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Charge-Auctuation effect on the critical temperature of layered high-T, superconductors
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The value of the superconducting critical temperature ( T, ) of artificially layered superconductors
made out of alternating Y-Ba-Cu-0 and Pr-Ba-Cu-0 layers is calculated as a function of both the
number of layers of pure Y-Ba-Cu-0 within a unit cell of the superlattice and the thickness of the
insulating (Pr-Ba-Cu-0) layer. The calculation is performed within a model of electrostatically cou-
pled two-dimensional (2D) arrays of ultrasmall Josephson junctions. The underlying mechanism is
assumed to be the depression of the Beresinskii-Kosterlitz-Thouless transition temperature ( TBKT )

by quantum phase fluctuations due to charging effects. The T, value of the entire structure can then
be tuned by varying the charging energy that depends on the average neighborhood of a typical site
in Cu-0 planes of Y-Ba-Cu-0 layers. Recent experiments on such structures are described very ac-
curately by the model. Furthermore, the ratio (T,'"' —T,"')/(T,"'—T,'"), where T,'"' is the critical
temperature of a thin film made up of n Y-Ba-Cu-0 unit cells, is found to be independent of the
fitting parameters. This prediction is well confirmed by available experimental data. Furthermore,
the model also applies for the series of Bi- and Tl-based cuprates of general formulas

Bi2Sr2Ca„&Cu„O~and T12 (&)Ba2Ca„&Cu„0~containing n Cu-0 planes per unit cell, for which the
observed values of the ratio p=( T,"'—T,"')/( T,' '—T,"') agree within 10% with the predicted ones.

I. INTRODUCTION

Recent experiments on periodic artificially layered
high-T, superconductors (HTCS) made of alternating
layers of (superconducting) Y-Ba-Cu-0 and (insulating)
Pr-Ba-Cu-0 (Refs. 1 and 2) have shown a very peculiar
dependence of T, as a function of both the number n of
Y-Ba-Cu-0 pure layers and the thickness d of the insulat-
ing layer. These results strongly suggest that supercon-
ductivity can occur in a single (12 A) layer of Y-Ba-Cu-0
but the coupling between monolayers along the c axis is
needed to reach T, =90 K as observed in bulk materials.
However, the nature of this coupling is not clear at the
moment. The fact that the T, value in the bulk is close to
ten times the value in a monolayer suggests that Joseph-
son coupling along the c axis is not a realistic explana-
tion. Indeed, such a coupling can predict at most the
value of the ratio between the critical temperatures of iso-
tropic three-dimensional (3D) XY and 2D X1' models,
i.e., a ratio of order 3. On the other hand, the existence
of the (12 A)/(12 A) superlattice with very different prop-
erties than the alloy' and further structural characteriza-
tion of interfaces, suggests that interdiffusion cannot ac-
count for the observed behavior.

In HTCS, the very small coherence length makes possi-
ble the weakening of superconductivity over short dis-
tances, giving rise to Josephson barriers located at defects
such as twin boundaries. In the following we will assume
this picture, as many authors did (See Ref. 17), since
Miiller et al. (See Ref. 18) have suggested the existence
of an intrinsic intragrain weak-link structure, in order to
explain the very unusual magnetic properties (such as the
1 —T/T, =H ~ "irreversibility line" ) observed by them
on La-Ba-Cu-0 samples.

II. 2D-XF MODEL AND QUANTUM FLUCTUATIONS

A. Definition of the model

Arrays of Josephson junctions in zero magnetic field
and including charging effects are usually described by
the following Hamiltonian:

(2e) n, —J g cos(0; —8, ) .
(i,j)

(2. 1)

In this paper each pair of Cu-0 planes in the Y-Ba-
Cu-0 structure is taken as a 2D array of Josephson junc-
tions. When insulated and in the absence of charging
effects, this system undergoes a BKT transition at a tem-
perature T,o. Charging effects will depress the value of
T, . The diagonal charging energy contribution of an in-
dividual site of the array will be calculated in function of
its relative position with respect to the conducting (Cu-0)
planes of the neighboring Y-Ba-Cu-0 cells. As expected,
the value of T, varies with the average spacing between
adjacent Y-Ba-Cu-0 unit cells, reproducing very accu-
rately experimental data.

The paper is organized as follows. In Sec. II we intro-
duce a linearized version of the T, dependence on quan-
tum effects (charging effects), in the context of a self-
consistent harmonic approximation (SCHA). In Sec. III
we evaluate the self-capacitance of a typical site for struc-
tures as in Refs. 1 and 2. In Sec. IV we combine results
of the two preceding sections to give explicit expressions
for the T, versus d dependence for different values of n.
We also present universal relationships that follow from
these expressions and we compare them with experimen-
tal observations. Finally, we summarize and draw con-
clusions in Sec. V.
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In (2.1), e stands for the elementary electric charge, n;
is the number of Cooper pairs sitting at site (i), C the
self-capacitance of the site, and J the Josephson coupling
constant. The first summation over the sites is the diago-
nal contribution to the electrostatic energy of the system,
which is assumed to be dominant with respect to off-
diagonal terms. The second summation, over oriented
bonds, is the standard exchange coupling term of the
classical XYmodel.

An operator n;, that measures the number of Cooper
pairs on a site (i), can be defined as

(2.2)

and

1

2 sinh( —,
' A'cok lkR T)

(2.9)

ZTR being the partition function of a set of coupled
quantum harmonic oscillators. Defining the reduced
variables

kBT Kf=, t=, and y=—NJ' J J
(N being the number of sites in the array) we can write for
the variational free energy density, the expression

n; and 0; are cannonically conjugate and satisfy the corn-
mutation relations

f=frR
—2 exp( —

—,'X ) —yX

with

(2.10)

[n, , 8, ]=—.5,
l

The Hamiltonian (2.1) can be rewritten in the form

H= g —J g cos(8; —8 )=Q+U,
i (ij)

where

A'c

(2e)

(2.3)

(2.4)

X=—((8, —8, )'),„.
In minimizing f with respect to y, we get

+D2( A)

where

2(~ay )

and

(2.11)

2e
2MJ CJ

(2.5)

B. Variational method (SCHA)

The SCHA procedure consists in replacing the cosine
potential in the Hamiltonian (2.4) by a variational har-
monic potential of the form

Uz.R = ,' lC g (8, —8 )—
&i j &

(2.6)

where K is an effective coupling constant that has to be
adjusted in order to minimize the variational free energy
given by

From the commutation relations (2.3) it follows, in ac-
cordance with the Heisenberg principle, that when the
charge on a site is well defined, the uncertainty on the
phase would be considerable, leading to quantum phase
fluctuations in the system. This situation will occur at
low temperatures if the coupling energy EJ is small com-
pared with the electrostatic energy E, . In order to
characterize this situation, one introduces the parameter
a as

2

D2( A)= dx
o exp(x) —1

In minimizing f with respect to X, we get

y =exp( —
—,
' X ) . (2.12)

D~(A)=1 — +
3 24

(since A -a'~ ). Then

t may

2y 6t2

This last expression is a self-consistent equation
defining the optimal coupling constant y(t) for each tem-
perature. The critical temperature is reached when Eq.
(2.12) admits no solution but the trivial one (y=0). In
the classical (a=O) case, this situation corresponds to
X*=2 and t*=4/e (e being here the basis of natural log-
arithms).

In this paper we will look for an approximative solu-
tion in the limit a « 1. Under this approximation we can
consider the following expansions:

+TR + ( U ~ TR ( UTR ~ TR

Thermodynamic averages in (2.7) are performed as

tr[ A exp( HrR /kR T )]—
ZTR

with

(2.7)

m'0!
y =exp — 1+ y4y 6t'

(2.g)
Taking

Equation (2.12) can then be approximated by

(2.13)

HrR —Q+ Uzx
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it follows that, to the first order in a,

1+ 7TCK

4 24t

The self-consistent equation (2.13) becomes

t ~o,'z 1—y+ y =exp
4 96 y

(2.14)

The critical values for a =0 are y
*= 1 and t *=4/e. In

order to find the first-order correction to t* for a%0, we
insert in (2.14) a solution of the form

y =1+aa
which gives

4 Kcx ~ 7Tcxt*(a)= ——=i'(0)—
e 24 24

(2.15a)

Equation (2.15a) is the linear a dependence of t, we will
use in Sec. IV.

Turning back to our initial notation, expression (2.15a)
can be rewritten as

planes of Y-Ba-Cu-0 and at a distance (d+A) from the
next Cu-0 plane across the Pr-Ba-Cu-0 insulating layer.
This situation is depicted in Fig. 1.

The electrostatic potential on a small charged sphere of
radius ro and total charge q sitting in between two paral-
lel conducting planes can be evaluated using the image
charge techniques and gives

Vo =—= (1+roS),C 4m-roe, ro

where

(3.1)

S= g( —1)" +1 1

n=1 I'
n

(3.2)

is the infinite summation over image charges sitting on
the positive half-space (label r„)and the negative half-
space (label r„') e, .is the component along the c axis of
the dielectric tensor, which is assumed, in our model, to
be uniform.

If the small charged sphere is sitting at distances a and
b from the negative and positive half-space conducting
planes, respectively, we can write

T, (a) = T,o
B

(2.15b) 1 n —2gS=——
21 i n [n(n —1)+g] (3.3)

The result in Eq. (2.15b) is in excellent agreement with
the fit performed by Jacobs et al. on their Monte Carlo
simulations for the same model. To see that, let us write
Eq. (2.15b) as

where

ab

(a+&)
T, (~) =1—C,a+0(a ) .

Tco
(2.15c)

1=a+b .

(The above normalization avoids that the overestimation
of T,o intrinsic to SCHA, masks the effect of quantum
fluctuations. ) Now, if we evaluate C, for Ref. 5 and for
the present work, we find C, =0.090 and C, =0.089, re-
spectively.

So —=S( il = -,
'

)=- 21n2
(3.4)

Expression (3.4) will apply to bulk materials by taking

The quantity S in (3.3) can be evaluated exactly in the
symmetrical case (g =

—,')

III. ELECTROSTATIC ENERGY CONTRIBUTION

High-T, superconducting materials are characterized
by their high degree of anisotropy. For most of HTSC,
the in-plane electrical resistivity (pi) is "metallic" with
dpildT positive and close to pi/T; in contrast, p, (along
the c axis) is larger by a factor 10 and usually "nonme-
tallic" (dp, IdT (0). We thus assume that sites on the
same Cu-0 plane are related by proximity effect coupling,
whereas a particular site is electrostatically coupled to
the Cu-0 planes of adjacent Y-Ba-Cu-0 unit cells. In-
plane electrostatic coupling will be neglected as well as
the Josephson coupling along the c axis. Our aim is to
evaluate the self-capacitance C appearing in the Hamil-
tonian (2.1) for structures as described in Refs. 1 and 2.
For a typical Cu-0 plane of Y-Ba-Cu-O, there are two
different kinds of environment: "internal" Cu-0 planes in
the center of pure Y-Ba-Cu-O, sitting at an equal distance
A (12 A) from the two conducting Cu-0 planes of adja-
cent Y-Ba-Cu-0 unit cells, and "edge" Cu-O planes sit-
ting at a distance A (12 A) from one of the adjacent Cu-0

Y

Y

(internal) Y

(edge)

Cu-0 planes

", A
II~ ~

liA

li

d (d+A)

Y ~zszss
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I I

I

I

FIG. 1. Schematic representation of the Y-Ba-Cu-0/Pr-Ba-
Cu-0 superlattices as discussed in the text.
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I =2A, and to samples with just one monolayer of Y-Ba-
Cu-0 by taking 1=2(d+A). For the asymmetric case
(i) & —,') we use the following approximation:

1
S(il) = ——

21
1 2'g n 27)+

2 n [n(n —I)+il]

1 1——4(1 —ln2)
2l

(3.5)

IV. THE CRITICAL TEMPERATURE OF
LAYERED SUPERCONDUCTORS

A. Y-Ba-Cu-O/Pr-Ba-Cu-0 superlattices

The first simple application of the result of the two
preceding sections is the calculation of the T, of an insu-
lated monolayer of Y-Ba-Cu-0 in an infinite Pr-Ba-Cu-0
medium. For this case we take the limit d~ ~ in (3.4)
and we get

1 g
4w6'OE' r p Cp

thus, from Eqs. (2.5) and (2.15) we find

2
(&) vie

C Cp

(4.1)

(4.2)

The critical temperature of the bulk (d =0) Y-Ba-Cu-0
can be calculated by taking the appropriate limit

2
Tbulk

C CO

ln2
1 —rp

In (3.5) the dependence is dominated by the first term of
the summation, since q is always smaller than —,'. The g
independent part was fixed in order to get the correct
symmetrical value when d goes to 0.

The value of the self-capacitance C can be extracted
from (3.1) after evaluating S for each particular case.

T~ "~(d)= Tb"~"+—T~2~(d)
n n

(4.6)

T(2) T(1)
C C

hT
—=0.72 .1

2 ln2
(4.7)

The numerical value of expression (4.7) is directly related
to the electrostatic nature of the coupling between Cu-0
planes. This value is confirmed within 5%%uo by data in
Refs. 1, 2, and 10. In order to compare on the same
graph, experimental data of different origins and theoreti-
cal predictions, we define the following reduced quanti-
ties:

r=( T Z;"')/S—T (4.8)

5=d/A . (4.9)

In Fig. 3 we plot the reduced data from the above refer-
ences together with the reduced set of curves given by
Eqs. (4.4) and (4.5). For Y-Ba-Cu-0/Pr-Ba-Cu-0 sam-
ples we use &=12 A, QT=66 K, and T ""=71K for
samples from Refs. 1 and 10 and b T=80 K for samples
from Ref. 2. Notice that 5 dependence is correctly fol-
lowed by the theoretical curves. However, for samples at
n =2 in Ref. 10 (full circles), one can notice an abrupt
discrepancy between the fit and the data below 5=4.
This fact can be interpreted in terms of structural

where it becomes clear that for n ~ 2, T, is a weighted
average between T, "'" ("internal" ) and T,' ' ("edge").

The above property does not depend on the details of
the model, and is confirmed with great accuracy by ex-
periments: in Fig. 2, recent data on asymptotical values
of T,'"'(d=~) by Triscone et al. are plotted together
with the predicted curve from Eq. (4.6).

A more interesting universal feature between asymp-
totical values T,'" and T,' ' can be expressed in units of
AT by

2

Tc + me rpln2

12k' Co&
(4.3)

100 ~ ~ I ~ I 8 ~ I I

(bu(k)

The case of the superlattice containing just one Y-Ba-
Cu-0 unit cell per period (n =1) is also symmetrical and
can be computed in a similar way:

T,'"(d)= T,"'+ET A

d+A (4.4)

where b, is defined by Eq. (4.3). For all the remaining
cases with n ~ 2, T, can be evaluated by averaging the T,
over all the Y-Ba-Cu-O cells in the structure

50
LJ

- f&(&)

0 I I I

0 100 200
n 2 2So+—S(g)

n n
T,'"'(d) = T,'" hT—A

2 ln2
(4.5) Y- Ba-Cu-O

where

A(d+A)'
(d +2A)

Expression (4.5) can be expressed in an alternative way by

FIG. 2. Superconducting critical temperature as a function
of the Y-Ba-Cu-0 thickness for fixed Pr-Ba-Cu-0 thickness (144
0
A). The points are experimental data from Ref. 9. The full
curve is the predicted behavior given by Eq. (4.6). The arrows
indicate the input values T and T " .
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Ref. 2 that are made by laser beam deposition. We be-
lieve that, in this case, accommodation at interfaces is
mostly achieved through misfit dislocations (see Ref. 20).

At this point, it is essential to comment about the
choice we made at the beginning in taking the Cu-0 bi-
layer in each Y-Ba-Cu-0 cell as a single two-dimensional
unit. In fact, in a first attempt, we tried to consider the
Cu-0 planes as individual metallic layers, but the fitting
parameters were completely unphysical and the fit very
poor. Thus we conclude that in these materials the two
closest Cu-0 planes behave as a single metallic sheet.

This is not the case, as we will see in the following.
For Bi- and Tl-based cuprates. The difference is easy to
understand if one compares the extremely large conduc-
tion anisotropy of Bi- and Tl-based compounds (nearly
10 )' with that in Y-Ba-Cu-0 ( ( 10 ).' In other words,
nearest-neighboring Cu-0 planes in Bi and Tl compounds
are insulated while in Y-Ba-Cu-0 they are electrically
connected.

0 (, 8 12 16 20

i5 = d/A

FIG. 3. Reduced superconducting critical temperatures ~ as
a function of the reduced thickness 6 for different values of n

(the number of Y-Ba-Cu-0 unit cells per period in the superlat-
tice). Solid lines are theoretical curves. Squares are taken from
Ref. 2, circles from Refs. 1 and 10; open symbols (0, ) corre-
spond to n =1 samples, full symbols (, ~ ) to n =2, and half
squares (Kl) to n =4.

changes at the interface between the Pr and the Y com-
pounds due to the interplay between epitaxial strain and
misfit dislocations. " Indeed, there is a l%%uo mismatch be-
tween the lattice constants on the a-b plane, and samples
made by magnetron sputtering technique' are highly epit-
axial. No such discrepancy is observed for samples of

B. Bi- and Tl-based superconducting cuprates

The Bi and Tl compounds of general formula
BizSr2Ca(„,]CunOy and T12 (&iBa2Ca„,Cu„Oy contain
n =1,2, 3, . . . Cu-0 single planes per unit cell. Taking
into account the large anisotropy in their resistivity, we
will consider each of these planes as a metallic sheet insu-
lated from the others. Using the structural data available
for these compounds, ' ' we can calculate the corre-
sponding value of 5 [see Eq. (4.9)] for each of the three
series [Bi (2,2,n —l, n), Tl (2,2,n —l, n), and Tl(1,2,n-
i, n)] and deduce the ratio p=(T,' ' T,"')l(T,' ' T—,'")—
from Eqs. (4.4) and (4.5). In Table I we list some
structural data (I. being the size of the unit cell along the
c axis and A the shortest distance between Cu-0 planes),
critical temperatures, ' the 5 values, and the calculated
and the experimental values of p. In this kind of com-
pound it is very hard to obtain an (n) pure phase, espe-
cially for n =1 which is often polluted by n & 1 phases.
In consequence, the measure of T"' is an upper limit as is

TABLE I. Bi- and Tl-based cuprates. Structure data (L=period; A=shortest distance between Cu-

0 single planes), critical temperatures T„reduced insulating thickness 6, predicted and measured
values of the ratio (T,' ' —T,"'/(T,' ' —T,"'): p$h y

and p,„»,calculated value of the effective uniform e

component t, of the dielectric tensor. (The asterisk indicates input values for the calculation of hT. )

Compound

Bi2Sr2Ca„&Cu„O~ 10
85*

110
15.80 3.20 2.93

ptheor pexpl

1.190 1.333 250 37.88

T12Ba&Ca„&Cu„O~ 83
110*
122

14.70 3.20 2.59 1.200 1.444 133 71.19

T18a2Ca, l Cu„O~ (30
90

110
122

12.74 3.13 2.07 1 ~ 195 1.333 246 39.35
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the estimation of p. In this context we can say that the
model is in good agreement (10 %) with the observed
data.

Finally, from the T,'"' data we can extract the value of
e, the effective uniform component along the c axis of the
dielectric tensor. To do that we use the expression of hT
that follows from Eqs. (4.1) and (4.2), and we get

e ln2

48k@so b'T A
(4.10)

Results for the Bi and Tl compounds are included in
Table I together with the estimated AT. For Y-Ba-Cu-0
we find e, =34. It is interesting to notice that the max-
imum dielectric constant corresponds to the most aniso-
tropic compound.

A final remark is needed at this point about the
significance of T,o and ro that, in our present formalism,
appear as arbitrary parameters. The bare critical temper-
ature T,o is related to the Josephson coupling J between
adjacent grains, and ro to the size of a typical grain. In
addition, they are related to each other through Eq. (4.2).
An upper critical limit for ro can be calculated, starting
from the trivial fact that T,o

~ T, "'"; inserting that in Eq.
(4.2) we get

A
To (4.11)

V. CONCLUSIONS

In this work we have presented a model that can ac-
count for the T, behavior in high-T, layered supercon-

0
For Y-Ba-Cu-0 this means ro ~ 17 A. The thickness of

0
the Y-Ba-Cu-0 bilayer being about 3 A, we can deduce
an upper limit for g,b, the typical linear size of the super-
conducting island in the a-b plane, containing the same
volume as the ideal sphere of radius ro: g, b

~ 83 A. This
limiting value is too small compared with twin spacings.
However, it should be pointed out that our estimation of

agrees with that of Morgenstern et al. ' based on
Monte Carlo simulations of the magnetic properties of
HTCS within the superconducting-glass model.

ductors. The model considers the layered superconduc-
tor as a set of metallic layers embedded in a dielectric
medium; each metallic layer behaves as a 2D XY system
(array of weak links) subjected to charging efFects that re-
normalizes its bare 8KT transition temperature.
Quantum-phase fluctuations induced by charging effects
are inhibited by Coulomb screening along the c axis due
to the presence of adjacent metallic planes.

The model describes correctly the T, behavior of two
difFerent kinds of samples: the artificial Y-Ba-Cu-0/Pr-
Ba-Cu-0 superlattices and the Bi- and Tl-based cuprates
containing different numbers of Cu-0 planes per unit cell
depending on their stoichiometry.

Two kinds of universal relationships are predicted by
the model and confirmed by experiment. The most trivial
one (that does not depend on the nature of the interlayer
coupling) is that, for n 2, the T, is an average over indi-
vidual metallic layers. This means that each metallic lay-
er undergoes its own BKT transition depending just on
its local environment. More interesting are the predic-
tions about the relative values of the T, 's for fixed d »A
and varying n One .of them (from which the others can
be deduced by averaging) is (T,' ' T,'")/(—T,'"'—T,"')
= 1/2 ln2, which follows directly from the Coulombic na-
ture of the coupling.

If the picture emerging from our work is correct, it
should be a guide for further experimental projects aim-
ing to improve superconductivity in this kind of material.
This can be achieved by decreasing the distance between
metallic planes or increasing the polarizability of the
dielectric.

ACKNOWLEDGMENTS

We would like to thank J. M. Triscone, L. Antognazza,
and g. Fischer for providing us with useful data on
artificial structures and for interesting suggestions. One
of us (D.A. ) also thanks A. Junod for pointing out to him
relevant properties of Bi- and Tl-based cuprates. This
work was supported by the Swiss National Science Foun-
dation.

J. M. Triscone, Q. Fischer, O. Brunner, L. Antognazza, A. D.
Kent, and M. G. Karkut, Phys. Rev. Lett. 64, 804 (1990).

~Q. Li, X. D. Wu, A. Inam, S. Vadlamannati, W. L. McLean, T.
Venkatesan, R. Ramesh, D. M. Hwang, J. A. Martinez, and
L. Nazar, Phys. Rev. Lett. 64, 3086 (1990).

N. Gupte and S. R. Shenoy, Phys. Rev. D 33, 3002 (1986).
~J. M. Triscone (private communication).
5See, for example, L. Jacbos, J. V. Jose, M. A. Novotny, and A.

M. Goldman, Phys. Rev. 8 38, 4562 (1988).
V. L. Pokrovsky and G. V. Uimin, Phys. Lett. 45A, 467 (1973).
P. B. Allen, Z. Fisk, and A. Migliori, in Physical Properties of

High Temperature Superconductors I, edited by D. M.
Ginsberg (World Scientific, Singapore, 1989).

See, for example, E. Durand, Electrostatique II (Masson, Paris,

1966).
J. M. Triscone, 0. Fischer, L. Antognazza, O. Brunner, A. P.

Kent, L. Meville, and M. G. Karkut, in Science and Technolo-

gy of Thin Films Superconductors, edited by R. D. McDowell
and S. A. Wolf (Plenum, New York, in press).
L. Antognazza, J. M. Triscone, O. Brunner, M. G. Karkut,
and Q. Fischer, Physica 8 165-166, 1503 (1990).
D. Ariosa, 0. Fischer, M. G. Karkut, and J. M. Triscone,
Phys. Rev. 8 37, 2415 (1988);37, 2421 (1988).

S. Martin et al. , Phys. Rev. Lett. 60, 2194 (1988).
T. Penney et al. , Phys. Rev. 8 38, 2918 (1988).

~4H. W. Zandbergen et al. , Physica C 156, 325 (1988).
'~P. Haldar et al. , Science 241, 1198 (1988).
' S. Theodorakis, Physica C 156, 795 (1988).



350 D. ARIOSA AND H. BECK 43

See, for example, J. Clem, Physica C 153-155, 50 (1988); C.
Ebner and D. Stroud, Phys. Rev. B 31, 165 (1987).
K. A. Muller, M. Takashige, and J. G. Bednorz, Phys. Rev.
Lett. 58, 1143 (1987).

' I. Morgenstern, K. A. Muller, and J. G. Bednorz, Z. Phys. B
69, 33 (1987).

D. H. Lowndes, D. P. Norton, J. D. Budai, S. J. Pennycook,
D. K. Christen, B. C. Sales, and R. Feenstra, in Proceedings
of the Spring Meeting of the Material Research Society, Sym
posium N: Laser Ablation for Material Synthesis, San Fran-
cisco, 1990 (unpublished).


