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Long-range order in a three-dimensional random-tiling quasicrystal
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Monte Carlo simulations are performed on the rhombohedral random-tiling model of icosahedral
quasicrystals. Long-range order is observed in agreement with a squared-gradient form of the
coarse-grained free energy, and the two independent phason elastic constants are determined.
Schematic transmission electron micrographs, generated by two-dimensional projections of the tile
vertices of a typical random configuration, display phason disorder only for suKciently thin sam-

ples.

I. INTRODUCTION

Recently, quasicrystals with resolution-limited Bragg
diffraction peaks were discovered in the family
i(A1-Cu-Fe) —i(A1-Cu-Ru). ' Among the explanations of
quasicrystal ordering, only two predict long-range order
in the sense of Bragg peaks in three dimensions: (1) the
perfectly quasiperiodic model, where energetic considera-
tions (such as matching rules) enforce a ground state
analogous to a perfect crystal; (2) the equilibrium
random-tiling model, according to which there are many
nearly degenerate ways of packing structural units, so
that a phase with maximum entropy is selected. In
model (2) the phason degrees of freedom which express
Auctuations around an average icosahedral symmetry are
expected to have the simple form of gradient-squared
elasticity (when suitably coarse grained) '" this leads to
Bragg peaks in three dimensions and, in contrast to mod-
el (1), diffuse scattering due to the phason Auctuations.

The random-tiling explanation furthermore predicts
that, since different packings are not exactly degenerate,
the quasicrystal phase will probably transform upon cool-
ing to a crystal. ' ' Of course, it is also possible that the
low-temperature phase is an energetically stabilized
quasicrystal. However, this possibility defeats the main
appeal of the random-tiling model: in real materials it is
easier to envision structural energetics which favor the
near degeneracy required by random tiling than the abso-
lute minimum of energy required by the quasiperiodic
model. We note that the only known equilibrium quasi-
crystal Al-Cu-Fe transforms at low temperatures to a
crystal. ' ' However, at the same time, high-resolution
transmission electron microscopy (HRTEM) images of
i(A1-Cu-Fe) display no visible deviations from perfect
quasiperiodicity rows of spots are separated by a Fi-
bonacci sequence of long and short spacings.

Numerical work on two-dimensional random-tiling
models, including Monte Carlo simulations, ' ' exact
transfer-matrix calculations, ' and transfer-matrix Monte
Carlo calculations, ' supports the squared-gradient free-
energy theory and the resulting predictions of an entropi-
cally favored state with five-fold symmetry and quasi-
long-range order. Recently Tang's Monte Carlo simula-

tion of a random tiling of Ammann rhombohedra has
produced the first numerical confirmation of long-range
order in three dimensions. ' Tang generated and ana-
lyzed a diffraction pattern of the equilibrated tiling,
confirmed the existence of long-range order, and deter-
rnined the values of the phason elastic constants. Anoth-
er Monte Carlo study by Strandburg finds the entropy to
be 0.23 per vertex.

Here we report the results of a simulation similar to
Tang's, but (1) we determine the elastic constants by a
different, more accurate method; (2) we investigate the
dynamics of the model in more detail; and (3) we project
tile vertices within slices onto a plane to produce
schematic HRTEM images. We find that as slab thick-
ness increases, the apparent density of defects in rows of
spots decreases. An analytic argument shows that this
occurs generally in any random-tiling model, and so we
would predict defect-free HRTEM images for su%ciently
thick specimens. In our system, images from slices with a
thickness of 25 rhombohedral edge lengths already show
few defects.

In Sec. II we introduce our notation, review the
relevant continuum theory of phason Auctuations, and
present the theory of the Monte Carlo dynamics. Section
III outlines the details of the simulation. Results and
conclusions are presented in Sec. IV.

II. THEORY

A. Notation

In the three-dimensional icosahedral tiling there are
two types of rhombohedra. The prolate rhombohedron
has corner spherical angles of ~/5 and 3~/5 and the ob-
late rhombohedron has corner spherical angles of ~/5
and 7~/5. The faces of the rhombohedra are identical
rhombi with acute angle cos '(1/+5).

A particular tiling may be viewed as the projection of a
connected three-dimensional surface embedded in a six-
dimension simple-cubic lattice. Each vertex of the tiling
is specified by a vector

6

o, =1
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6r'= y n.e'
a=1

(2)

where n are integers and e are projections onto the
three-dimensional "physical space" of the basis vectors of
the six-dimensional simple-cubic lattice. The correspond-
ing "phason" coordinate of the vertex is

cordingly, the e vectors become integrally dependent:

q(e, +e 2)+ r(e 3+e 6)=0,
q(e 3

—e 6)+r(e 4
—e 5)=0,

q(e4+e5)+r(e, —e2)=0 .

We also replace Eq. (2) by

and the six-dimensional position is

6 6
r" +r = g n (e" +e )= g n e

Following the conventions of Jaric, "
eI =g(r, 0, 1), e~~ =g(~ 0 —1)

e]=g(1,&, 0), ef=g(0, 1,r),
ef=g(0 —1 r) e)=g(l, —r, 0),

and

(3)

(4)

r'= yn e' .

The commensurate tiling is then generated using vertices
whose commensurate coordinates r lie within an accep-
tance domain described by Eq. (8) with e ~e, a rhom-
bic triacontahedron (slightly distorted from icosahedral
symmetry) with edge vectors e

The tiling vertices in physical space are still given by
Eq. (1), with undistorted basis vectors [Eq. (4)]. Now dis-
placements in the physical space, corresponding to those
in Eqs. (9) are

e, =g(1,0, —r), ez=g(1, 0,z),

e, =g( —r, 1,0), e4=g(0, —r, 1),
e =5g(0, rl), e6=g( r, —1,—0),

(5)

q(eI+ej')+r(e)+e))=2g(qr+r )x,
q(e)l —e)l)+ r(e)l —el)) =2q(qr+ r )y

q(e/+e/)+r(eI e]~)=2—rf(qr+r)z .

where rl: (2+r)—'~ and r=——,'(1+&5).
The long-wavelength behavior of the interface is de-

scribed by the coarse-grained phason coordinate

where ( )
~~

signifies averaging in the vicinity of r"

over a region large in comparison with the tile size.
(Henceforth we abbreviate r" as r.) The phason strain
tensor is given by

E(r)—:V,h(r) .

"Perfect" quasiperiodic tilings (for which E=O) consist
of the physical-space coordinates of all six-dimensional
simple-cubic vertices whose corresponding phason coor-
dinates r lie within an "acceptable domain. " The accep-
tance domain is

6
. gx„e':

a=1

i.e., a projection of the six-dimensional unit cube onto the
phason space. ' This domain is the interior of the
icosahedrally symmetric rhombic triacontahedron with
edge vectors e, +=1,. . . , 6. We recall that the projec-
tion of the six-dimensional simple-cubic lattice onto the
phason space is incommensurate, and so g n e~&0 for
nonzero integer values of n

There is a unique solution in integers of
L =XzVz+NOVO where V&=2~ q and V0=2~g are
the prolate and oblate tile volumes, respectively. From
this the number of tiles (or equivalently, of vertices) in
the volume L is easily determined to be
N=Nr+No=4[2q +3(q+r)qr]. If q and r are con-
secutive Fibonacci numbers F„and F„
(F„+2=F„+,+F„,for n ~0, with Fo=0 and F& =1;
F2 = 1, F3 =2, . . . ) so that r =q /r =F„/F„&,then these
approximants are optimal, in the sense of having the
smallest possible phason strain for a given number of
tiles. In this case the nonzero components of the phason
strain E„have the values

n

E„=~(F„F„,r) ———
7-2

asn —+~ . (13)

If we step from any vertex by one of the vectors in Eqs.
(11), then by Eqs. (9) there is no difference in the phason
coordinate and consequently the new vertex is also within
the acceptance domain, and included in the tiling.
Hence, these structures are periodic and Eqs. (11) are
vectors in the Bravais lattice. Equations (11) imply that
the approximants in this class have cubic symmetry with
edge length

L =2g(qr+ r ) .

1. Periodic tilings

Periodic tilings are produced by commensurate pro-
jections. Technically, this means that while using the
same physical space basis [Eq. (4)], we replace Eq. (5) by
basis vectors e, a=1, . . . , 6, obtained from the e of Eq.
(5) when r is replaced by r=q/r, a ratio of integers. Ac-

A general random-tiling configuration with the desired
periodicity can be obtained from the initial structure by a
sequence of tile rearrangements (see below). By making
the approximant su%ciently large the unavoidable uni-
form strain [Eq. (13)] is negligible in comparison to the
random-phason fluctuations produced by the tile rear-
rangements.
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2. Elasticity theory, expectation values, correlation functions

F/kT= —,
' $ h( —p).K(p) h(p), (15)

We expect that long-wavelength phasons have the
same form of free energy as capillary waves:

F/kT= ,' I—Vh(r) K.Vh(r)d r, (14)

where K is the stiffness tensor and V is the system
volume. The corresponding form of the free energy in
Fourier space is

correlations and dissipation constants must be satisfied if
the steady-state fluctuations of the Langevin distribution
are to agree with their equilibrium expectations given by
Eq. (19). The noise does not vanish in the "hydrodynam-
ic limit" p —+0, since the spatially averaged h changes
with each Monte Carlo move. Furthermore, in a large
system I;J(0) must have icosahedral symmetry, but the
only such second-rank tensor is proportional to the
Kronecker 5,". Thus we can replace I; (p)~1 5; for
small p.

For wave vectors along the coordinate axes, K(p) is di-
agonal, and Eq. (20) reduces to

where

h(p)= —J h(r)e'~'d r .
1

VP v
(16)

1
dh;(p;+k )/dt = — h; (p;+k )+~; (p;+k', t

Tcorr krP

(22)

It follows from group-theoretic arguments "' that in
the basis defined by Eqs. (4) and (5)

K,, (p)=K, ipse 5;,

&&[( ,'I —pl'+2p—,'+p + L
« Tp i»—,& 2-p'p, ]—

(17)

where K, and Kz are independent stiffness constants.
Here and henceforth, we understand the subscripts for
three-vector components are defined modulo 3. Note
that Eq. (17) is invariant under cyclic permutations (123)
or to sign changes in any component, when applied to
components both in physical and phason space.

The equilibrium expectation value of a quantity X is
given by

FIkT—

with

(23)

The right-hand side of Eq. (23) has the same value for any
i =1,2, 3 due to the cyclic symmetry of Eq. (17). Using
the sign-change symmetry of Eq. (17), the temporal corre-
lation function {h,(pi)0hk*(p&)r ) can be nonzero only
when i =k and p =p&. The relation

{"(Pi)oh (PJ)t ~={"+k(pi+k)ohl+k(P/+k)t ~ r (24)

3

Ck (t)= —,
' g {h;(p;+k)0h;*(p,. +k), ~ . (25)

a consequence of the cyclic permutation symmetry of Eq.
(17), motivates the definition of the symmetry averaged
time correlation function

—F/ATe

where the summation is over tiling configurations. We
will make particular use of wave vectors along one of the
coordinate axes, defining p& as the wave vector whose
only nonzero component is (p&)1 =p, for l= 1,2, 3 (defined
modulo 3). For such a wave vector, the stiff'ness tensor
K(p) is diagonal (in Jaric s basis). Thus by Eqs. (15) and
(17) the equal-time expectation value {h; (pi )hk*(p& ) ) is
nonzero only when i =k and p - =ph, and

(19)

The linear-response dynamics can always be described
by an equation of the form

dh;(p)/dt = —I, (p) +g;(p;t),5(F /kT )

5h p
(20)

{g;(p;t')g, (p; t" ) ) =21,, (p)5(t' t" ) . —(21)

It is well known that this relationship between noise

where g is a stochastic noise term and 1,"(p) are the dis-
sipation constants. If the correlation time of the stochas-
tic noise is much less than the correlation time for phason
fluctuations ~„„,we can treat its correlation function as
proportional to a 6 function. Then

With the assumption [Eq. (21)], the correlation function
decays exponentially,

(t ) C (0) corr (26)

3. Projection images

We now turn to the problem of interpreting simulated
HRTEM images. ' First consider the images we ex-
pect from projections along a five fold axis e6 of perfect
tilings in the limit of infinite slice thickness L9. Rhom-
bohedron vertices which project onto the same spot have
phason-space coordinates along a line l6 parallel to eJ
[see Eqs. (4) and (5)]. The distribution of points in the ac-
ceptance domain is uniform and dense, so the "bright-
ness" of a spot is proportional to the length of l6 within
the acceptance domain. In fact, most l6 lines which in-
tersect the rhombic triacontahedral acceptance domain
have a length on the order of the diameter of the domain
since the acceptance domain is nearly spherical. Thus
most spots are of comparable brightness.

The positions of spots in the two-dimensional projec-

and Eq. (23) is in fact the correlation time. Since
K(p) —

~p at small p, we see that Eq. (23) predicts the
slowest mode in a finite system relaxes as I.' with z =2, as
has been noted by Tang. '
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tion images s~~ are specified by
5

fll

a=1

where the corresponding phason-space positions
5s'=gn f'

lie within a decagon with edge vectors f (see Sec. II).
The f" (f ) are the five nonzero projections of e~ (e )

onto the two-dimensional plane with normal vector
e) (e6), while the projection of the rhombic triacon-
tahedral acceptance domain along e6 produces the decag-
onal acceptance domain. A row of spots along the f)
direction in the projection corresponds to vertices along a
line m& parallel to f& inside the decagon. Due to varia-
tions of the lengths of projected lines l6 along a given m&,
the brightness of spots along any row in the real space
image will display short-wavelength variations.

Viewing the projection image obliquely along a symme-
try direction, say f), essentially performs another projec-
tion down to a one-dimensional space, both in physical
and in phason space. The four normalized one-
dimensional physical and phason-space vectors
g =(g",g ), produced by projection along fj and f~ are

gi =rl(r, 1), g2= Il(1, r), —

g3=g( —r, —1), g4=g( —l, r),
(27)

and the 1D acceptance domain is an interval of length
2ilr —=2.75. The average brightness of a row is propor-
tional to the area of the corresponding slice through the
triacontahedral acceptance domain; this is a function of
the 1D phason coordinate which goes to zero at the end
points of the 1D acceptance domain. The sequence of
row spacings may be considered as projections onto the

e/2
H(x, y )

—= —I h(x, y, z )dz
0 —o/z

(28)

must fluctuate by a distance of order the size of the ac-
ceptance domain, i.e., of order unity. By the inverse
transform of Eq. (16),

physical space of square lattice points within a strip of
width —=2. 75 and slope r as in Fig. 5(a). There are four
physical space distances gw, g, q~ ', and gw corre-
sponding to displacements (0, 1), (1,0), (

—1, 1), and
(2, —1) on the square lattice. Note that the smaller the
physical space displacement between rows, the larger the
phason-space displacement. Hence closely spaced rows
of the projection image generally correspond in phason
space to points near the borders of the strip, and tend to
be dim and hard to see.

Upon randomization of the tiling, the short-
wavelength phason fluctuations "soften" the boundary of
the 3D acceptance domain of Eq. (8), i.e., the probability
of including a point with a phason coordinate near the
boundary no longer jumps from one to zero, but instead
decays smoothly. The long-wavelength fluctuations in
effect make a slowly varying shift of the center of mass of
the acceptance domain without changing its shape.
Brightness variations produced by short-wavelength
phason fluctuations are camouflaged by the inherent
brightness variations mentioned above. Long-wavelength
phason fluctuations, on the other hand, produce notice-
able defects in the projection image of a slice where one
row dims as the brightness of an adjacent row increases.
The less bright rows, having a phason coordinate nearest
the boundaries of the 1D acceptance domain, are the
most sensitive to long-wavelength phason fluctuations
which can move them in and out of the acceptance
domain.

To produce a long-wavelength brightness fluctuation in
a bright row, the column average of the coarse-grained
phason coordinate

V p, 8/2)
(29)

and applying Eq. (19), the thickness dependence has the
form

(30)

exp( —1/( ~H~ ) )—exp( —8/80) . (31)

III. IMPLEMENTATION

The Monte Carlo runs are composed of initialization,
equilibration, and measurement stages.

where Oo is a parameter we will call the "crossover thick-
ness" (it depends in part on short-wavelength properties,
so we cannot evaluate it from the stiffness constants).
The distribution of H, like h, is Gaussian, so the proba-
bility per unit area of a fluctuation of order unity, corre-
sponding to a brightness fluctuation in a bright row, is
expected to scale as'

The initialization stage generates and stores the posi-
tions of vertices of the tiling, and their connectivity along
rhombohedral edges. The initial configuration is a cubic
unit cell of an approximant with ~=F„/F, &. When F,
and F„&are both odd the initial periodic approximant
has body-centered-cubic periodicity instead of simple-
cubic periodicity.

The equilibration stage rearranges the tiling in a se-
quence of elementary moves, each of which repositions
one vertex. "Movable" vertices are those vertices located
inside a rhombic dodecahedron composed of two oblate
and two prolate rhombohedra; this is true if and only if
the vertex is connected along rhombohedron edges to ex-
actly four other vertices. The repositioning of a vertex is
equivalent to reflecting the rhombic dodecahedron in the
midplane normal to the long symmetry axis. This is iden-
tical to the move used by Tang'; it is the natural general-
ization to three dimensions of the rearrangement of three



43 LONG-RANGE ORDER IN A THREE-DIMENSIONAL RANDOM-. . . 3427

rhombi and one vertex forming a nonregular hexagon in
rhombus tilings. ' The number of tiles and vertices is
clearly conserved, and we believe the rearrangement pro-
cess is ergodic.

To ensure that the steady-state weight of all
configurations is equal, the Monte Carlo process satisfies
detailed balance. Tang' implements detailed balance by
randomly picking a vertex and when it is movable, repo-
sitioning it. In our simulation we randomly select one of
the movable vertices and reposition the movable vertex.
It can easily be checked that, in the steady state of this
random process, the weights of configurations are not
strictly equal but are proportional to number of movable
vertices X . This is corrected by a weighting factor pro-
portional to X; since the fluctuations in 1V are
O(N' ), the loss of efficiency is negligible in a large sys-
tem. We correspondingly increase the elapsed-time vari-
able t by an increment equal to X ' of the starting
configuration. [This time increment is equivalent to the
average number of vertices (movable and nonmovable)
that would be randomly chosen from the configuration
before a movable vertex is found, divided by the number
of tiles in the system. ] The variable time increment en-
sures that on average, one unit of our time is equivalent
to one Monte Carlo step per vertex in Tang's dynamics.
Whereas 24% of the vertices in the initial or "perfect"
tiling are movable, in the fully equilibrated random til-
ing approximately 18% of the vertices are movable.

The measurement stage monitors the positions of the
tile vertices and either measures the magnitude of the
fluctuations or projects a section of the tiling onto a plane
to create an image. Within a run, phason-fluctuation
measurements are separated by time intervals approxi-
mately equal to the correlation time ~„„.To ensure sta-
tistical independence, each run is separated by at least3~„„from the preceding run and the initialization of the
system. Because of the quadratic size dependencer„„,-L (see below), in the larger systems it is most
efficient to update the vertex connectivity information
after each Monte Carlo move while only calculating the
vertex positions during measurement states. The momen-
tum space phason fluctuations are calculated by the sum-
mation over vertex positions

1 0 0
M = 0 r/g —1/g

0 1/g w/g

(33)

The projected vertices lie within the bounds

,'(L ——8) (z' & ,'(L—+6), (34)

Our primary interest here is in how the apparent disor-
der is affected by slice thickness. Therefore, rather than
attempting a realistic decoration or allowing for dynami-
cal (multiple scattering) effects, we have generated
schematic HRTEM's by decorating tiles in the simplest
possible manner. To each vertex in our slice we assign an
"atom" with an "electron" density p(r) of the form

2
r/p(r) =exp (35)

where a is the "atomic radius" (taken to be 0.3 rhom-
bohedron edge lengths). Thus, the projected density is

p2D(x', y') = 7 p(x' —x,y' —y, ') .
~~', —L~ &0/'&I

To efficiently calculate the electron density at each raster
point, we binned the vertices according to their projected
positions into boxes of linear dimension 3a. Only those
vertices within the bin containing the raster point, and
the vertices in the eight surrounding bins are used in
determining the electron density. The projected electron
density is represented in the images by shades of gray us-
ing a linear scale, with lighter regions corresponding to
higher electron densities. The range of values of the pro-

where 0 is the thickness of the slice. The area shown in
our figures was chosen to be

0&x'&L, 0&y'&L .

h(p) = g h(r)e'i",v'y
1V

(32)

which reduces to Eq. (16) in the continuum limit. Al-
though phason-fluctuation measurements use the com-
mensurate projection coordinates h, for notational sim-
plicity we henceforth omit the overbar.

To produce images we first project the tile vertices
onto a two-dimensional plane: r~(x', y'). The coordi-
nates r'=(x', y', z') are related to the physical space coor-
dinates r=(x,y, z) by the rotation r'=Mr. [We consider
(x,y, z) as extended by periodic boundary conditions. ]
When the projection is along a twofold symmetry axis, M
is simply the identity matrix. When the projection is
along a fivefold symmetry axis

0 100 200 300 400 500
t

FIG. 1. Plots of In[p C» ~(t )] vs time t for a system of 10336
tiles. Plots are labeled by (k, n ) where p =(2~/L )n. The corre-
lation times ~„,„(k,p), as determined by the inverse magnitude
of the slopes are ~„,„(1,2~/L ) —=280, ~„.„„(2,2m. /L )

-=145,
~, „„(3,2m/L)=—63, w„„„(1,4m/L)=—70, 7, ,„(2,4'/L)=—38, and
~„„„(3,4~/L )

-=17.
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jected electron density (needed to normalize the gray den-
sity scale) was determined by sampling the electron densi-
ties of one-thirtieth of the raster points.

IV. RESULTS AND DISCUSSION

where

B= 1

3

1

3

1

3

1H=
Co (0)
C, ~(0)
C„(0)-'

A. Stift'ness constants and dynamics

In calculating the stiffness constants and correlation
functions, Fourier-transformed phason fluctuations h( p )

are monitored for wave vectors of magnitude
~p~ =p =2nrr/L (n =1,2) along the coordinate axes
(p=p, j=x,y, z). Figure 1 plots ln[p C& (t)], where
Ck~(t) is the correlation function, versus time r for a sys-
tem of 10336 tiles. The basically linear behavior of the
curves, indicating an exponential decay of correlations, is

consistent with Eq. (26), and the inverse of the magnitude
of the slopes gives the correlation time w„„.The k,p
dependence of r„„(aslisted in the caption of Fig. 1) is

consistent with Eqs. (17) and (23), and we infer the kinetic
coefficient I is roughly 0.096. The largest correlation
time ~„„for a system of linear dimension L,

K)
K2

(38)

K =0.81+0.01 and K2=0.495+0.01 . (39)

and 5H represents the random and systematic errors as-
sociated with H. Figure 2 plots the stiffness constants
versus the inverse system size 1/L. The upper data
points represent KI for wave vectors of magnitude 2'/L
(solid) and 4~/L (dot-dashed) and the lower data points
represent ICz for wave vectors of magnitude 2'/L (dot-
ted) and 4m. /L (dashed). The zigzag pattern of the data
points with increasing system size is a result of the sign
alternation of E„with n as shown in Eq. (13). Extrapola-
tion of the data to the L = ~ limit provides the estimates

2"
+carr +corr (36)

8 K=H+5H, (37)

is the time scale that must be considered in the equilibra-
tion of Monte Carlo runs.

In accordance with Eqs. (19) and (17), the stiffness con-
stants K, and K2 are determined by a least-squares fit to
the equations

The coincidence of the ratio K& /K2 with ~ is intriguing.
Tang' has already measured the elastic constants by a

different approach. As might be done in a real experi-
ment, he measures the inverse-square wings of diffuse
scattering around Bragg peaks and fits them to the pre-
dictions of Jaric and Nelson. " Tang's values, when
adapted to the conventions of Eqs. (15) and (16) [his con-
ventions differ by factors of (2m. ) and X/V], give
K& =0.92 and K2 =0.57, with an accuracy of about 10%,
consistent with our results. Our errors are smaller be-
cause our method for extracting stiffnesses is more direct
and because we use time-averaged, rather than instan-
taneous information.

To determine the magnitude of the inconsistency in the

0.9

0.8—
0.7—

I I I I I I

0 ~ 10

0
O

0.6—
0.5—
0.4—
0 I I I I I I

0.05—

0,00 ——

0.00 0.05 0.10 0.15 0.20 0.25
Inverse system size (1/L)

FIG. 2. The stiQ'ness constants vs inverse system size (1/L ).
The upper data points represent K& for wave vectors of magni-
tude 2~/L (solid) and 4~/L (dotted-dashed) and the lower data
points represent K, for wave vectors of magnitude 2~/L (dot-
ted) and 4m/l (dashed). From extrapolation to the L = ~ limit
we estimate Kl =0.81+0.01 and K2 =0.495+0.01.

—0 05
0.00 0.05

Inverse

I I I I I I I I I I I I I I

0.10 0.15 0.20 0.25
system size (1/L)

FIG. 3. The normalized determinant D decreases in magni-
tude with increasing inverse system size (1/L) indicating de-
creasing finite-size eftects.
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equations B K=H, we define the normalized determinant

det[B~H]
&S/H/

(40)

where the denominator is the product of the two-norm of
the columns of B and H, and [B~H] is the 3X3 con-
catenation of B and H. D provides an independent means

of estimating the magnitude of the finite-size effects. Fig-
ure 3 plots D versus inverse system size (l/L ) for wave
vectors of magnitude 2a/L (solid) and 4vr/L (dotted). As
expected, the sign of D appears to alternate, and the mag-
nitude of D decreases to zero, with increasing system size
confirming the vanishing of finite-size effects.
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8. Simulated lattice images

Figures 4(a) —4(d) show projections of slices of the
~=21/13 tiling containing 185472 vertices. The square
area shown has linear dimension slightly smaller than
that of the simulation cell. Figure 4(a) shows a projection
along a fivefold axis at t =0 of a slice with thickness 25.
Figure 4(b) shows the same projection at r =4800=3'„„,.
The main difference between Figs. 4(a) and 4(b) comes
from small groups of weak spots that appear blurred into
a single large spot. These clusters of spots lie in several
closely spaced rows and so are most a6'ected by long-
wavelength phason fluctuations on randomization of the
tiling.

By obliquely sighting along symmetry directions of
Fig. 4(b) one can see rows of spots spaced essentially as
in Fig. 4(a) —a quasiperiodic sequence as described in
Sec. II A 3. We require three labels for the types of spac-
ings between rows [examples are marked in Fig. 4(a)]: (i)
rows separated by a dark band are said to be separated by
a r spacing, (ii) closely spaced (yet distinct) rows have a
unit spacing, (iii) pairs of rows that appear to have almost
merged, are said to be separated by a ~ ' spacing. The

' spacings generally occur for a pair of dim rows be-
tween a pair of bright rows as a I l, r ', l I sequence. Al-
though smaller ~ spacings also occur, they are dificult
to see and the following analysis neglects their existence.
The sequence of row separations extracted by an oblique
viewing of Fig. 4(b) with the page held in the normal
reading orientation is, from left to right,
I l, r ', l, r, l, r, l, r ', l, r, l, r, r, 1, . . . ).

We confirm the quasiperiodicity of the row positions
by "lifting" the sequence to a path connecting points on
the square lattice as in Fig. 5(b). The row separations
termed ~, 1, and ~ ' are mapped to displacements along
the physical space axis g"=g(r, 1) of length re, g, and

', which in turn correspond to (0, 1), (1,0), and ( —1, 1)
displacements in the square lattice, respectively. The
path lies within the strip of width =-2.75 and slope ~ de-
limited by the dotted lines, confirming the quasiperiodici-
ty of the sequence (see Sec. IIA3). Within the strip,
there are a number of points near the boundaries that are
not on the path in Fig. 5(b) since (i) we have not attempt-
ed to observe the r spacings and (ii) defects obscure
one row in a pair of closely spaced rows (see below). On
lifting the row separations of a perfect tiling [e.g., Fig.
4(a)] to a path on the square lattice all the lattice points
within a strip of width -=2.75 would be represented.

A comparison of Figs. 4(a) and 4(b) show how the ran-
domization of the tiling decreases the uniformity of
brightness along rows of spots. Row "defects" occur
when the brightness of one row vanishes as an adjacent
row appears, giving the appearance of a single jagged row
with an ill-defined position. For instance, what we cail a

I l, r ', lI defect (labeled according to the row spacing
environment in the absence of brightness variations) ap-
pears in diff'erent intervals down the length of the row as
a I 1+r ', 1]=Ir, 1I or as a [r, 1] sequence. Arrows in

Figs. 4(b) —4(d) mark and label defects.
Comparison of Figs. 4(b) —4(d) shows an increasing fre-

quency of defects with decreasing slice thickness, as pre-

60

(b)

40

20

40 60

FIG. 5. (a) Projected positions of lattice points within the
strip of width =—2.75 correspond to a sequence of row spacings
from the projected image of an infinite perfect tiling. (b) Projec-
tions of line segments along the connected path on the square
lattice onto g~~ correspond to the sequence of spacings between
rows of spots in Fig. 4(b). The limited transverse deviation of
the path from a line of slope r indicates that the sequence is
quasiperiodic.

dieted by Eq. (30). For instance: the slice of thickness 5
has defects in almost every row; there are a number of
Ir, l, r] defects in the slice of thickness 15; and there are
only a few "weak defects, " (i.e., the brightness of a defec-
tive row dims but does not vanish) in Ir, l, r] sequences
in the slice of thickness 25. We note that defects in dim
rows (usually in [ l, r ', 1 ] sequences) are still common in
slices of thickness 25. Recalling that the crossover thick-
ness Oo is determined by the slice thickness at which de-
fects in bright rows become infrequent, we conclude that
Oo is approximately 15 rhombohedral edge lengths.

Although a rough description of the atomic structures
of i(A1-Mn-Si) (Ref. 23) and i(Al-Cu-Fe) (Refs. 12, 37, and
1) in terms of rhombohedral tiles of edge length
a& =0.460 and 0.446 nm, respectively, has been noticed,
we do not believe the structure is free to rearrange as a
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dra of edge length a& =w 0.45 mn—= 1.2 nm, and again
there are clusters of atoms at the vertices.

Motivated by these models where the tile vertices
represent clusters of atoms, we computed lattice images
from the same random-tiling configurations in a second
way. A primary structural unit of the i(A1-Mn-Si) phase

random tiling at the 0.5-nm scale. A more plausible mod-
el is that the random degrees of freedom are at the scale
of clusters of 50 or more atoms. In the canonical cell
model the (nonrhombohedral) tiles have edge lengths of
0.9 or 1.3 nm, with clusters at the vertices. In another
model the degrees of freedom are Ammann rhombohe-
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is the Mackay icosahedron, a cluster of 54 atoms in
which 12 strongly scattering Mn atoms form an icosahed-
ron around the cluster center. Accordingly, as a crude
approximation to the structure of actual quasicrystalline
materials, we expand the tiling rhombohedra by a factor
of r and replace each vertex by an icosahedron of 12
atoms, each atom at unit distance from the vertex along
the icosahedral basis directions. Accordingly, the new
atomic positions r,

' are related to the old vertex positions
r; by

r' —r r +ell

The expansion/decoration process is closely related to
the inflation process for generating perfect Penrose til-
ings. The inflation in physical space by a factor of ~ cor-
responds to a deAation in phason space by the same fac-
tor, reducing the magnitude of the phason fluctuations,
and therefore reducing the row defects. Scaling H by

and 8 by r in Eq. (30) we see that the
expansion/decoration process reduces the crossover
thickness of Eq. (31) by a factor of r . Therefore we ex-
pect the crossover thickness for the expanded/decorated
tiling to be approximately 15/~ —=6 units, corresponding
to a distance of about 3 nm.

The expanded/decorated images of Figs. 6(a) —6(c) ap-
pear very similar to the undecorated images of Fig. 4.
Although the expanded/decorated slices have a more
mottled appearance than unexpanded slices of the same
thickness [compare Figs. 4(c) and 6(c)], an oblique view of
both figures shows that the expanded/decorated image
has substantially fewer bright-row defects; adjacent
bright rows in the expanded/decorated tiling grow
brighter or dimmer together. On the other hand, defects
in dim rows occur even in thick slices [such defects are
marked in Fig. 6(a)]. Short-wavelength brightness Iluc-
tuations are quite noticeable in the thinner slices. The
expanded/decorated slices cannot be used to determine
the crossover thickness since, as the slice thickness ap-
proaches the expected crossover thickness of 6 rhom-
bohedral edge lengths, short-wavelength brightness Auc-
tuations obscure row defects.

An actual HRTEM' of a conventionally solidified
Al-Cu-Fe alloy is displayed in Fig. 6(d). The qualitative
features of the HRTEM are consistent with those of the
decorated and undecorated simulation images: regular
decagons and pentagons appear with size ratios that are
multiples of ~, and quasiperiodically spaced rows of
bright and dim spots appear upon oblique viewing. On
the premise that the tiling rhombohedra have an edge
length a~ of 1.2 nm, the second smallest size regular de-
cagon in the expanded/decorated tiling images with ver-
tex to vertex diameter (4/r+5)ajar = 1.la+ are to be com-
pared to the smallest regular decagons in the HRTEM
with a diameter of =—1.3 nm. Although the exposure
makes it difficult to see the weaker [ I, r ', I ] sequences,
it appears that defects in these sequences do occur.

There are no defects in bright rows separated by a
[r, l, rI sequence, indicating that the thickness of the
HRTEM slice is greater than the crossover thickness.

C. Conc1usions

In conclusion, our simulation results (i) demonstrate
that projections of slices of equilibrated,
expanded/decorated tilings as thin as 6 rhombohedral
edge lengths display the qualitative features of HRTEM
images, (ii) accurately determine the values of the two
phason-stiffness constants, and (iii) confirm the Langevin
description of the coarse-grained phason dynamics.

The analytic argument given in Sec. II D is valid quite
generally and shows that phason fIuctuations become in-
visible in HRTEM images from any sufficiently thick
specimen. A realistic and complete model of a random-
tiling structure would allow the prediction of the cross-
over thickness sufficient to wash out fluctuations. Our
images are only meant to be rough approximations to ex-
perimental images. There may not be a direct correspon-
dence between the rhombohedral random-tiling model
and a realistic random-tiling geometry for i(AI-Cu-Fe).
Certainly the electron densities and the projection algo-
rithm we used are crude approximations to the actual
electron densities and dynamical (multiple diffraction)
imaging effects. Nevertheless, we have sufficient faith in
the crossover thickness deduced from our images with
the icosahedron decoration that we propose its use in
guiding future experiments.

We predict that there are essentially no defects in
bright rows for samples thicker than 6 nm. This is less
than the thinnest slices used in HRTEM studies. The ex-
perimental implications of our results are (1) any experi-
mental observations aimed at revealing the degree of til-
ing disorder rn. ust include a determination of the thick-
ness, (2) attempts should be made to study very thin
specimens in order to see the disorder, and (3) attention
should be paid to the exposure conditions. More disorder
should be visible in the weaker rows of spots; consequent-
ly attempts should be made to resolve weak rows between
the strong rows. The temptation to choose those focus
and exposure conditions which lead to the most regular
looking images may discard important information.
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