medium) region be denoted as u'(r). From Eq.
(84),
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3tr+ 2p,
' 2(p' —p ) ba+

3tc'+2p 3tc'+2@' (Ro+ t)3
(810)

AV
Pp —C3 Xp

0
(816)

3(tc —tc')
( )3

2p+3tc'
b2p'+ 3v' 2p'+ 3K'

From Eq. (810) we get

2(p' —p) b
3a.+2p' (Ro+t)3

Substituting Eq. (812) into Eq. (89) yields

(811)

(812)

where C is a factor that depends on the nature of screen-
ing, the concentration (t, and other geometric details.
Since the problem is linear, this pp would induce a nega-
tive volume change 6 V, on each of the particles that can
be superimposed on the positive AV. The net volume
change is given by (b, V)„„=b,V+3 V, . By fitting the
boundary condition at r =Re for u (r) =ar, r &Ro, we
get

b =yR puo,

where

(813) AV,
Pp= Km

p

(817)

1+2P P
3K+ 2p

Comparing with Eq. (85) shows that y is the only addi-
tional factor in the present case. Therefore

AV
P = 3'VP,'o (815)

The values of p' and ~' can be calculated from the p
and ~ of the particle and p, w of the matrix by using the
efrective-medium formula detailed in Ref. 19. However,
the eff'ective-medium calculation does not take into ac-
count the expansion of the embedded particles and the re-
sulting additional hydrostatic pressure generated at a
particular particle due to all the other particles. From
Eqs. (84) and (86) it can be deduced that the pressure
generated by a particle decays as r away from its
center. A straightforward summation of all such pres-
sures at a particular site would yield divergent results.
However, the presence of all the particles is expected to
introduce screening, thereby making the net hydrostatic
pressure po finite. This additional pressure must have the
form

Comparison with Eq. (816) gives

b, V, = —( —,'Cyp/tc )b, V .

That means

(818)

(b, V)„„= 1 ——' b, V
C

m

(819)

(820)

where we assume 2Cyp/3~m (& 1. By dropping the sub-

scripts t and net, we get

AV
P —

3 AP (821)

with

(1+C)y
2 Cyp

~m

(822)

This is our desired result.

The total pressure p, =p+po can now be related to
(b, V)„„as

2 (1+C)yPt=
3 2 Cpp Vp

p

3 K~
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