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Elastic constants of simple two-dimensional structures, monatomic square, monatomic hexago-
nal, and diatomic square, have been calculated with different pairwise atom-atom potentials of the
general form V(r)=— A /r"+ B /¢, with different 4, B, n, and m parameters. The general condi-
tions for the potential parameters have been found to assure stability of the lattices. It is shown that
the monatomic square structure can never be stable with the parameters used. On the other hand,
the hexagonal monatomic lattice is always stable. Only in the case of the diatomic square lattice
does the stability depend on the actual values of the potential parameters. These results explain
why in the majority of atomic crystals the (001) surfaces are reconstructed, rough, or stepped, and

not planar square.

I. INTRODUCTION

The simple planar lattices are interesting for theoreti-
cal studies for a few reasons. The first is that the two-
dimensional structures appear in nature as surfaces' 3 or
interfaces.* Sometimes the planar lattices can also be
considered to illustrate certain properties of real three-
dimensional crystals. A planar model proposed by Pick®
has thoroughly been examined from this point of
view.* 12 In the latter model two kinds of atoms form
the diatomic square structure, in which each atom of one
kind is located at the center of the square formed by the
atoms of the other kind. The lattice has been proved to
be stable whenever the short-range repulsion expressed,
e.g., by the Born-Mayer formula, is compensated by the
Coulomb electrostatic forces coming from the charges of
opposite signs placed at both kinds of atoms. It has
turned out that such a lattice becomes mechanically un-
stable when the charge is less than a certain critical
value.!?

An interesting question now is whether it is at all possi-
ble to construct the above-described diatomic square
structure using only the short-range atom-atom poten-
tials: the Buckingham 6-exp potential

Vy(r)=A exp(—Br)—C /r®
or the Lennard-Jones
Vi (n=A4/r'2—C/r°.

The attempts made until now with a wide range of the
parameters of both potentials have never given any stable
square structure.'?

The aim of the present paper is to find the atom-atom
potentials that are able to make stable some simple planar
lattices. The lattices considered here are hexagonal,
monatomic square, and diatomic square. These are the
structures most often inferred by the unreconstructed
surfaces of crystals. The examined potentials have the
form of

Vir)y=—A/r"+B/r"

with different 4, B, n, and m. The values n =6 and
m =12 are most often used in the calculations for bulk
materials. Some other values of n and m are used in
packing-analysis calculations for crystals.!> The point,
however, is that when the square structure constitutes a
surface of the crystal, the effective atom-atom interac-
tions mediated by the underlying lattice may well be very
different from those among the bulk atoms.

The relations between elastic constants and the second
derivatives of the potential function for the hexagonal lat-
tice, the monatomic square lattice, and the diatomic
square lattice are given in Sec. II. The mechanical stabil-
ity of these lattices for the various potential functions is
discussed in Sec. III. The obtained results can cast light
on the experimental observations of the surfaces of crys-
tals. The short discussion of this problem is given in Sec.
Iv.

II. ELASTIC CONSTANTS
IN A SHORT-RANGE INTERACTION MODEL

Let us consider a perfect planar lattice with atoms
(particles) which interact by central forces. If all the
atoms of the structure are placed at centrosymmetric
sites, the potential-energy density may be written in the
harmonic approximation as only dependent on the mac-
roscopic strain components s, 0 =1,2,6:

—1
U=3D CopSoSy (1)
a.p

where c,, are the elastic constants of the crystal.'* The
range of the Voigt indices o and p in the two-dimensional
lattice is xx =1, yy =2, xy =yx =6.

The elastic constants c,, depend on the interactions
among the atoms of the crystal in the following way:

Cop=(aByr)
2 rr
IEIIWR @
where v, is the volume of the unit cell. The summation
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goes over all the unit cells and over all the types of atoms
(k,k") within each cell. (r?) is a function related with
the pairwise central atom-atom potential V(r):
V(r)=1(r*), where r is the distance between atoms
r=(x%4x2%)""2 The subscript

in the expression [¥"x,xgx,x;] indicates that the
second derivatives

2 2
,‘l}n(rZ): ) ¢(r )

a(r?)?
are taken for
5 -
! 0
r’=rl?=|x| ., |—x
K K
=|x(I")+x(k")—x(k)|? . (3)

The elastic constants given by Eq. (2) are completely sym-
metric in all four tensor indices. Consequently, there are
only five independent elastic constants in this case, the
ones ¢, and c4 obeying the Cauchy relation

C12 = Cq¢ - (4)

Thus, the elastic constants in Eq. (1) may be arranged in
the following matrix:

€11 €12 Cie
D= |cy;, ¢y €y | - (5)

Ci6 €26 C12

A further reduction in the number of independent elastic
constants is connected with the symmetry of the planar
lattice. Figure 1 shows three types of two-dimensional
lattices discussed in the paper. A lattice constant a is de-
picted in Fig. 1 for each type of the lattice.

A. Monatomic square lattice

In the square lattice of symmetry 4 mm, only two elas-
tic constants c¢;; and ¢, are independent. The other be-
ing ¢4, =cyy, €14 =C26 =0, and, owing to the Cauchy rela-
tion, cgq=0¢5.

The lattice points in the square lattice [Fig. 1(a)] can be
expressed as

. . . . .. . .x.x.x.
.« e e T TN
S s T
(a) (b) (c)

FIG. 1. Simple planar lattices treated in the article: (a)
monatomic square, (b) monatomic hexagonal, (c¢) diatomic
square. The lattice constant a is depicted for all the above
structures.
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lia;+1,a, , (6)

where /,l, are integers and a;,a, are basic lattice vec-
tors. If the Cartesian axes are chosen parallel to the vec-
tors a;,a,, we find from Eq. (2) that

c = ! l4¢"[a2(12+12)] (7)
n= 21 1 177143

and
o=y = 2q* 212y a3 +13)] (8)
66~ 127" 21 142 176)] .

For a lattice to be stable, the energy density [Eq. (1)]
must be a positive definite quadratic form. This condi-
tion is assured by the positive values of the all principal
minors. For the square lattice, the principal minors are

2 2 2 2
Cll’ C“—'Clz, Clz(c“_CIz) . (9)

The following three conditions need to be fulfilled to as-
sure the mechanical stability of the lattice:

C“>0, C12>0, Cll—'C12>O. (10)

It follows from Egs. (7) and (8) that the first term in the
expansion for c;; is equal to the analogous term for
¢,; —¢y, and they are both proportional to ¥''(a?). The
value of ¢, calculated from Eq. (8) is
2(14 ”" 2 ’" 2 7] 2
" [4¢Y"(2a*)+32¢""(5a°)+ 64y (8a“)+ - - - ] .
a

Cin=

(11)

To obtain Eq. (11), the interactions between the nearest
neighbors to the fifth coordination sphere have been tak-
en into account. The first term in Eq. (11) is proportional
to the second derivative 9''(2a?) of the potential function
for the second-nearest neighbors. The monatomic square
lattice, then, can be stable for short-range potentials if
this term is positive. If ¥"’ turns out to be negative for all
but the first-nearest neighbors, the square lattice will be
unstable. This is, in fact, most likely to be the case, be-
cause the inflection point of the function ¥''(#2) usually
falls at a distance » between the first and the second coor-
dination spheres.

B. Hexagonal lattice

It follows from the symmetry of the hexagonal lattice
that

666:%(C“—6‘12) . (12)

Taking the Cauchy relation [Eq. (2)] into account, one
obtains

Ceg=Crp=1cy - (13)

There is only one independent elastic constant ¢, for the
hexagonal lattice.

The basic vectors of the hexagonal lattice [Fig. 1(b)]
can be chosen as
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1, V3

—a, 5

> (14)

a;=(a,0), a,= a

The summation in Eq. (7) runs, in this case, over the fol-
lowing lattice points:

x(1)= 11+%12,—‘%3-12 a. (15)

The elastic constant c¢;; obtained with the use of Eq. (7)
reads (for the interactions up to the fifth-nearest neigh-
bors)

4

{a
(SR}

= [¥'(a?)+9¢"(3a2)+ 16" (4a?)

Vg

+98¢"(7a2)+81¢"(9a>)+ --- 1. (16)

For the lattice to be stable, the value of ¢;; must be posi-
tive. Since the first term in Eq. (16) is proportional to the
second derivative of the potential function ¢ for the first-
nearest neighbors, the hexagonal lattice is most likely to
be stable. It follows from the fact that the distance be-
tween the nearest neighbors in a lattice in equilibrium
generally falls very close to a minimum of the atom-atom
potential function ¥(r2). The lattice atoms (particles) in-
teract predominantly with their nearest neighbors for the
short-range potentials.

Another reason for the stability of the hexagonal lat-
tice is the number of the first-nearest neighbors. The
most stable structure is the one in which there are as
many as possible first neighbors giving the decisive con-
tribution to the total energy. There are six of these kinds
of neighbors for the hexagonal lattice and only four in the
case of the square lattice.

C. Diatomic square lattice

The diatomic square lattice is presented in Fig. 1(c).
The symmetry of the structure restrains the number of
the independent elastic constants to ¢y, ¢, and cg.
The Cauchy relation [Eq. (4)] reduces them to c¢,; and
¢q,- There are two kinds of atoms in the unit cell. The
summation in Eq. (7) runs in the lattice over the follow-
ing points:

x,(N=(l,,1)a (17)
for the interactions of two identical atoms and
(D= +L1,+1)a (18)

for the interactions of two different atoms.

According to Eqgs. (7) and (8), the term 1;'”(%02) enters
the expressions for the elastic constants c¢;; and ¢, with
the same coefficients. The only condition for the crystal
to be stable then is

ci1—¢p>0. (19)

Taking into account the interactions up to the fifth-
nearest neighbors, one obtains
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2a*

cpp—ep=""2[¢"(a®)+4y"(3a®)+16¢"(4a*)+ - ] .

a

(20)

Therefore, as in the case of the monatomic square lattice,
the stability of the diatomic one is conditioned by the
positive sign of the second derivative of the function ¢
taken at the distance of the second-nearest neighbors.

III. MECHANICAL STABILITY
OF SIMPLE PLANAR LATTICES

A. Monatomic square lattice

Let us assume the potential function of the form

V(r)=——rA7+r% (21)
with n <m.

The first and the second term in Eq. (21) correspond to
the attractive and repulsive forces, respectively. The
potential-energy density for the monatomic square lattice
is given by

k§1 ——[

A B
a(12+k2)1/2]n [a(12+k2)1/2)m
(22)

The value of the lattice constant a is taken from the
minimization of the energy [Eq. (22)]. The condition

ou __
3 =0 (23)

leads to the following expression for a:

u=1i4y

=0

i i (12+k2)*m/2

m—n_ Bm 1=0k=1

A © © ‘
n E 2 (12+k2)—n/2
I=0k=1

a (24)

Putting x =r2, one can formally rewrite the potential

given by Eq. (21) in the following form:

Vixy=—-A4 4+ B (25)

xn/2 xm/Z

The second derivative of the above potential function
reads

v n(n+2)4
Pr(x)= A(x" TH12
Inserting this expression into Eq. (8), one obtains the con-
dition of the mechanical stability of the square monatom-
ic lattice

m(m +2)B
4(Xm +4)1/2 i

(26)

nin-+2)4

_2a* 3 & 0
2™ 42 2 Ik - 4[a2(12+k2)](n+4)/2

Vo [=1k=1

m(m +2)B
4[‘12(12+k2)](m +4)/2

>0. 27)
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Equation (24) allows us to rewrite the inequality (27) as
follows:

(m+2)2 2 12k2(12+k2)*(m+4)/2
=1k=1

2 2 (12+k2)-m/2
I=0k=1

(n+2)2 E 12k2(12+k2)*(n+4)/2
I=1k=1
> . (28)

§ i (12+k2)*n/2

I=0k=1

One can see that expression (28) is independent of the po-
tential parameters 4 and B. It only depends on the ex-
ponents n and m in the potential function [Eq. (21)]. In
practical calculations, the interactions are neglected
beyond a certain distance, especially if the exponents n
and m are large enough. In such an approximation the
values of the sums in formula (28) will also depend on the
number N of the coordination spheres taken in by the as-
sumed range of interactions. The explicit form of the in-
equality (28) allows one to rewrite it as follows:

fim,N)> f(n,N) (29)

since both sides of it are expressed by the same functions
with only different parameters n or m.

Several functions f(n,N) are shown in Fig. 2 for
different exponents n and different numbers N. For a
large value of n (n > 12) the function f(n,N) is practical-

f(nN)

0.30r

0.20f

T

0.10

00—
.

FIG. 2. Quantity f(n,N) [see Eq. (28)] for a monatomic
square lattice as a function of the maximal range of interactions
N and calculated for several values of exponent n. Lines are
given to guide the eyes.
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ly independent of the number N. It is then enough to
consider the interactions between the first- and the
second-nearest neighbors only, i.e., N =2. [If N =1 then
f(n,1)=0 for any value of n.] Several values of f(n) for
n > 12 are shown in Fig. 3.

For n=2 and m =4, f(m,N)=<f(n,N) so that the
monatomic square lattice is always unstable (see Figs. 2
and 3) whatever the parameters in the potential might be.

Inequality (29) is fulfilled for n =2 and m =3 for cer-
tain numbers N as it follows from Fig. 2. It is, therefore,
possible to obtain the stable monatomic square lattice in
very specific cases of N =3, 4, 7, or 10. Otherwise, the
lattice is also unstable.

B. Hexagonal lattice

Let us consider the stability of the hexagonal structure
for the potential function given by Eq. (21). The
potential-energy density for this lattice [see Fig. 1(b)]
reads

u=—213 5 rr+kn
a |i=ok=1
+3 3 (IP—kI+k*)~"7?)
I=0k=1
+ B 0s 3 kv
a I=0k=1
+3 3 (12—kl+k2)""/21 .60
1=0k=1

The value of the lattice constant a is then [see Eq. (23)]

fln)

0.05
0.04
0.03
0.02
0.01

B 15 17 19 21 23 n

FIG. 3. The same as in Fig. 2 but for n > 12 when the quanti-
ty f(n,N) becomes N independent.
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S 3 (PHK+E)T+ S 3 (P—kl+k) "2

m—n_ MB 1=0k=1 I1=0k=1
= T = = = : 31
S 3 (PHkl+EDTPE S S (P—kl kYT
1=0k=1 [=0k=1
The condition for stability of the hexagonal lattice reads
c”=vla4 D> <1+'k4¢”[ (14 1k )+ %k 0. (32)
a I=—o0 k=—o

Putting Eqgs. (26) and (31) into Eq. (32) and limiting the interactions to the Nth coordination sphere, one gets the stabili-
ty condition for the hexagonal lattice

fa(m,N)> f,(n,N), (33)
where
L L K
v+ [+ D177+ 3 S U+ Hkl+ k)~ H972
I=1 I=1k=1
fh(V,N): I3 X I <
S 3 (PHkI+HED)T?H S 3 (IP—kl+k?) T2
[=0k=1 I1=0k=1
L K
v+2)3 3 ([—%k)4[ — k] + K22
I=1k=1
TILE L K ’ (34)
> > (lz-i‘kl—f-kz)—wz—l—-z S (12— k]l + k%)~
[=0k=1 [=0k=1

while v=m,n and L,K are functions of N.
It turns out that f h(n,N ) is independent of the number N and that it is equal to

frn,N)=fp(n)=3(n +2) . (35)
Therefore, the condition of stability [Eq. (33)] reduces to the inequality
m +2)>Hn +2) (36)

which is fulfilled for each pair (n,m) if m > n.

The hexagonal monatomic structure is stable, as it was previously expected, for all the possible potentials of the form
given by Eq. (21). The stability is independent of the potential parameters.

C. Diatomic square lattice

Let us consider a structure in which the unit cell consists of two kinds of atoms denoted as 1 and 2, respectively [see
Fig. 1(c)]. The interaction potential now has a form often used in this kind of calculation

Vir)=—A,r;|"— A2r2'2”—2r1_2”\/A1A2+B1r1_1”’ +B2r2_2"’+2r1~2"’\/B,B2 (37)

with m > n. The parameters 4| and A4, describe the attraction and the parameters B, and B, describe the repulsion of
atoms of the same kind, respectively.
With the above form of the interaction, the potential-energy density is

© o 2(A4,+A4,) ©  ® 4 4,4,
,=Qkk1a M2 K22 i=0x=o a"[(U+1)P2+(k+1)*1]""?

Loz 2(B,+B,) L2 4y/B,B, 38)
E é ™2+ k)2 EOEO am[(I+1P+k+1721"72
The condition for the energy minimum now yields
S S (B AB)PHE) 242 3 VBB [+ 1+ (k+ 1]
n —n— !=0k=1 1=0k=0
n, (39)
m

i i (A1+A2)(12+k2)_"/2+2§ i VA, A1+ D)2+ (k + 12172

I=0k=1 I1=0k=0
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The stability of the diatomic square structure requires that [see Eq. (19)]

a—2n [2 (A1+A2)l_n+22 2 (Al+Az)(l4__12k2)(12+k2)~(n+4)/2

I=1k=1

T4 SV A AU+ =+ L2+ D2+ 1P+ (k+ 1 2] 0472

2a* nln
C“—C]Z:U— _3 ?_{“1
a 1=1
I=0k=0
m m
+ 2
2 |2 <

a " [2 (By+By))I ™ "+23 3 (B, +B,)(I*—12k?)(12+k2)~(m+472
!

I=1k=1

+4§ > \/Ble[(1+%)4—(l+%)2(k+%)2]

I=0k=0

X[+ 1P+ (k+L)2)-mrar2

Let us introduce the following notation:

8

S1(Cv)=3 (C,+C,)I",
1=

—_

S] C,

Sz C,

%
s, |lc, ¥
! 2

S2 » A~

=3 3 VC G U+ —(I+ 1Pk + 2RI+ (e 1)2) 472

- VC G LU+ D+ (k+1)2) 772,
2 2

>0. (40)

(Cy+Cy)I—PK2)(I2+k2)~vHa72

(41)

where C=4 or C=B,i.e.,C;=4,,C,=A4,,0or C;=B,, C,=B,, where needed, v=n or m.
Then the condition given by Eq. (40) transforms, with the use of Eq. (39), to

m+4 m+4

(m +2) |S,(B,m)+28, |B, +4S, |B,

n-+4
2

n+4

(n+2)|S,(4,n)+2S, | 4, +4S, | 4,

m m
S, |B,— |+2s, |B, 2>
! 2 2 2

If the atom-atom interactions are limited to the first-
nearest neighbors only, both the left-hand and the right-
hand sides of inequality (42) are equal to zero. The dia-
tomic square lattice is unstable in this case for all possible
values of the potential parameters.

The inequality (42) cannot be generally solved for the
number N =2 of the coordination spheres. We shall,
therefore, introduce a simplification to make it tractable.
Let us assume at the beginning that the parameters of the
atoml-atoml interactions only slightly differ from the
analogous parameters of the interactions of the atoms of
type 2. It allows us to replace the geometric average by
the arithmetic one

VA Ad,=1(A4,+4,),
N (43)
V'B,B,=1(B,+B,) .

n

S
! 2

A, = |+28, | 4,

n
2

I
Now the condition (42) simplifies to

m +4 m +4

(m +2)|8,(m)+2S, +285,

(n+2)

Si(n)+28,

>

(44)

The quantities S;(v), i =1,2 in inequality (44) are defined
by Eq. (41) with one difference: all parameters C, C,, C,
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should simply be omitted. As in the case of the mona-
tomic square lattice, each side of the inequality (44) is
given by the same functions of two parameters: »n (or m)
and the number N of the coordination sphere limiting the
interactions of atoms. Several functions f,(n,N) are
shown in Fig. 4. This figure is very similar to that for the
simple square lattice (Fig. 2). In the approximation
defined in Eq. (43), the diatomic square lattice is, there-
fore, stable for the same values of n, m, and N as the
monatomic square structure.

If the approximation given by Eq. (43) does not hold,
the diatomic square lattice can nevertheless be stable
when the interaction parameters 4,, A4,, B,, and B,
fulfill a certain relation. With the use of condition (42), it
is possible to obtain this relation for defined values of #,
m, and N —the largest distance of the atom-atom in-
teractions.

With only first- and second-nearest-neighbor interac-
tions, the inequality (42) reduces to

202" 1 +2)a

> s (45

o (m —n)a+22""(m +2) )
where

B=V'B,/B,+V'B,/B,, a=V'A,/A,+\V A,/ A4, .

(46)

Assuming that 4,> A4, and B, >B,, one can find the
minimal values of B, /B, needed to get the stable struc-
ture for given values of 4,/ A4,, n, and m. These values
are quoted in Table I with the accuracy O.1.

It can be seen from Table I that B, /B, is much higher
than A4,/ A4, for a large number of quoted examples. Us-
ing the Lennard-Jones-type formula for the potential

n n
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AL
15+ -
10f -
0.5t :
00

2 4L 6 8 10 N

FIG. 4. Quantity f,(n,N) [see Eq. (44)] for a diatomic square
lattice as a function of the maximal range of interactions N and
calculated for several values of exponent n. Lines are given to
guide the eyes.

ie.,o{=A,,05+ A,,c"=B,, and 05=B,, one gets the
following relation:

For n =2 and 3, the stability of the lattice is attained if
m <3n and A, is a few times greater than A4, (see Table
I). For n =6 and m =12, the diatomic square lattice can
now be stable only if 4,/ A4, >20.

The inclusion of the third-nearest-neighbor interac-
tions yields the following condition of stability:

o o (g0 )% |"
Vi(r)=— U 22 2t
Fi &%) Ty
m m 172 |m
o o (0,0,)
S Pt R P BT P b S ,
ST &%) 12
47)
J
m/2
B> 2(n +2)a2

B and «a are given by Eq. (46). The minimal values of
B, /B, (with the accuracy 0.1), which assure the mechan-
ical stability of the lattice for the potential function [Eq.
(37)] with n =6 and m =12, are now quoted in Table II.
They are denoted as (B, /B, )y;. The respective values of
(B,/B, ) obtained for the same form of the potential
with the interactions limited to the second-nearest neigh-
bors are also given for comparison in Table II. The simi-
larity of the values (B, /B, )y and (B, /B, ); shows that
the inclusion of the subsequent interacting neighbors does
not change the qualitative results obtained for N =2.

(m —n)a+(m +2)a2 "?—(n+2)a2” "2 +2m +2)2"72

(49)

The differences between (B, /B, )y and (B, /B, )y turn
out slightly greater for lower values of the exponents n
and m than in the above case. For n =2 and m =3, the
structure can be stable even for the monatomic lattice
(A= A,, B,=B,; see Fig. 4). Some other examples of
(B /B,)yy for n <6 are given in Table III (the accuracy
is 0.1). The results can be summarized as follows. If the
atoms of type 1 and 2 interact through potentials charac-
terized by similar parameters, the diatomic square lattice
can only be stable if n =2 and m =3 and N =3, 4, 7, and
10.
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TABLE 1. The minimal values of B, /B, which can stabilize the diatomic square lattice for the po-
tential given by Eq. (37). The interactions to the second-nearest neighbors are taken into account.

A, B, A, B, A4, B,
n m 4, B, n m 4, B, n m 4, B,
2 3 1 1.7 3 4 1 2.6 4 6 1 5.8
2 3 2 2.3 3 4 2 3.3 4 6 2 6.8
2 3 4 4.1 3 4 6.8 8.5 4 6 6.8 14.9
2 3 6.8 6.6 3 4 34 34.1 4 6 14 26.5
2 3 14 12.2 3 4 100 80.9 4 7 1 10.1
2 3 34 25.3 3 5 1 4.5 4 7 2 11.5
2 3 62 39.8 3 5 2 5.3 4 7 6.8 23.3
2 3 100 54.9 3 5 4 8 4 8 1 17
2 4 1 2.9 3 5 6.8 11.8 4 8 2 19.2
2 4 2 3.5 3 5 100 88.1 4 8 6.8 37.2
2 4 4 5.5 3 6 1 7.7 5 7 1 6.8
2 4 6.8 8.2 3 6 2 8.7 5 7 2 8
2 4 14 14 3 6 4 12.3 5 7 14 31.3
2 4 34 26.4 3 6 6.8 17.6 5 8 1 12.1
2 4 100 50.9 3 6 100 111 5 8 4 19.5
2 5 1 4.9 3 7 1 12.7 5 9 1 20.9
2 5 2 5.7 3 7 4 19.6 5 10 1 35.8
2 5 4 8.1 3 7 6.8 27.1 5 10 2 40.1
2 5 34 32.8 3 7 14 43.8 5 10 14 130.4
2 5 100 58.9 3 8 1 21 5 10 100 580
2 6 1 8.2 3 8 4 31.6 6 8 1 7.7
2 6 2 9.2 3 8 6.8 43 6 8 2 8.9
2 6 4 12.4 3 8 14 67.9 6 8 14 35.2
2 6 14 26.4 3 9 1 35.2 6 8 34 77.8
2 6 100 77 3 9 4 51.7 6 12 1 73.3
2 7 1 13.2 3 9 6.8 70 6 12 2 82.2
2 7 2 14.9 3 9 14 108.2 6 12 4 112.8
2 7 4 19.7 4 5 1 3.3 6 12 6.8 159.2
2 7 14 39.8 4 5 2 3.9 6 12 14 270.8
2 7 100 108.7 4 5 14 18.5 6 12 34 556.5
2 8 1 222 4 5 62 70 6 12 62 905.1
2 8 4 31.9 4 5 100 103.8 6 12 100 1298

TABLE II. The minimal values of (B, /B, ) and (B, /B, )y for the interactions to the third- and the
second-nearest neighbors, respectively, for the potential given by Eq. (37) with n =6 and m =12.

A4, B, B, 4, B, B,

A, B, 11 B, 1 4, B, 1 B, 111
1 73.3 71.3 14 270.8 257.1
2 82.2 79.7 34 556.5 516.8
4 112.8 109 62 905.1 824.3
6.8 159.2 152.9 100 1298.1 1161.2
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TABLE III. The minimal values of (B, /B, )y and (B, /B,y
for the interactions to the third- and the second-nearest neigh-
bors, respectively, for the potential given by Eq. (37) with
different values of n and m.

A, B, B,
" " 4> B, 11 B 1
2 4 1 2.9 1.1
2 5 1 4.9 2.9
2 6 1 8.2 5.3
2 7 1 13.2 9
2 8 1 22.2 15.3
3 4 1 2.6 2
3 4 2 3.3 2.7
3 5 1 4.5 3.6
3 6 1 7.7 6.2
3 7 1 12.7 10.3
3 8 1 21 16
4 5 1 3.2 2.9
4 6 1 5.8 5.3
4 7 1 10.1 9
4 8 1 17 15.3
4 9 1 28.7 25.8
5 6 1 3.6 35
5 7 1 6.8 6.1
5 8 1 12.1 12.1
5 9 1 20.9 19.8

Another possibility of the lattice to be stable is that the
relation (42) is fulfilled but the assumption (43) is not.
For example, when N =2, the inequality (42) reduces to
formula (45), which is usually satisfied for
B,/B,>> A,/ A,.

IV. DISCUSSION

The calculation of the elastic constants presented in
Sec. I1I shows that the square monatomic lattice is unsta-
ble for the majority of the atom-atom potentials of the
form given by Eq. (21). The instability which is related to
a negative value of c¢g =c;, shows a tendency of the lat-
tice to transform its unit cell into a rhombus. When the
acute angle of the rhombus acquires the value of 60°, one
obtains a hexagonal structure—the structure of the
lowest energy for planar lattices.

The instability of the square lattice remains valid for
all the coefficients 4,B and all the exponents n,m except
for n =2 and m =3. In this latter case the monatomic
square lattice is stable if one restricts the interactions to
specific numbers of coordination spheres. The form of
the potential with » =2 and m =3 is, however, rather
special and is conceivable only if one takes into account
some interactions highly mediated by the underlying bulk
lattice. In fact, the (001) surfaces of atomic crystals very
seldom show a planar square structure as it should be if
they were unreconstructed. The experimental observa-
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tions'® indicate that the latter surfaces are rough or
stepped.

The diatomic square lattice can be stable for the poten-
tial of the form given by Eq. (37) if the ratio of the repul-
sive parameters B /B, is sufficiently high [the inequality
(42) is then fulfilled]. This condition means that there is a
great difference between the atoml-atoml and the
atom2-atom2 interactions. If the inequality (42) is not
fulfilled, the diatomic square lattice is unstable. The in-
stability is related to a negative value of ¢y —cy,. It
means that the lattice has a tendency to transform its unit
cell into a rectangle and finally into a 60° rhombus (see
also Ref. 12 for a discussion of this instability).

Mechanical stability does not exhaust the problem of
the general stability of the lattice. The structure may
well be unstable at different points of the Brillouin zone
even though the conditions of the mechanical stability
were fulfilled. An insight into the atomic displacements
at some highly symmetrical points of the Brillouin zone
boundary shows that, up to the second-nearest interact-
ing neighbors, the structure remains stable whenever it is
mechanically stable. Indeed, in the monatomic square
lattice, the changes in the atomic distances corresponding
to the uniform shear are the same as those corresponding
to the transverse acoustic mode at k=(0,7/a). Thus,
the zone-center and the zone-boundary instabilities occur
simultaneously. The same happens at the k=(7/a,m/a)
point where half of the first-nearest-neighbor distances
are shortened, the other half are elongated and half of the
second-nearest-neighbor distances are elongated in the
transverse vibration. Since, in the mechanically stable
lattice, the first-nearest-neighbor distance is shorter than
that of the minimum of the interatomic potential and the
second-nearest neighbors lie between the minimum and
the inflection point, the distortion corresponding to the
TA at the (7/a,7/a) point always increases the poten-
tial energy. The same can be stated on the diatomic
square lattice; it is then enough to interchange the (1,1)
and (1,0) directions. In case of the longer range of in-
teractions, a more specific analysis is needed to reveal the
global stability of the lattices.

It follows from experiments on (001) crystal surfaces of
diatomic fcc crystals'® that the square symmetry of the
surface is usually stabilized by steps, i.e., the square
structures are seldom stable in real systems.

The two-dimensional lattices cannot always give the
description of the surface layers in crystals. The interac-
tion between the topmost layer and the deeper layers
should then sometimes be taken into account. The dis-
cussion on the stability of the square planar structures
can, however, elucidate the problem of the absence of the
square symmetry planar surfaces observed in real crys-
tals.
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