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Micromagnetics of domain walls at surfaces
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High-spatial-resolution magnetization maps of ferromagnetic surfaces are generated with use of
scanning electron microscopy with polarization analysis (SEMPA). The structure of surface Neel
walls is measured by SEMPA and compared directly to the results of micromagnetics simulations.
We find that the surface magnetic properties observed with SEMPA can be modeled using standard
micromagnetic theory using only bulk parameters. Surface-domain-wall magnetization profiles
were measured, using two different probe diameters in each case, for an Fe(100) single crystal and
for Permalloy films with thicknesses of 0.12, 0.16, 0.20, and 0.24 pm. In making the quantitative
comparison to the surface-domain-wall profiles calculated from (bulk) micromagnetic theory, the
rms deviations, the g statistic, a correlation statistic, and rms deviations at 5% and 95% confidence
levels were determined for each case. The calculated and measured domain wall profiles agree on
the average to within +7.8% for 180 walls in semi-infinite crystals of Fe(100), and +4.5% for 180'
walls in thin films of Permalloy. The micromagnetic simulations show the 180' wall of the bulk
turning over into a Neel wall at the surface with the magnetization in the plane of the surface. The
Neel wall extends from the surface into the bulk over a depth approximately equal to a Bloch-wall
width.

I. INTRODUCTION

The surface of a ferromagnetic material is important in
defining equilibrium micromagnetic structure. Equilibri-
um configurations result from the minimization of energy
through the formation of domains and domain walls. '

Surface magnetic microstructure is important to the un-
derstanding of fundamental properties of magnetic ma-
terials as well as the limitations on the density of infor-
mation stored on magnetic media. Although there has
been intense research into the structure of domains and
domain walls, in bulk and at surfaces, there has not been
an experimental technique with which one can quantita-
tively observe detailed micromagnetic structure at submi-
crometer length scales for bulk ferromagnets. Transmis-
sion electron microscopy techniques have been used to
study domain walls in thin films, while domain-wall
studies of bulk samples using optical and Bitter tech-
niques have limited spatial resolution. Over the past
few years, the technique of scanning electron microscopy
with polarization analysis (SEMPA) has been developed
as a means to obtain high-resolution quantitative maps of
the surface magnetization for both thin-film and bulk
samples. From such measurements, one can obtain the
profile of the magnetization across a domain wall at its
intersection with the surface.

In a previous short paper, hereafter referred to as I,
we reported the first comparison between surface-
domain-wall profiles, which we measured using SEMPA,
and calculated profiles, which we obtained from a mi-
cromagnetic simulation. The present paper provides

many of the details absent in the shorter paper and fur-
ther extends and quantifies the analysis of the data. In I,
surface-domain-wall profiles were extracted from SEM-
PA magnetization images of three materials: an Fe(100)
single crystal, a Co-based ferromagnetic glass, and a Per-
malloy thin film. In lower-magnetocrystalline-anisotropy
materials, a Bloch wall, a domain wall in which the mag-
netization rotates in the plane of the wall, does not ter-
minate abruptly at the surface with magnetization exiting
the surface; rather, the magnetization turns over and lies
in the surface in one of the two directions perpendicular
to the plane of the Bloch wall. These Neel-like walls at
the surface avoid stray magnetic fields and thus minimize
the magnetostatic energy. " Where two surface Neel
walls which result from a single Bloch wall turning over
in two opposite directions meet, there is an off'set which
was also measured using SEMPA. The measured magne-
tization profiles across surface Neel walls were found to
be asymmetric.

We employed nonlinear micromagnetic equations to
simulate the Bloch wall in the bulk and its intersection
with the surface. Whereas the experiment probes only
the near-surface region, the simulations give information
on the bulk as well as the surface. The good agreement
(reported in I and further supported and quantified in the
present paper) between the micromagnetic simulations
and the measured surface-Neel-wall profiles and offsets
suggests that the calculations give reliable information
about the bulk. The calculations show that the surface
Neel wall is about twice as wide as the bulk Bloch wall ~

The micromagnetic simulations also show that the depth
of the Neel-wall region at the surface is approximately
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equal to the bulk Bloch-wall width. This is supported by
the agreement we present in this paper comparing
profiles of a surface Neel wall which was wide enough to
be measured by the Kerr effect, which has a probing
depth of about 15 nm, and by SEMPA, which has a prob-
ing depth of order 1 nm, both less than a typical Bloch-
wall width.

One of the aims of the present paper is to quantify the
comparison of the micromagnetic simulations and the
measured surface-domain-wall profiles. This is of partic-
ular interest because the agreement between the measure-
ments and calculations is obtained using only bulk pa-
rameters in the micromagnetic simulation. We will show
that including surface anisotropy produces changes
smaller than the experimental uncertainty. The effect of
the surface on the domain wall occurs over a length scale
characterized by the width of a Bloch wall in contrast to
some other magnetic effects at surfaces which occur over
much shorter length scales. We list three effects which
occur over these short length scales. (1) The measured
decrease with temperature in the magnetization at the
surface ' was interpreted ' to be due to an exchange
coupling of the outer surface layer to the bulk equal to
only 0.3 of the bulk exchange. (2) The surface magnetiza-
tion may have a different dependence on applied magnet-
ic field (hysteresis curve). (3) Magnetic moments at the
surface are enhanced owing to the reduced coordination
and narrowing of the d band. These three effects occur
at the outer atomic layer or two, in contrast to the rela-
tively long length scale for changes in magnetic micro-
structure at the surface. Thus, even though SEMPA is
surface sensitive, we are unlikely to obtain information
on short-magnetic-length-scale phenomena by measuring
domains and domain walls at surfaces, the energetics of
which cause changes over a longer range.

In Sec. II we describe the SEMPA apparatus and mea-
surement technique. A typical image for an Fe(100) sur-
face of a single-crystal whisker is presented. A careful
analysis is given of the probe-size and scan-length calibra-
tion. We describe the data processing and how the exper-
imental uncertainty in the measurement of the domain-
wall profile is determined.

In Sec. III we describe the magnetic microstructure
simulations. The details of the calculations are given in
this section and the Appendix. The sensitivity of the cal-
culation to the geometrical and magnetic parameters is
tested, and an upper limit on the uncertainty introduced
on the results by possible variations of the parameters is
thereby determined. By using periodic boundary condi-
tions, it is possible to simulate an infinite crystal with uni-
axial anisotropy and compare our result to the textbook
result using a variational approach. For the infinite crys-
tal with cubic anisotropy, we find that the 180 wall
separates into two 90' walls. For a crystal with a surface,
we find the magnetostatic energy at the surface is
sufBcient to force a 180 wall to form without introducing
any effects due to magnetostriction. Explicit values of
the wall energies are reported for different cases. Asym-
metric Bloch walls are found in simulations for thin films.

In Sec. IV we present the experimental wall profiles
and compare them to the results of the magnetic simula-

II. EXPERIMENT

The principle of scanning electron microscopy with po-
larization analysis (SEMPA) is illustrated schematically
in Fig. 1. A finely focused beam of medium-energy (S—50
keV) unpolarized electrons is rastered across a sample's
surface. Secondary electrons are excited near the surface
by scattering of the primary electron beam. The secon-
dary electrons emitted from the valence band of a fer-
romagnetic sample retain their spin orientation. The net
polarization of the emitted secondary electrons is charac-
teristic of the net spin density in the solid for a variety of
ferromagnetic materials. Surface magnetization maps
can be generated at high spatial resolution by spin
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r x~vzz~
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FIG. 1. Schematic representation of SEMPA. A focused
beam of medium-energy electrons excites polarized secondary
electrons in a ferromagnet. These electrons are subsequently
spin analyzed.

tions. We present profiles from an Fe whisker measured
with two difFerent SEM probe sizes and for comparison
show the domain-wall profile of Fe measured by Oepen
and Kirschner. We show our measurements for Per-
malloy films of four difFerent thicknesses measured with
different probe sizes. The data we show in this paper
have a better signal-to-noise ratio than those previously
presented in I. The surface-domain-wall profile of the
Co-based ferromagnetic glass reported in I was errone-
ously compressed on the horizontal axis by a factor of 2
from the correct measured width. The parameters used
in the simulation were later determined to be inappropri-
ate. ' There is some uncertainty in the correct value of
the anisotropy to use for such a simulation. The mea-
sured macroscopic anisotropy may differ from the local
anisotropy that determines the structure of the wall.
Since neither the exchange nor the anisotropy parameters
appropriate for a simulation are as well known in the case
of the metallic glass as for Fe or Permalloy, we have om-
itted analysis of such materials in this paper. For the
other materials a detailed statistical analysis is given of
the fit of the model to the data. Both a g and an R
correlation analysis are calculated, and confidence inter-
vals for each are determined.

Further discussion of our results and conclusions are
summarized in Sec. V.
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analyzing the emitted secondary electrons, point by
point, as the incident beam rasters the sample surface, as
has been demonstrated by a number of groups.
The only significant constraints imposed on the sample
are that it be conducting or semiconducting to prevent
charging under the incident electron beam, and that the
sample not possess large fringe fields which will depolar-
ize the low-energy-polarized secondary electrons emitted
from the sample surface. We have calculated the spin
precession of electrons in the fringe fields of domain walls
and found it to be negligible for all cases presented here.

As SEMPA is a surface-sensitive, magnetic-
microstructural-analysis technique, the environment local
to the sample surface must be ultrahigh vacuum (UHV).
In our current implementation of SEMPA, we retrofited
a high-resolution UHV Auger microprobe with low-
energy diffuse scattering (LEDS) electron-spin polariza-
tion analyzers. ' A complete description of our
SEMPA apparatus has been published.

The SEMPA mode of operation in our apparatus uses a
10-keV electron-beam energy, at a 10-mm working dis-
tance with extraction fields due to the SEMPA electron
optics near the sample surface of 150 V/mm. The
specimen stage is tilted at 45 with respect to the
incident-beam direction, which elongates the probe in
one direction. For measurement of the domain-wall
profiles, we orient the domain walls so as to maximize the
spatial resolution during a measurement. The scanned
area on the sample was corrected to account for a sample
tilt such that the magnification was equal in both scan
directions. The SEMPA measurements of domain-wall
profiles reported here were acquired at a linear
magnification of 25000X. All of the SEMPA images
used for this study are comprised of 192 X 256 square pic-
ture elements (pixels). The dwell time per pixel was 30
ms, for a total image-acquisition time of 24.5 min. The
two in-plane magnetization images, together with the
standard secondary-intensity image, were acquired simul-
taneously and are therefore registered exactly.

SEMPA images of the x and y components of the sur-
face magnetization from a region near a 180' surface
domain wall in a single crystal of Fe(100) are shown in
Figs. 2(a) and 2(b), respectively. These images are 3 pm
across and were acquired with an incident-electron-beam
current of 1.6 nA. Both SEMPA magnetization images
show positive (negative) magnetization, +M ( —M), as
white (black). In Fig. 2(a) the positive x component of
the magnetization, M, points to the right, whereas in
Fig. 2(b) the positive y component of the magnetization,
M, points upward in the plane of the paper. Both M
and M components of the magnetization are in the plane
of the page. We measured no out-of-plane component of
the magnetization M, for this surface-domain wall struc-
ture, indicating that the magnetization lies in the plane of
the surface even when the bulk Bloch wall in the interior
of the film points normal to the surface. Figure 2(a) and
2(b) are representative of the SEMPA images from which
we extract surface-domain-wall magnetization profiles.
In Fig. 2(a) it is also evident that the direction of the
domain wall changes near the center of image. This is a
surface magnetic quasisingularity. The surface walls

FICx. 2. (a) M and (b) My SEMPA images from the surface
of a single crystal of Fe(100). The surface domain wall runs
vertically through the image. In the center is a surface magnet-
ic singularity about which the magnetization circulates.

are offset from each other on either side of the surface
singularity. ' This surface-domain-wall offset on either
side of the surface singularity and the surface-domain-
wall magnetization profiles will be used to test the results
of micromagnetic theory.

A. SEMPA probe size and calibration

The spatial resolution for the determination of magnet-
ic microstructure using SEMPA was limited by the size
of the 10-keV focused electron beam incident on the sam-
ple and the interaction region for the production of
secondaries which arrive at the spin detector. The mean
penetration depth for 10-keV electrons in materials such
as Fe is on the order of 1 pm. ' The beam enters the
sample surface with a width equal to the beam diameter
and spreads as it penetrates deeper into the sample. '

The spread of the incident electron beam within the sam-
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pie is usually referred to as the "blooming" effect. If all
of the secondary electrons which are created in the bloom
escape from the sample surface and are detected by the
spin analyzer, the spatial resolution of the technique is
limited by the bloom diameter. Since we measured the
spin polarization of secondary electrons with an energy
between 0 and 10 eV (with respect to the vacuum level),
we expect that the information depth for the SEMPA
measurement was limited by the escape depth of these
low-energy secondary electrons. Measurements of the es-
cape depth of polarized secondary electrons that have
been made indicate that the mean free path is on the or-
der of a nanometer. There remains some controversy
about this, in part due to the material dependence of this
quantity. Since the upper limit for the mean free path is
on the order of nanometers and the probe diameter in our
scanning Auger microprobe is on the order of tens of
nanometers, the spatial resolution that we can achieve
with our current apparatus is limited by the incident
probe diameter. We infer this from geometrical con-
siderations. The incident probe diameter is not
significantly expanded by traversing several nanometers
of material. ' If the secondary electrons were emitted
isotropically from a depth of several nanometers, the
effective sampling region may be several nanometers
larger than the incident probe diameter. This would pro-
duce only a small fractional change in the sampling re-
gion for a 70-nm-diam electron probe.

We note that secondary electrons are also produced by
backscattered primary electrons from deep within the
"bloom" in the bulk. These secondaries, called SEz, are
generally considered to be spatially distributed on the
surface within a diameter equal to half of the range that
the primary electrons penetrate the solid, ' in our case a
diameter of 0.5 pm. For transition metals it is believed
that the total number of the secondaries produced by
backscattered primaries, SEz, is nearly equal to those pro-
duced by the incident beam. ' In the experiments we will
present on domain walls, the SEz electrons would sample
a 0.5-pm-diam region of the surface magnetization.
When the beam is centered on the wall, there would be a
net decrease of up to 50% in the magnitude of the mea-
sured magnetization. As we do not observe this drastic
decrease in magnetization near the wall, it appears that
the effect of SE2 electrons is small. We will study this in
more detail in the future.

We have measured the probe diameter for our scanning
Auger microprobe operated in the SEMPA mode. The
incident-electron-beam distribution can be assessed from
line-scan profiles across a cleaved GaAs crystal edge
oriented normal to the beam-scan direction. The
secondary-intensity images of the cleaved edges were ac-
quired through the SEMPA transport optics. All possi-
ble beam-broadening effects such as those caused by
mechanical or electrical instabilities were included. Crys-
tals were selected with edges which were extremely thin
and undercut. This together with the planar extraction
fields in our apparatus prevented electrons from beneath
the undercut edge from reaching the SEMPA detector.
The measured edge profiles were then a convolution of
the beam profile with a step function, from which the

edge profiles were differentiated to recover the probe
shape.

Prior to measuring the probe profile, the length scale of
the scans was calibrated by measuring the line spacing of
a 0.46-pm diffraction grid as a function of the
magnification. The absolute error in the length scale was
less than 2.0%, and no magnification correction was
made.

The probe size in an Auger microprobe depends on
various electron-lens excitations and angular-limiting
apertures in the electron optical column. Thus the probe
size becomes a sensitive function of the current in the
electron beam. In Figs. 3(a) —3(c) the measured probe-
intensity distributions for the three sets of operating con-
ditions used for the acquisition of the domain-wall data
are shown. We identify the probe distribution by the
current in the probe. The smallest probe in Fig. 3(a) has
the smallest current, I=0.3 nA. The solid circles are the
in-focus condition, and the open squares are the in-focus
condition on the next day. This illustrates stability and
reproducibility. As the operating conditions under which
this profile was acquired were diffraction limited (in con-
trast to aberration limited), the probe-intensity distribu-
tion was insensitive to slight changes in the objective-
(final-focusing) lens excitation. This is important because
focusing on a perfect crystal surface can be dificult. The
solid line in Fig. 3(a) is a fit to the probe distribution by a
Gaussian. This Gaussian has a full width at half max-
imum (FWHM) of 0.070 pm. We will use this fit to the
probe distribution to convolve the probe size with the cal-
culated profiles in order to make a quantitative compar-
ison of the micromagnetic theory to our domain-wall
data. In Figs. 3(b) and 3(c) the probe-intensity distribu-
tions for incident-beam currents I=0.6 and 1.6 nA are
shown respectively. The solid circles and open squares
once again represent the in-focus condition acquired on
successive days. The probe-intensity distributions in
Figs. 3(b) and 3(c) also show open circles which are mea-
surements made in the underfocus condition. The open
triangles are measurements made in the overfocus condi-
tion. This is the uncertainty in the probe shape for a
range of focus possible during any given experiment. The
range of out-of-focus conditions assumed here represents
an upper bound on the uncertainty of defocus during the
SEMPA experiments. In Fig. 3(b) no significant change
in the probe-intensity distribution occurs during defocus,
indicating that this operating condition is diffraction lim-
ited. The Gaussian fit, given by the solid line in Fig. 3(b),
has a FWHM of 0.120 pm. In Fig. 3(c), however, the un-
derfocus condition significantly broadens the probe-
intensity distribution. The Gaussian fit to the in-focus
profile has a FWHM of 0.165 pm, and the Gaussian fit to
the out-of-focus profile has a FWHM of 0.210 pm.

B. Data acquisition and processing

In this section we outline the processing steps used to
reduce the raw SEMPA data to the line-scan profiles of
domain walls which will be compared to the results of mi-
cromagnetic calculations in Sec. IV. Inherent scan asym-
metries may be present in a polarization detector which
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FIG. 3. Electron probe-intensity profiles for three standard
SEMPA operating conditions where the incident-beam current
is I=(a) 0.3 nA, (b) 0.6 nA, and (c) 1.6 nA. The solid circles and
open squares are in-focus measurements on successive days.
The open circles and triangles are over- and underfocus intensi-
ty distributions meant to reAect the range in the focus uncer-
tainty during setup for a SEMPA experiment.

introduce a linear dependence of the measured magneti-
zation on the position of the polarized electron beam in
the detector. ' We have drastically reduced these
asymmetries, and in any event at magnifications as high
as 25 000 X the effect would be rather small. If any resid-
ual background asymmetry remained in an image, a
least-squares fit to a plane surface was done in a region of
a SEMPA image where the domains are uniform. The
fitted planes were subtracted from the original data.

The absolute zero of the polarization detector may
change if the position of the polarized electron beam in-
cident on the polarization detector changes from one set
of measurements to another. The zero of the SEMPA
images is determined by requiring that the values of the
magnetization on opposite sides of a 180 domain wall be
equal and opposite. If necessary, a zero-offset correction
is subtracted from the data. Once the M and M data
were properly calibrated, the data are added together in
quadrature as ~M~ =(M +M )'~ to form the magnitude
of the in-plane magnetization. The magnitude of this
magnetization in the absence of any out-of-plane com-
ponents should be constant across the image. We use this
as a test of the accuracy of our background subtractions.
Once the magnitude of the image has been determined,
we form a histogram of the magnetization values within
an image to determine the uncertainty with which we can
determine the saturation magnetization M„which is con-
stant within the film.

The domain walls were initially aligned within the
SEMPA apparatus such that the wall is oriented along
one of the axes of the polarization detector. Often, there
are residual misalignments of the domain wall with
respect to the detector axes of up to 10'. When this is the
case, the images are rotated by the image-processing sys-
tem to align the domain walls with the detector axes.

A region of interest within an individual image was
then selected. Typically, this region was about 100X70
pixels in size. Within this region the line scans across the
domain wall were summed over the 70 (nearly) identical
lines in order to increase the signal-to-noise ratio. This
sum was normalized to the saturation magnetization M,
(actually M, = ~P,„)taken from the region of a uniform
domain adjacent to the domain wall. The result was the
final magnetization profile across a 180' domain wall,
which was compared directly to the micromagnetic cal-
culation results in Sec. IV. The error bars present on
these experimental data line scans represent the standard
deviation about the mean for the individual line scans,
which were averaged together.

We searched for systematic errors in the data. If there
were correlations in the measurement errors between
scans, the standard deviation of the average of all mea-
surements in the set of line scans would depend upon the
strength of the correlation. We investigated correlations
extensively in one characteristic set of data. We comput-
ed the autocorrelation of the data up to lag 17 and found
no significant correlation. A histogram of the autocorre-
lation in the data, at lag 1, was sharply peaked at zero
and Gaussian in shape with a FWHM of 0.25. To deter-
mine if the variation in the computed values of the auto-
correlation function at lag 1 was due to random sampling
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effects, we simulated independent Gaussians in sets.
Each set had the same number of members, which was
the number of individual measurements within a single
line scan. For each set the autocorrelation function at lag
1 was computed. The histograms of the autocorrelation
functions at lag 1, for both the data and sets of simulated
data, were similar. Quantile-quantile plots of the histo-
grams were nearly linear. We conclude that there was no
evidence that individual measurements within a line scan
were correlated. We estimated the standard deviation of
the average magnetization along a line scan using the
usual formula which applies to uncorrelated data.

III. MICROMAGNETIC WALL CALCULATIONS

A. Solution of micromagnetic equations

We calculate the micromagnetic structure present in
surface domain walls by following methods used by
Brown and LaBonte, ' LaBonte, " Aharoni, ' ' and
Schabes et al. ' The equilibrium magnetization
configuration of domain walls in ferromagnetic materials
can be thought to result from the minimization of the to-
tal system energy. The energy of a ferromagnetic system
is composed of (1) the mean-field exchange energy E,„be-
tween nearest neighbors, characterized by the exchange-
coupling constant A (erg/cm); (2) the magnetocrystalline
anisotropy energy Ez, which describes the interaction of
the magnetic moments with the crystal field character-
ized by the constant K, (erg/cm ); (3) the surface magne-
tocrystalline anisotropy energy Ez„which corrects for
broken symmetry near surfaces in the interaction of the
magnetic moments with the crystal field and is character-
ized by the constant K, (erg/cm ); (4) the magnetostatic
self-energy E„which arises from the interaction of the
magnetic moments with the magnetic fields created by
discontinuous magnetization distributions both in the
bulk and at the surface; (5) the external magnetostatic
field energy Eh, which arises from the interaction of the
magnetic moments with any externally applied magnetic

fields; and (6) the magnetorestrictive energy E„,which
arises when mechanical stress (strains) are applied to a
ferromagnetic material, thereby introducing effective an-
isotropy into the system characterized by K (erg/cm ).
We do not consider effects due to thermal fluctuations
here.

We solve for the magnetization distribution in a
domain wall by considering a constrained boundary-value
problem in two spatial dimensions with the constraint of
constant magnetization M, . We approximate the con-
tinuous magnetization distribution of a ferromagnet by a
discrete magnetization distribution, as shown in Fig. 4.
The ferromagnet is seen in cross section. The magnetiza-
tion is discretized in the x-z plane of the cross section,
but is uniform in y. Each individual discretized magneti-
zation cell, interior to the array, will be addressed by the
(x,z) coordinate of its centroid as (Jb, ,Ib. ), where 5 is
the square discretization cell width, and J and I are in-
tegers. There are N„cells along x and N, cells along z in-
terior to the wall region. There is one column of bound-
ary cells at either side of the discretized region. These
boundary cells (conditions) refiect the continuous uni-
form magnetization distribution present within the
domains themselves on either side of the wall which im-
pose Dirichlet boundary conditions. The Dirichlet
boundary conditions, which are shaded in Fig. 4, are po-
sitioned at the far left and far right edges of the discre-
tized wall region at J=1 and N +2. The boundary con-
ditions at the top and bottom surfaces of the film, I= 1

and N, +2, are of the Neumann type. In the absence of
surface anisotropy, the normal derivative of the magneti-
zation distribution at the surface is zero. " In the pres-
ence of surface anisotropy, we use the Rado-Weertman
boundary conditions. ' The surface boundary elements
at I=1 and N, +2 are linear elements and are used
specifically to incorporate surface anisotropy effects. The
surface cells, which are indicated by solid squares in Fig.
4, are differentiated from the volume cells which are
shown as solid circles.

~ ~ ~ ~ o o ~ ~ ~ o ~

~ ~ ~ ~ ~ ~ ~ ~ o ~ o ~

~, ~ 0 ~ 0 ~ ~ ~ ~ ~ 0

0 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

~ ~ ~ ~ 0 ~ l ~ 0 ~ 0

FI~. 4. Discretization array for the calculation of micromagnetic structure. The array has N„XN, interior cells. The Diriclet
boundary conditions are imposed at the left and right shaded columns, and Neumann boundary conditions are applied to the top and
bottom surface cells. Each interior cell is square of edge length A. The surface cells are one dimensional and of length A.
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Fundamental to our solution of the micromagnetic
equations is the assumption that the bulk saturation mag-
netization M, (emu/cm ) is constant microscopically
throughout the ferromagnet. Throughout this paper we
will use the parameter M, to represent saturation magne-
tization at room temperature. For the systems being con-

sidered here, there is little deviation in M, from the 0-K
value, although we use the room-temperature values. We
represent the value of the magnetization vector M(r) at
each point within the ferromagnet as the saturation mag-
netization multiplied by the direction cosines, that is,

M(r)=(M (r), M (r), M, (r)}=M,a(r)=M, (a(r), P(r), y(r)) .

The constraint equation implied by the constant magneti-
zation assumption is

~
a( r )

~

= 1.
The individual contributions to the wall energies in this

continuum model are calculated by integrating the ener-
gy expressions over the cross section of the wall in the x-z
plane. The energies are expressed in energy/unit-length.
The energy integrals below are integrated over the cross
sectional area of the wall (do. ). The exchange energy E,

„

in the continuum approximation is given by

E,„=f &(l&al'+ I&PI'+ Idyl')~a (1)

The exchange parameter 3 can be extracted from spin-
wave theory, ' ' which shows that 3 =2'M, =DS/
2V, where D is the spin-wave dispersion parameter, S is
the spin per atom, V is the volume per atom, and do is
the incremental cross-sectional area. The spin-wave
dispersion parameter D is related to the exchange con-
stant J in the Heisenberg Hamiltonian by D =2JSa,
where a is the lattice spacing. This relationship is true
for spin-wave modes along bcc [100],bcc [110],fcc [110],
and fcc [100] directions.

The volume magnetocrystalline anisotropies for uniaxi-
al (easy axis in y) E~„,and cubic crystals Ex„aregiven
by the following expressions, respectively

EK„=f [K„,(1 f3 )+K„~(l——p ) ]do

E~, = f [K„(aP +P y +y a ) +K~ aP2y2]do. ,

(3)

EKs 2 +s 17 ++s2A dS (4)

where the integration is along the (linear increment ds)
boundary at the film surfaces. The symmetry of the sur-
face anisotropy energy was determined by Rado and co-
workers.

The self-magnetostatic field energy E, can be
represented in a number of equivalent forms, but for our
purposes the most convenient representation is

E, = —
—,
' H, .M, a do. ,

where the bulk anisotropy constants for cubic K, and
uniaxial K„symmetry can be determined from torque
magnetometry measurements. The energy due to magne-
tostriction can be included in the expression for the uni-
axial anisotropy by appropriately adjusting the value of
the anisotropy constant. The surface magnetocrystal-
line anisotropy energy E~, is given by

where the self-field H, is determined from the scalar mag-
netic potential as H, = —VN. The magnetic sealer poten-
tial N satisfies V +=4aM, V a inside the ferromagnet,
V N'=0 outside the ferromagnet, and at the surface

and —dN/dz +4aM, y = —d4" /dz. The regu-
larity of N at infinity is also required. This can be
guaranteed by solving for the potential using Green's-
function methods. The calculation of this self-field ener-
gy is the most computationally intensive aspect of solving
the micromagnetic equations. The external field energy
EI, for an applied field of Ho is simply given as

E„=—fHo M, a der .

In order to calculate domain-wall microstructure in
ferromagnets, the time evolution of a magnetization
configuration inside a ferromagnet, which is described by
the Landau-Lifshitz-Gilbert equation, must be solved.
The Landau-Lifshitz-Gilbert equation has been examined
experimentally and theoretically ' ' ' ' and found to
yield an accurate description of the time evolution of a
magnetic moment of fixed magnitude in a magnetic field.
This equation has the following form.

dM, A,
'

=m'MXH«+ MXMXHeff e

dt M,
(7)

M'„,
B(M,a) (8)

The effective magnetic field incorporates all the effects of
exchange, anisotropy, external fields, and demagnetizing
fields. For the analysis of the equilibrium micromagnetic
structure of simple two-dimensional domain walls
presented in this paper, we do not integrate Eq. (7) direct-

The parameters are given by co' =co/(1+ A, ) and
A, '=cog. /(1+A, ). Here the gyromagnetic ratio co=co,g/2
is determined from the free-electron value of co, and the
spectroscopic splitting factor, g=2. The gyromagnetic
ratio co, the damping parameter A, , and the magnitude of
the effective fields determine the times scales of interest.
For our time-domain simulations, we use the free-
electron gyromagnetic value of co=1.78 X 10 (Oe sec ').
The damping parameter A, is not well known. We have
used values of k between 0.005 and 2.0, and found that
for the calculation of equilibrium magnetization
configurations in domain walls in uniform ferromagnetic
systems, it is not important. The effective magnetic
field on each magnetic moment is determined from the
total system energy E„,as
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ly. Instead, we note that for an equilibrium magnetiza-
tion distribution, d M /dt =0, which implies that the
eff'ective field H,z must be parallel to the magnetization
M. We relax the magnetization configuration iteratively
by positioning each magnetization vector along the
eff'ective-field vector direction throughout the mesh of
Fig. 4. The initial condition from which we begin the
iteration procedure is one where the y component of the
magnetization, M (z), is linearly interpolated across the
domain wall. The other two magnetization components
are equal and of size 0.5[1—M (z) ]'

When the largest residual of a single value of
(MXH, s)/~M~ ~H, s~ decreases below a convergence
minimum, we stop the iteration process. We took as our
convergence minimum for terminating the calculation
the value of the largest relative change in the largest com-
ponent of the direction cosines, typically a value of 0.002.
This implies that the largest relative change in angle was
less than 0.25 for the single largest change of any discre-
tized magnetization in the wall. We have found that
equilibrium domain-wall configurations determined from
this energy minimization scheme agree extremely well
with configurations determined by solving the Landau-
Lifshitz-Gilbert equation directly. As we are only in-
terested in equilibrium configurations for uniform sys-
tems here, we use the more economical energy minimiza-
tion scheme to determine equilibrium domain-wall
configurations. We note that for more complex systems
or in the presence of grain boundaries which may serve as
nucleation sites, the solution of the Landau-Lifshitz-
Gilbert equation is necessary for accurate results.
For completeness we include in Appendix A explicit ex-
pressions for the energies and effective-field components
used in our micromagnetics calculations for the discre-
tized grid shown in Fig. 4.

Permalloy micromagnetic structure. In addition to these
bulk magnetic parameters, our micromagnetics calcula-
tion took as input the boundary conditions at J=1 and
X +2, the film thickness (or periodic boundary condi-
tions), the cell density, and a convergence criteria indicat-
ing when to stop the minimization scheme.

l. Injinite crystals and thickglms

In Fig. 5 the magnetization distribution for a cross sec-
tion near the surface of a 180' domain wall in Fe is calcu-
lated. The arrows indicate the direction and magnitude
of the magnetization vector in the x-z plane of the wall
cross section. The boundary conditions used have the
magnetization going out of the page ( —M ) on the left
and into the page (+M ) on the right. A bulk Bloch wall
runs vertically through the center of the structure. In a
Bloch wall the magnetization rotates in the plane of the
wall. The bulk Bloch wall terminates in a surface Neel
wall, where the magnetization rotates perpendicular to
the wall. Both structures are visible in the figure. In this
calculation the total film thickness was 0.5 pm.

As a first test of our micromagnetics calculations, we
compare our energy-minimization calculation with a
variational calculation of 180 Bloch wall in an infinitely
thick uniaxial crystal. In the variational formulation the
functional form for the magnetization is determined by
minimizing the energy of the system. This problem can
be solved in closed form using variational principles be-
cause there is no contribution from the magnetostatic
self-energy. We note that magnetization configurations
which produce minimum-energy one-dimensional walls
have equal exchange and anisotropy energies. In Fig. 6(a)
we show the spatial distribution of the magnetization

B. Micromagnetic structure of domain walls

We performed simulations for the specific examples
which we examined using SEMPA. We present mi-
cromagnetic domain-wall structure for a single-crystal
(whisker) of Fe(100) and for several thin films of Permal-
loy (Nio s&Feo &9). Bulk parameters were used for all cal-
culations. The exchange-coupling constants 3 were
2.1 X 10 erg/cm for Fe (Refs. 29 and 77) and
1.05 X 10 erg/cm for Permalloy. ' ' The saturation
magnetization values M, were 1714 emu/cm for Fe (Ref.
78), and 813 emu/cm was measured for Permalloy. A
cubic induced anisotropy constant K, ( =K, &

) of 4.7 X 10
erg/cm was used for Fe. No magnetostriction or sur-
face anisotropy terms were included in the Fe calcula-
tions. A test calculation showed that the magnetostric-
tion made a negligible contribution to the total system
energy. The contribution of the surface anisotropy was
also small and will be discussed in Sec. IVC2. The uni-
axial induced anisotropy constant K„(=K„&)for Per-
malloy, incorporating both the intrinsic anisotropy (913
erg/cm ) and magnetostriction (840 erg/cm ), was mea-
sured. The total uniaxial anisotropy parameter used for
the Permalloy samples was 1743 erg/cm . No surface an-
isotropy terms were included in the calculations of the
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FIG. 5. Cross section through a calculated 180' wall in a 0.5-
pm-thick Fe (100). The magnetization direction and magnitude
in the plane of the cross section are indicated by the direction
and length of the magnetization vectors. The bulk Bloch wall
and surface Neel wall are seen in the bulk and at the surface, re-
spectively. The penetration depth of the wall from the surface
is on the order of a Bloch-wall width.
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across a bulk Bloch wall for a fictitious "uniaxial Fe crys-
tal. " The micromagnetic parameters used were identical
to those specific above for Fe, but the symmetry of the
magnetocrystalline anisotropy was selected to be uniaxi-
al. Periodic boundary conditions were used (in z). The
periodic boundary conditions equate the top layer of the
discretized magnetization with that in the bottom layer
for a two-dimensional grid. In this way we extracted the
one-dimensional wall solution from a two-dimensional
grid, without enforcing a priori the structure of the wall.
The region of the film cross section that was discretized
was 0.7 pm wide and 5=0.007 pm. The solid points are
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FICx. 6. {a) Magnetization profiles of a 180' Bloch wall in an
infinite Fe crystal with a fictitious uniaxial anisotropy. The
solid points are the results of our micromagnetic calculation,
and the solid line is the variational method result. {b) Magneti-
zation profiles for a 180' Bloch wall in an infinite Fe crystal with
cubic anisotropy, but no magnetostriction. The walls breaks
into two 90 walls without the presence of a surface or magne-
tostriction.

results from our micromagnetic calculation, whereas the
solid line is the variational result. The contributions to
the wall energy due to anisotropy and exchange, as deter-
mined by the variational method, are equal, and for this
example each is equal to 2( AK)' =1.987 erg/cm . Our
calculation determines the exchange energy to be 1.993
erg/cm and the anisotropy energy to be 1.963 erg/cm .

If the anisotropy is allowed to assume cubic symmetry,
as it does in real Fe, classical mieromagnetic theory in-
dicates that the bulk Bloch wall should separate into two
90' walls separated by infinity. This is the result for zero
magnetostriction. We tested our micromagnetics calcula-
tion on this system, realizing, of course, that we could not
discretize an infinite grid. The spatial dependence of the
magnetization in a 180' domain wall for bulk Fe with cu-
bic anisotropy and no magnetostriction is shown in Fig.
6(b). Although the width of the discretized wall cross
section was only 0.7 pm, we see that the bulk wall broke
into two separate 90' walls separated by as large a dis-
tance as possible within the rigid boundary conditions.
The total energy for a (100)-oriented wall in cubic anisot-
ropy material determined by variational methods should
be 2(AK)'~ =1.987 erg/cm . We determine the total
wall energy to be 1.983 erg/cm, 0.988 erg/cm for an-
isotropy and 0.995 erg/cm for exchange. Note that the
wall energy of the cubic symmetry material which
separates into two 90' walls is half of that of the uniaxial
material.

To illustrate the eA'ect that finite film thickness has on
determination of the bulk-domain-wall magnetization dis-
tribution in Fe, we calculated the magnetization distribu-
tion in a 0.5-pm-thick Fe single crystal for both cubic an-
isotropy and a fictitious uniaxial anisotropy. The domain
wall in a uniaxial infinite crystal forms a single 180 wall.
This case is important because, unlike in the cubic case,
we can make direct comparisons between the infinite-
thickness variational result and the micromagnetics re-
sults for finite-thickness films.

In Figs. 7(a) and 7(b) we show magnetization distribu-
tion across 180 bulk domain walls in Fe for the uniaxial
and cubic cases, respectively. The wall magnetization
profiles are taken from the center (z=0.25 pm) of the film
and are characteristic of the bulk. The solid points in
Fig. 7(a) are calculated results from the full micromagnet-
ic calculation, and the solid line is once again the varia-
tional method result for the infinite crystal for compar-
ison. The discretized region was 0.7 pm wide and 0.5 pm
thick. Each square cell was 0.0166 pm on a side. The
magnetization distribution was not sensitive to the mesh
density, as doubling the number of cells in both the x and
z direction did not change these results. Widening the
discretization region by up to a factor of 2 did not
significantly alter these results. Furthermore, increasing
the thickness of the film to 0.7 pm did not change the
magnetization distribution either at the surfaces or interi-
or to the film. Large increases in the thickness of the film
did produce magnetization configurations which were no
longer symmetric about the midplane of the film. These
configurations may differ little in energy, and thus the
true global minimum is difficult to identify. The surface-
domain-wall distributions are relatively insensitive to the
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FIG. 7. (a) Magnetization profiles of a 180' Bloch wall taken
from the center of a 0.5-pm-thick Fe crystal with a fictitious
uniaxial anisotropy. The solid points are the results of our mi-
cromagnetic calculation, and the solid line is the variational
method result for an infinite crystal. (b) Magnetization profiles
taken from the center of a 180 Bloch wall in a 0.5-pm-thick Fe
crystal with cubic anisotropy, but no magnetostriction. The
wall does not break into two 90 walls in the presence of a sur-
face without magnetostriction present. The solid line (no
points) is the variational result for uniaxial anisotropy for an
infinite crystal. This illustrates the subtle magnetization profile
changes in the Bloch wall between uniaxial and cubic symmetry
crystals.

non-symmetric configuration in bulk. The deviation of
the finite-thickness film magnetization profiles from those
for the infinite crystal result from magnetic-Aux coupling
between the two opposite film faces. This adds a negative
component of the wall magnetization M, on.either side of
the wall. This behavior can also be identified in the
cross-sectional view of the domain wall of Fig. 5, where

some return Aux can be seen on the far right of the figure.
This return Aux couples the two sides of the film away
from the Bloch wall and is identified by the small
downw'ard-directed arrows at the right in Fig. 5. We
note that the finite-thickness bulk domain wall has Aux
returning (M, ) on either side of the wall, as originally
predicted by Brown and LaBonte, ' and hence we term
this configuration a Brown wall. The Brown wall is
different in structure than the infinite crystal wall, the
Landau-Lifshitz wall of Fig. 6(a), which has no return
fiux (M, ). This phenomenon is related to the presence of
the surface and occurs for a wide range of magnetic pa-
rameters, including materials as soft as ferromagnetic
glasses. There is no experimental method to measure
Bloch walls interior to films with the necessary spatial
resolution in order to determine which configuration is
realized.

In Fig. 7(b) the magnetization profile from a 180' Bloch
wall in a finite-thickness film which has cubic anisotropy
shows that the bulk Bloch wall does not separate into two
90' walls as it did for the infinite-thickness-film case. The
solid points are the results for the micromagnetic simula-
tion with a solid line drawn through the solid points to
guide the eye. The other solid line is the variational re-
sult for the uniaxial Fe crystal. No magnetostriction was
included in our calculation, yet the wall did not break
into two 90' walls. The magnetostatic energy of the sur-
face (e.g. , in the x-y plane at z=0 in Fig. 5) is large
enough to bind the wall together.

The 180' Bloch-wall magnetization profiles in bulk are
nearly symmetric (when compared to those profiles ob-
served on the surface, as we will show), as shown in Figs.
7(a) and 7(b). Furthermore, we observe that the bulk
Bloch wall in a cubic material is wider than the corre-
sponding wall in a uniaxial material with the same mag-
netic parameters. The Aux feeding back along the side of
the wall is seen in the negative values of the calculated
M, magnetization distribution.

Using SEMPA, we are only able to measure the surface
magnetization distribution, not the bulk. Any connection
that we can make to the bulk structure of the domain
wall must be made through the surface magnetization
distribution. In Fig. 8 we illustrate some of the general
features of our domain-wall calculation that we will be
comparing to our SEMPA measurements. This figure
displays the surface and bulk magnetization profiles for
an Fe(100) crystal with cubic anisotropy, but without
magnetostriction, as shown in cross section in Fig. 5.
Figure 8(a) shows the surface magnetization profile ex-
tracted from the bottom layer of cells, at z=0.0, in the
discretized array, and for comparison Fig. 8(b) shows the
bulk magnetization profile extracted from the center lay-
er of cells, at z=0.25, in the array. The asymmetry in the
surface-domain-wall profile is evident. The surface wall
is also much wider than the corresponding wall in bulk.
Further, we note that the peak in the M magnetization
distribution of the Neel wall on the surface is offset from
the peak in the bulk M, magnetization distribution of the
bulk Bloch wall. This offset is 6„,» and is an important
feature which can be measured with SEMPA as described
in Sec. IV.
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In order to test the sensitivity of the micromagnetics
results to the values of the input parameters, we sys-
tematically varied the micr omagnetic parameters by
+5% of their nominal values. That is, we let
3 =2. 10+0.105 X 10 erg/cm, M, = 1714+86
emu/cm, and E, =470000+23 500 erg/cm, and then
compute the domain-wall structures. These variations
reflect the experimental uncertainty in determining these
parameter values. In each case the discretized region was
0.7 pm wide and 0.5 pm thick and 6=0.0166 pm. The
convergence criteria, the largest allowed change in a sin-
gle component of the magnetization at a single cell in the
array prior to exiting the program, was 0.002. In Fig.
9(a) the nominal surface-domain-wall magnetization dis-

tribution is given by the solid points. The error bars
which result from deviations due to variations of the
magnetic parameters and are the maximum total varia-
tion of the domain-wall proQe from the nominal profile.
Furthermore, the error bars were made symmetric by
reflecting the largest variation about the nominal value.
The asymmetry in the error bars across the pj ofi1e reAects
the sensitivity of the surface domain wall to the
material's stiffness. As the exchange parameter 2 is de-
creased (or the anisotropy parameter K increased), for ex-
ample, the wall can turn into plane faster (more sharply)
at the surface, thereby afFecting the rising edge of the
profile more dramatically. The largest deviations are less
than +5.0%. The average deviation over the whole
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FIG. 8. C,
'a) Surface magnetization profiles z=O of a 180

Bloch in a D.5-p, m-thick Fe crystal with cubic anisotropy. {b)
Corresponding bulk magnetization distribution taken from the
center of the film. The surface wall is asymmetric, while the
bulk wall is largely symmetric. The surface wall peak is shifted
from the bulk wall peak by 6„,1~.

FIG. 9. (a) Effect of varying the magnetic parameter values
input into the micromagnetics calculation by +5.0%. 4,

'b) Effect
of varying the grid density and mesh size input into the mi-
cromagnetics calculation. The error bars indicate the total de-
viation of the results.
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profile is under +2.0%.
The sensitivity of the calculated domain-wall magneti-

zation profiles to the variation in the grid size and density
was also investigated. The Alm thickness was varied from
0.4 to 0.7 pm, and the discretized width was varied from
0.5 to 0.8 pm. The cell size was varied between
6=0.0166 and 0.008 33 pm. The results of these simula-
tions are shown in Fig. 9(b). Once again, the nominal
surface-domain-wall magnetization distribution (0.5 pm
thick, 0.7 pm wide, and 6=0.0166 pm) is given by the
solid points. The error bars are the maximum deviations
due to variations of the geometric parameters, symmetri-
cally refIected about the nominal value. The largest devi-
ations are +5.0%, but the average of the deviations is
nearly +2.0%. The largest deviations occur as a result of
selecting a small discretization-region width which
clamps the tail of the wall-magnetization profile when the
boundaries are too close together. This is the cause of
the larger error bars on the tail (right-hand side) of the
wall. By selecting a large enough discretization region,
deviations due to the presence of the boundaries can be
minimized. We found that for some meshes the minimi-
zation procedure produced metastable equilibria where
the energy of the configuration was clearly higher than
the minimum. Interestingly, these metastable equilibria
can be obtained by integrating the Landau-Lifshitz-
Gilbert equations in time or by minimizing the magnetic
energy of the system. The metastable equilibria produce
surface domain profiles which are different than the
minimum-energy configuration. In order to investigate
the possibility of realizing any of these metastable states
experimentally, it would be necessary to include the
effects of thermal fluctuations. This is outside of the
scope of the present work. In any case these metastable
equilibria have been excluded from Fig. 9(b).
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was 0.800 pm wide and 0.160 pm thick. The cell size was
5=0.0160 pm, and the convergence criteria was 0.005.
The asymmetric shape of the surface-domain-wall profile
is as evident for the asymmetric Bloch wall as it was for
the thick films which supports bulk Bloch walls. Surface
Neel walls seem to be asymmetric in general.

We tested the sensitivity of the surface magnetization
distributions in 180' walls in thin Permalloy films to vari-
ations in the input parameters prior to comparison with
experimental SEMPA measurements. We again sys-
tematically varied the micromagnetic parameters and the
film thickness by +5% of their nominal values to include
the experimental uncertainty in their determination.
That is, we let 3 = 1.05+0.051 X 10 erg/cm,
M, =813+40 emu/cm, and K, =1743+87 erg/cm, and
then we compute the domain-wall structure. In each case
the discretized region was 0.800 pm wide and 0.160 pm

2. Magnetically thin Plms

The structure of domain walls in thin Alms is very
different from that of thick (or infinite-thickness)
films. ' '' The term "asymmetric Bloch wall" was
coined by LaBonte" to describe the vortex domain-wall
structures which occur in films which are too thin to sup-
port bulk Bloch walls and yet too thick to support Neel
walls. The calculated cross section of an asymmetric
Bloch wall in a 0.160-pm-thick Permalloy film is shown
in Fig. 10(a). The magnetization is out of the page (

—y)
to the left of the wall and into the page (+y) to the right
of the wall. We find that when the two surfaces are close
together, they couple magnetostatically, and a vortex
structure results. There is no well-defined Bloch wall in
the interior of the film, although the strong magnetiza-
tion directed along +z eventually degenerates into a
Bloch wall as the thickness of the film is increased. The
width of the surface Neel wall is a function of the film
thickness for asymmetric Bloch wall (vortex) structures.

The magnetization from the top layer of cells in the
mesh is shown in Fig. 10(b). This is a 180 surface
domain wall in a 0.160-pm-thick Permalloy film. The
magnetic parameters used in this calculation are those
specified above for Permalloy. The discretization region
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FIG. 10. (a) Cross section through a 180' wall in a 0.16-pm-
thick Permalloy film. The magnetization direction and magni-
tude in the plane of the cross section is indicated by the direc-
tion and length of the magnetization vectors. The bulk Bloch
wall and surface Neel wall are seen in the bulk and at the sur-
face, respectively, in Fe are replaced with a vortexlike structure
called an asymmetric Bloch wall. (b) Surface magnetization
profile for the wall shown in (a).
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thick, and 6=0.016 pm. The film thickness was
t =0.160+0.005 pm. The convergence criterion was
0.005. In Fig. 11(a) the nominal surface-domain-wall
magnetization distribution is given by the solid points.
The error bars are once again the total deviations due to
variations of the magnetic parameters. The largest devia-
tions are less than +4.0%, with the average deviations
over the whole profile under +2.0%. The sensitivity of
the calculation to grid size and density was also investi-
gated. Discretization widths were varied from 0.480 to
0.800 pm. The cell size was varied between 6=0.020 and
0.08 pm. The results of these simulations are shown in
Fig. 11(b). The largest deviations are +5.0%%uo, but the
average of the deviations is nearly 2.0%%uo. The largest de-
viations again occur as a result of selecting a small grid

width which clamps the tail of the wall magnetization
profile. By selecting a large enough grid, deviations due
to the presence of the boundaries can again be mini-
mized. Once again, we would like to emphasize that
metastable equilibria can be found for some mesh densi-
ties. The results shown here exclude these higher-energy
states.

The eAect of varying the exiting convergence criteria is
shown in Fig. 11(c) for a 0.16-pm-thick Permalloy film of
cell size 6=0.016 pm and discretization region width of
0.80 pm. The curves in Fig. 11(c) illustrate the effect of
exiting the minimization procedure prematurely. The
convergence criteria, given by the largest change in any
of the direction cosines in the grid, were 0.05, 0.01, 0.005,
and 0.0001, respectively, for the curves in M„,beginning
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FIG. 11. (a) Effect of varying the magnetic parameter values input into the micromagnetics calculation by +S.Q%%uo and the thick-
ness of the film by +0.005 pm for the 0.16-p-thick Permalloy film. The error bars indicate the total deviation of the results. (b) Effect
of varying the grid density and mesh size input into the micromagnetics calculation. The error bars indicate the total deviation of the
results. (c) Effect of varying the exiting convergence criteria in the micromagnetic simulation. The exiting criteria are 0.05, 0.01,
0.005, and 0.0001 beginning with the lowest curve and moving up for M, and beginning with the upper curve and moving down for
My.
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with the lowest curve and moving upward. The curves in
M start with the discontinuous curve for a convergence
criterion of 0.05 and move downward. Minimal changes
occur in the surface-domain-wall magnetization distribu-
tion for convergence criteria less than 0.005. We use this
value in most of our simulations. It should be noted that
the energy-minimization scheme does not ensure that a
global minimum is reached, only a local minimum.

IV. COMPARISON BETWEEN SEMPA
MEASUREMENTS AND MICROMAGNETIC

CALCULATIONS OF 180 WALLS

A. 180 surface domain walls in Fe(100)

SEMPA domain-wall images in Fe were taken from
single-crystal Fe(100) whiskers. Fe was selected for

study because its magnetic properties are well known and
we could obtain sample crystals with excellent crystalline
and chemical structure, making it an ideal test sample.
The whiskers were sputtered with 2-keV argon-ion
beams, with cyclic annealing to 500'C for 2 min during
sputtering. The sputtering process was continued and
monitored using Auger electron spectroscopy until the
oxygen peak at 535 eV was removed. The crystal was an-
nealed at 600'C for 3 min to remove the 20 A or so deep
sputter damage of the whisker surface. Sharp reQection
high-energy electron diffraction (RHEED) spots from the
whisker indicated that the surface was atomically well or-
dered. Once the whisker was cleaned and annealed, we
imaged the magnetic microstructure using SEMPA. We
note that the whisker thickness, which was about 20 pm,
represents a thick film (crystal) micromagnetically, and
hence the total whisker thickness variation due to
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FIG. 12. Magnetization profiles for a 180' surface domain wall in Fe(100). (a) Data were acquired with I=0.3 nA, and the solid
line is the result of micromagnetic theory convolved with the probe-intensity distribution of Fig. 3(a). (b) Data were acquired with
I= 1.6 nA, and the solid lines are the results of micromagnetic theory convolved with the limiting probe-intensity distributions of Fig.
3(c). (c) Data are from Ref. 53, and the solid line is the raw result of micromagnetic theory.
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sputtering is unimportant. Additionally, we note that
measured surface-domain-wall profiles were identical for
annealed and unannealed Fe samples. This is consistent
with the length scale for sputter damage, of about 20 A,
being significantly shorter than the surface magnetic wall
thickness, which is on the order of a Bloch-wall width.

In Figs. 12(a)—12(c) results of SEMPA measurements
of 180' surface domain walls in Fe(100) whisker are com-
pared with the results of micromagnetic theory. The
data of Figs. 12(a) and 12(b) are extracted from SEMPA
images as described in Sec. II B. In Fig. 12(a) the
incident-beam current was I=0.3 nA, and the probe di-
ameter was nominally 0.070 pm. The experimental data
are shown by solid circles (M ) and solid triangles (M ).
All experimental line-scan data will be presented in this
way. The error bars represent the standard deviation
about the mean of the line scans, which were averaged to-
gether to form this single line scan. The solid lines in
Fig. 12(a) are the results of convolving the calculated
surface-domain-wall magnetization distribution for a
0.5-pm-thick Fe(100), as in Fig. 8(a), with the measured
0.070-pm probe-intensity profile of Fig. 3(a). We chose
not to deconvolute the experimental data as it would in-
troduce further noise in the data. Excellent agreement is
found between the model calculations and the experimen-
tal results.

To show the reproducibility of the data, the data of
Fig. 12(b) were acquired with a beam current of 1.6 nA
and consequently a larger probe, from the same wall on
the same sample as the data in Fig. 12(a). These two
measurements were taken within 2 h of each other during
a single data-acquisition run. As this electron probe dis-
tribution may change with the objective-lens focus, as de-
scribed in Sec. IIA, the upper and lower solid curves
represent the two limiting values of the surface magneti-
zation distribution obtained by convolving the calculated
surface magnetization distribution with the 0.165- and
0.210-pm probes of Figs. 3(b) and 3(c), respectively.
Within this range of focus we expect, the agreement is ex-
cellent.

In Fig. 12(c) we show the data of Oepen and
Kirschner. The incident-beam diameter for their mea-
surements was less than 30 nm; hence we compare their
data to the results of the unconvolved micromagnetic
theory [Fig. 8(a)]. Again, the agreement remains excel-
lent. A discussion of the statistical significance of the
data will be given in Sec. IV C.

We can measure the surface-domain-wall offset h„,&~

from the SEMPA images such as those given in Figs. 2(a)
and 2(b). The wall off'set was defined as the distance be-
tween the peak in the bulk-Bloch-wall magnetization
profile and the peak in the surface-Neel-wall profile as
shown in Figs. 8(a) and 8(b). When the Bloch wall turns
over at the surface, forming a surface Neel wall, the sur-
face wall can fall to either side of the bulk Bloch wall. In
the case where the surface wall is observed to fall on both
sides of the same bulk Bloch wall, as it does in Fig. 2(a),
the wall offset can be measured as twice the distance be-
tween the peaks in the surface-domain-wall magnetiza-
tion profiles. We have measured this distance from data
acquired with a probe FWHM of 0.070 pm. We deter-

mined the wall offset to be 6„,&]=0.047+0.008 pm. The
uncertainty in this measurement corresponds to —,

' of a
pixel width (0.016 pm/pixel) in the raw data. The mi-
cromagnetic simulations predict a value of
A, ~~

=0.050+0.008 pm.

B. 180 surface domain walls in thin Permalloy Alms

Permalloy test samples were selected because its mag-
netic properties are extremely well characterized and, in
contrast to Fe, has an extremely small magnetocrystalline
anisotropy. This makes Permalloy a good test sample for
investigating domain walls in magnetically soft materials.
The Permalloy films were prepared by sputtering in a rf
sputtering system employing an Ar plasma. The back-
ground pressure was 1X10 torr and the partial pres-
sure of Ar was 3X10 torr for the 2-keV Ar plasma
production. The sputter target was a cast Permalloy tar-
get, and the substrate was a crystal of Si. The Permalloy
composition was Nip SiFep». We show results for four
Permalloy films of nominal thicknesses of 0.12, 0.16, 0.20,
and 0.24 pm. The thickness of the three thinnest films
were measured by x-ray fluorescence. The actual film
thicknesses were 0.126+0.003, 0.157+0.004, and
0.193+0.005 pm. The thickest film was measured with a
stylus thickness device with a 2-pm stylus. The thickness
of the thickest film was 0.242+0.006 pm. These films
were prepared for SEMPA observation using by 2-keV
argon-ion sputtering, until the Auger electron signal from
adsorbed carbon (285 eV) and the native oxide (535 eV)
were gone. After the films were sputtered, they were ob-
served with SEMPA. No annealing was performed. The
thickness of the Permalloy films was reduced by roughly
0.005+0.002 pm. The final thicknesses are 0.121+0.004,
0.152+0.004, 0.189+0.005, and 0.237+0.006 pm. The
effect of the variation in thickness on the surface-
domain-wall profiles for asymmetric Bloch walls in Per-
malloy films were already discussed.

In Figs. 13—16 we present the measured and calculated
wall profiles for the four film thicknesses of Permalloy.
We will refer to the films by their nominal film
thicknesses, i.e., 0.12, 0.16, 0.20, and 0.24 pm. The data
for 180' surface domain walls in a 0.120-pm-thick Per-
malloy film are shown in Figs. 13(a) and 13(b). In Fig.
13(a) the data were acquired with an incident-beam
current of I=0.3 nA and a nominal probe diameter of
0.07 pm. In order to show how the measurements and
predictions agree, taking into account our uncertainty in
the probe diameter due to focusing, we show two limiting
convolutions of the theory that we feel represent limiting
cases. The upper solid line in the figure is the uncon-
volved result from the micromagnetic calculation. The
lower solid curve is the same result after convolution
with the probe-intensity profile of Fig. 3(a). In Fig. 13(b)
the data were acquired with an incident-beam current of
I=1.6 nA and a nominal probe diameter of 0.165—0.210
pm. The upper solid line in the figure is the result from
the micromagnetic calculation convolved with the 0.165-
pm limiting probe. The lower solid curve is the calculat-
ed result after convolution with the 0.210-pm probe-
intensity profile of Fig. 3(c). This description of Fig. 13 is
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summarized in Table I, and the corresponding data for
the other three film thicknesses are shown in Figs. 14—16.
The probe diameters used in the convolutions are also
listed in Table I.

The qualitative agreement between each of the experi-
mental and calculated domain-wall profiles is evident in
Figs. 12—16. Furthermore, the measured and calculated
profiles for the thin Permalloy films are both functions of
the thickness of the film. A quantitative analysis of this
data will be delayed until Sec. IV C.

1. Magneto-optic Kerr microscopy
of a thin Permalloy film

We have made additional measurements of domain-
wall profiles in Permalloy thin films using (longitudinal)
magneto-optic Kerr microscopy. In magneto-optic Kerr
microscopy, a polarized light beam incident through a
light microscope objective lens upon a magnetized sample
will be rotated upon reAection. The rotation in the polar-
ization can be directly related to the sample magnetiza-
tion. As an optical technique, the transverse spatial reso-
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FIG. 13. (a) magnetization profiles for a 180 surface domain
wall in a 0.12-pm-thick Permalloy film. The data were acquired
with I=0.3 nA, and the solid lines are the raw result of mi-
cromagnetic theory (upper curve) and the theory convolved
with the probe-intensity distribution of Fig. 3(a) (lower curve) ~

(b) Magnetization profiles for a 180 surface domain wall in a
0.12-pm-thick Permalloy film. The data were acquired with
I=1.6 nA, and the solid lines are the results of micromagnetic
theory convolved with the limiting probe-intensity distributions
of Fig. 3(c), FWHM=0. 165 pm (upper curve) and 0.210 pm
(lower curve).

FIG. 14. (a) Magnetization profiles for a 180 surface domain
wall in a 0.16-pm-thick Permalloy film. The data were acquired
with I=0.6 nA, and the solid lines are the raw result of mi-
cromagnetic theory (upper curve) and the theory convolved
with the probe-intensity distribution of Fig. 3(b) (lower curve).
(b) Magnetization profiles for a 180' surface domain wall in a
0.16-pm-thick Permalloy film. The data were acquired with
I=1.6 nA, and the solid lines are the results of micrornagnetic
theory convolved with the limiting probe-intensity distributions
of Fig. 3(c), FWHM=0. 165 pm (upper curve) and 0.210 pm
(lower curve) ~
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lution of magneto-optic Kerr microscopy is limited by
diffraction to 0.25 pm. The depth resolution of the Kerr
effect can be given by the attenuation length for light
penetration into the ferromagnet. Typically, attenuation
lengths are in the 10-nm range. This attenuation length
is 3—10 times larger than that in SEMPA. We measured
domain-wall profiles at surfaces using both SEMPA and
magneto-optic Kerr microscopy to see if we could
differentiate between the depth sensitivity of the two

techniques and to identify if there is some special magnet-
ic structure which is very localized to the surface.

We measured surface domain walls in the same 0.24-
pm-thick Permalloy film that was used for the SEMPA
measurements. We carefully characterized the instru-
ment transfer function of the Kerr microscope. We
found that when we convolved the calculated magnetiza-
tion profile with the Kerr instrument transfer function,
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FIG. 15. (a) Magnetization profiles for a 180' surface domain
wall in a 0.20-pm-thick Permalloy film. The data were acquired
with I=0.6 nA, and the solid lines are the raw result of mi-
cromagnetic theory (upper curve) and the theory convolved
with the probe-intensity distribution of Fig. 3(b) (lower curve).
(b) Magnetization profiles for a 180' surface domain wall in a
0.20-pm-thick Permalloy film. The data were acquired with
I=1.6 nA, and the solid lines are the results of micromagnetic
theory convolved with the limiting probe-intensity distributions
of Fig. 3(C), FWHM=0. 165 pm (upper curve) and 0.210 pm
(lower curve).

FIG. 16. (a) Magnetization profiles for a 180' surface domain
wall in a 0.24-pm-thick Perrnalloy film. The data were acquired
with I=0.6 nA, and the solid lines are the raw result of mi-
cromagnetic theory (upper curve) and the theory convolved
with the probe-intensity distribution of Fig. 3(b) (lower curve).
(b) Magnetization profiles for a 180' surface domain wall in a
0.24-pm-thick Permalloy film. The data were acquired with
I=1.6 nA, and the solid lines are the results of micromagnetic
theory convolved with the limiting probe-intensity distributions
of Fig. 3(c), FWHM=0. 165 pm (upper curve) and 0.210 pm
{lower curve).



3412 M. R. SCHEINFEIN et al. 43

TABLE I. Summary of the domain-wall measurements, listing the ferromagnetic material, its thick-
ness, the electron-probe current used for the measurement, the relevant figure number where the data is
presented, the size of the beam probe for the theoretically convoluted curves, and the corresponding
curve position in the figure.

Material

Fe
Fe

Fe (Ref. 53)
Permalloy

Permalloy

Permalloy

Permalloy

Permalloy

Permalloy

Permalloy

Permalloy

Thickness
(pm)

20.0
20.0

0.12

0.12

0.16

0.16

0.20

0.20

0.24

0.24

Beam current
I (nA)

0.3
1.6

0.3

1.6

0.6

1.6

0.6

1.6

0.6

1.6

Figure

12(a)
12(b)

12(c)
13(a)

13(b)

14(a)

14(b)

15(a)

15(b)

16(a)

16(b)

Convolved probe
diameter (pm)

0.070
0.165
0.210
0.000
0.000
0.070
0.165
0.210
0.000
0.120
0.165
0.210
0.000
0.120
0.165
0.210
0.000
0.120
0.165
0.210

Solid curve

only curve
upper curve
lower curve
only curve

upper curve
lower curve
upper curve
lower curve
upper curve
lower curve
upper curve
lower curve
upper curve
lower curve
upper curve
lower curve
upper curve
lower curve
upper curve
lower curve

the measured Kerr profile closely resembled the results of
Fig. 16. We conclude that there is no difference between
these surface-domain-wall profiles measured by SEMPA
and Kerr except that the SEMPA measurements have
much higher spatial resolution. This result verifies that
the magnetic length scales at surfaces for domain walls
are on the order of tens of nanometers Isee Fig. 10(a)] and
not on the order of angstroms or nanometers. The details
of the Kerr measurements will be reported elsewhere.

C. Data analysis

1. Sources of error and error estimation

We have displayed excellent qualitative agreement be-
tween measured and calculated domain-wall profiles at
surfaces. In our simulations we used only bulk parame-
ters and did not include any special surface effects such as
surface anisotropy or enhanced moments at the surface.
We would like to examine the agreement between the
measurements and calculations quantitatively to deter-
mine if such surface effects could greatly enhance the
models. We begin the data analysis with a discussion of
the experimental errors.

The error bars present on the data in Figs. 12—16
represent the standard deviation about the same value for
the magnetization. The magnetization is the average
value measured at each x position in multiple line scans.
No other errors have been incorporated into these error
bars.

The distance scale errors were found to be less than
2.0% from the measurement of a calibrated grid. Abso-

lute scale errors, and errors introduced as a result of im-
age rotation, to ensure that the wall magnetization com-
ponents lay along the polarization detector axes, appear
as scale corrections to the distance scale. The total ad-
justment to the distance scale across the width of a wall is
always less than +0.007 pm due to wall misalignment.
The M and M magnetization profiles are absolutely reg-
istered with respect to one another for both the experi-
mental and calculated results. The experimental curves
were aligned with the calculated curves by matching the
zero crossing in the M profile. Since both the calculated
and experimental M magnetization profiles have a steep
slope near M =0, alignment to a fraction of a pixel
width was possible.

The saturation magnetization was determined by
averaging the magnitude of the magnetization over the
entire image. The magnitude image is formed pixel by
pixel as ~M~ =(M„+M2)' . The same saturation mag-
netization value was used to normalize both the M and
M magnetization profiles. The error in the determina-
tion of the saturation magnetization was a function of the
incident-beam current, the intrinsic spin polarization of
the material being analyzed, and the number of data
points in the region being analyzed. The errors in deter-
mining this value were computed from the histogram of
the magnetization values from an image, and the results
are given in Table II.

The error limits in the micromagnetics simulations
were estimated in Secs. IIIB 1 and IIIB2. We allowed
for variation in the values of the bulk magnetic parame-
ters which entered into the calculations and the thickness
uncertainty for the Permalloy thin films. We found that
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TABLE II. Deviation in the measurement of the saturation
magnetization for all of the data taken with diA'erent electron-
probe currents.

Material

Fe
Fe
Permalloy
Permalloy
Permalloy
Permalloy
Permalloy
Permalloy
Permalloy
Permalloy

Thickness
(pm)

20.0
20.0
0.12
0.12
0.16
0.16
0.20
0.20
0.24
0.24

Beam current
I (nA)

0.3
1.6
0.3
1.6
0.6
1.6
0.6
1.6
0.6
1.6

+2.5
+1.3
+3.0
+1.8
+1.1
+1.4
+2.2
+1.4
+1.9
+ 1.0

the maximum deviation of the surface magnetization
profile, due to the variation in magnetic parameters, was
+5.0%, averaging +2.0% over the whole profile. We
also found that errors introduced by the grid density and
diseretization region could introduce rnaximurn devia-
tions of +5.0%, averaging +2.0% over the whole profile.
We calculate the total average variation due to errors in
the modeling by adding these two contributions in quad-
rature, yielding an average error of +2.8%. We choose
this very pessimistic value of the error due to uncertainty
in the parameters and grid in the modeling of 2.8%.

2. Statistical measures of agreement
between measurements and calculations

where e; is the ith residual and N is the total number of
points in the domain-wall magnetization profile. When
the residuals are small, the agreement between the model
and experimental data is good.

One statistical test for the agreement between a model
and experiment is the y test. The chi-squared statistic
y, is defined as follows:

X~=
NN —1,

where cr; is the estimated variance of the measured data
at x;. If the model exactly predicts the "infinite-data" ex-
perimental result, the chi-square statistic is one. When
y„is large, we reject the hypothesis that the model exact-
ly predicts what would be observed if an infinite amount
of data were taken. However, the y, statistic can be large
even if the difference between the model and infinite-data
experimental result is very small. For example, if the er-
rors in the data are small, but there exists one data point
which anomalously lies far from the model curve, the
chi-square statistic will be large. That is, the g„statistic

Here we compare how well our theoretical model
agrees with the data. For each value of position x;, let
the average magnetization measured along a profile be y;.
At x;, let the model prediction be y; . We write

y;=y;*+@; (for i =1,2, . . . , N),

R is defined to be the fraction of the variance of the data
explained by the theory, i.e., how well the theory predicts
the shape of the profiles in this case. Thus

g2 —
1 (y2 /02 (12)

where

~th N 1
X(K yi)
i=1

and R = 1 implies excellent correlation between the
theoretical model and measurements.

In Tables III and IV we summarize the results of
analyzing our Fe and Permalloy data with respect to the
statistical measures just described. In all eases we limited
the comparisons to the regions within the wall magneti-
zation profile. In Tables III and IV we list the number of
points in the wall profile itself, N, the rrns deviation o.,h,
the y„and R statistics. We differentiate the separate
data sets by the beam current used for the data acquisi-
tion. Separate entries are given for the M and M mag-
netization distributions, as well as comparisons to each of
the model calculations which were convolved with in-
cident probe-intensity distributions, identified by the
FWHM, for each of Figs. 12—16.

In the presence of sampling errors, if the same experi-
ment were repeated and the same amount of data were
collected, the new values of R and o.,h would surely
differ from what was computed in Tables III and IV. To
study how random sampling errors affect the precision of
our estimates for R and o.,h, we estimated confidence in-
tervals for both statistics using a bootstrap model. At
each value of x;, a bootstrap replication of y; is sirnulat-
ed. The kth bootstrap replication of y; is y "', where

(k) + {k)
i i i (13)

and e', ' is a random Gaussian with mean zero and vari-
ance equal to o; (the variance of y; that we compute from
the line-scan data).

For the kth bootstrap replication, root-mean-square er-
ror is

' 1/2

However, (o,h)'"' as defined is biased high. To correct
for the bias, we subtract as follows:

is a narrow test to determine if a model exactly fits the
data. Additionally, if measurement errors are large, i.e.,
o, is high, g„canbe low, even though the model may
disagree with the measured data. Thus g, is an ambigu-
ous statistic.

In contrast to the chi-squared statistic, we compute a
statistic R which measures how much of the variability
of the data is predicted by the model. R is an index of
the correlation. To compute R we must compare
root-mean-square (rms) deviations to the variance of the
data o dat h r

x
y (y, —(y))', (y) =—g y; .

N
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TABLE III. Summary of the data for Fe at various incident electron-probe currents for both com-
ponents M and M~ of the domain wall. N is the number of points in the profile, o.,h is the mean root-
mean-square deviation, and g, is the reduced chi-square and R is the r square correlations between the
measurement and theoretical profiles (convoluted with the measured probe function).

15

18

30

Beam current
(nA)

0.3

Ref. 53

1.6

Component

M
M
M
M
M

Probe size

(pm)

0.070
0.070
0.000
0.000
0.165
0.210
0.165
0.210

0.128
0.089
0.161
0.168
0.096
0.078
0.102
0.068

1.047
0.623
1.995
2.192
5.026
3.336
3.390
2.472

R

0.732
0.986
0.804
0.943
0.584
0.727
0.977
0.990

TABLE IV. Summary of the data for Permalloy at various incident electron-probe currents and film

thickness for both components M, and M~ of the domain wall. N is the number of points in the profile,
o.,h is the mean root-mean-square deviation, and g„is the reduced chi-square and R is the r-square
correlations between the measurement and theoretical profiles (convoluted with the measured probe
function).

46

13

37

23

58

Thickness
(pm)

0.12

0.12

0.16

0.16

0.20

0.20

0.24

0.24

Beam current
(nA)

0.3

1.6

0.6

0.6

1.6

0.6

1.6

Component

My

My

My

M

My

My

My

Probe size
(pm)

0.000
0.065
0.000
0.065
0.165
0.210
0.165
0.210
0.000
0.120
0.000
0.120
0.165
0.210
0.165
0.210
0.000
0.120
0.000
0.120
0.165
0.210
0.165
0.210
0.000
0.120
0.000
0.120
0.165
0.210
0.165
0.210

0.134
0.100
0.364
0.332
0.057
0.075
0.095
0.067
0.107
0.158
0.159
0.107
0.093
0.119
0.071
0.094
0.078
0.093
0.127
0.078
0.087
0.076
0.092
0.072
0.086
0.079
0.106
0.117
0.041
0.045
0.053
0.028

1.339
0.735
2.462
2.039
1.353
2.447
3.455
1.667
3.543
7.078

15.842
7.468
3.295
5.412
2.160
3.542
1.408
2.155
4.468
1.610
3.422
2.602
5.243
3.242
1.176
0.961
0.923
1 ~ 191
4.594
5.483
4.629
1.244

0.686
0.823
0.776
0.814
0.918
0.859
0.987
0.993
0.897
0.775
0.956
0.980
0.882
0.809
0.993
0.987
0.934
0.905
0.975
0.991
0,778
0.834
0.988
0.992
0.914
0.929
0.986
0.982
0.964
0.958
0.992
0.997
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TABLE V. Summary of the sensitivity analysis for the Fe data at various incident electron-probe
currents for both components M„and M of the domain wall. o,h is the mean root-mean-square devia-
tion, and R is the r-square correlation between the measurement and theoretical profiles (convoluted
with the measured probe function). The (5'Fo) and (95%) confidence intervals for these statistics are
given.

Beam current
(na)

0.3

Ref. 53

1.6

Component

M„
My
M
My
M

My

Probe size
(pm)

0.070
0.070
0.000
0.000
0.165
0.210
0.165
0.210

(5'Fo)

0.040
0.026
0.100
0.113
0.081
0.063
0.088
0.051

(95'Fo)

0.187
0.145
0.204
0.212
0.108
0.090
0.114
0.081

R
(5'Fo)

0.982
0.999
0.924
0.978
0.742
0.833
0.985
0.995

R
(95%)

0.512
0.964
0.734
0.912
0.487
0.673
0.973
0.987

TABLE VI. Summary of the sensitivity analysis for the Permalloy data at various incident electron-
probe currents for various film thicknesses for both components M and M~ of the domain wall. o-,h is
the mean root-mean-square deviation, and R is the r-square correlation between the measurement and
the theoretical profiles (convoluted with the measured probe function). The (5%%uo) and (95'Fo) confidence
intervals for these statistics are given.

Thickness
(pm)

Beam current
(nA) Component

Probe size
(pm) (5%) (95%)

R
(5%)

R
(95%%uo)

0.12

0.12

0.16

0.16

0.20

0.20

0.24

0.24

0.3

1.6

0.6

1.6

0.6

1.6

0.6

1.6

My

M

M

M

M

M

M

M

My

My

My

0.000
0.065
0.000
0.065
0.165
0.210
0.165
0.210
0.000
0.120
0.000
0.120
0.165
0.210
0.165
0.210
0.000
0.120
0.000
0.120
0.165
0.210
0.165
0.210
0.000
0.120
0.000
0.120
0.165
0.210
0.165
0.210

0.059
0.026
0.246
0.207
0.042
0.061
0.081
0.052
0.066
0.124
0.138
0.086
0.077
0.104
0.055
0.077
0.047
0.064
0.103
0.050
0.076
0.063
0.083
0.062
0.031
0.045
0.064
0.047
0.034
0.038
0.044
0.017

0.183
0.156
0.469
0.437
0.071
0.087
0.107
0.080
0.137
0.188
0.177
0.124
0.107
0.133
0.085
0.107
0.100
0.117
0.146
0.990
0.097
0.086
0.101
0.081
0.109
0.147
0.157
0.056
0.047
0.051
0.061
0.036

0.955
0.990
0.912
0.938
0.958
0.980
0.991
0.996
0.964
0.864
0.971
0.989
0.920
0.853
0.996
0.992
0.979
0.955
0.985
0.997
0.852
0.895
0.991
0.995
0.990
0.998
0.995
0.965
0.977
0.977
0.996
1.000

0.514
0.686
0.664
0.715
0.884
0.833
0.983
0.991
0.846
0.744
0.950
0.976
0.859
0.789
0.990
0.984
0.897
0.875
0.968
0.986
0.731
0.793
0.986
0.991
0.888
0.975
0.971
0.950
0.955
0.950
0.991
0.997
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N
(rr)(k)[(+y)I A)] 2 +tr2

i =1

1/2

(15)

The corrected root-mean-square deviation (o.,„)',"' is not
biased. By a similar method the variance of the kth
bootstrap replication of the data o.d„' is corrected for
bias.

As a caveat, we did not incorporate the variability in

M, into our bootstrap analysis. That is, we are studying
the effects of random sampling errors on o.,h and R as-
suming that M, is well determined. In fact, according to
Table II, M, is well determined to within a percent or
two for most cases. Hence, if this variability could be in-
corporated, the resultant confidence intervals for o.,h and
R would be slightly broader.

In Tables V and VI we present the results of this sensi-
tivity analysis and give confidence intervals for
o',h(5%,95%) and o,h(5%,95%). The confidence interval
indicates, for example, that the rms deviation of data, as
simulated with some given statistical variation, will agree
with a particular model within a o.,h given by the 5%
confidence value only 5% of the time, whereas the rr,

„

will be within the 95%%uo confidence value 95% of the time.
A 95% O,„confidence interval can serve as a conservative
estimate of the deviation of the data.

To illustrate how to interpret the information in Tables
III—VI, we examine the M profile taken with 1.6 nA of
current and a probe of 0.210 pm from Table III. We see
that the rms deviation of the data from the model is
0.078. The corresponding confidence intervals given in
Table V show that cr,h(5%) =0.063 and o,h(95%)
=0.090. Thus we see that the rms values simulated from
the data using the bootstrap algorithm are tightly distri-
buted about the measured rms value, as it should be given
the relatively small error bars on the data. We can see
that although our data had an rms deviation of 0.078, a
pessimistic value of the rms deviation (worst case essen-
tially) for data with statistics such as ours will only be
0.090. We emphasize how conservative this estimate is
by noting that the 95%%uo confidence intervals is equivalent
to setting error bars between two and three standard de-
viations.

The data in Figs. 12—15 indicate a clear qualitative
agreement between the SEMPA measurements of
surface-domain-wall profiles and the results of micromag-
netic theory using only bulk parameters. For most mea-
surements the g statistic for the deviation between the
experimental and calculated domain-wall profiles was be-
tween 1 and 2, as indicated in Tables III and IV. This in-
dicates that the agreement between the model and mea-
surements is statistically significant. The R statistic for
the deviation between the model and measurements was
mostly between 0.8 and 1. This indicates that the model
predicts the variability in the data accurately.

We summarize the results for Fe by concluding that
the total root-mean-square deviation of the measurements
from the model calculation is about 0.109 for our high-
resolution, low-current measurements, and about 0.073
for the high-current measurements, wh0re in each case
we have just averaged o.,h for M and M~ in Table III.
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x 0 4

~ M„

0.0
1.2
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0.0
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—1.2 —0.8 —0.4 0.0 0.4 0.8
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FIG. 17. (a) Permalloy data of Fig. 16(a) plotted vs the calcu-
lated magnetization convolved with the 0.110-pm probe [lower
solid curve in Fig. 16(a)]. A line-of-unity slope shown in the
figure indicates perfect agreement. (b) Permalloy data of Fig.
16(b) plotted vs the calculated magnetization convolved with
the 0.210-pm probe [lower solid curve in Fig. 16(b)].

The high-current measurements rely on knowing the de-
tails of the probe-intensity distribution. Pessimistic
values for the rms deviation for this data, as derived from
our sensitivity analysis, are given by the 95% confidence
level in the rms values. The maximum rms deviations are
0.187 and 0.108 for the low- and high-current cases, re-
spectively, as found in Table V.

The results for the Permalloy (Table IV) are very simi-
lar to those of the Fe. The rms deviation for the mea-
surements from the model calculations ranges between
about 0.10 and 0.125 for low-current measurements, and
between 0.05 and 0.09 for the high-current measure-
ments. Once again, the high-current measurements rely
implicitly on the confidence in assessing the probe-
intensity distribution. Pessimistic values for the rms de-
viation for this data as derived from our sensitivity
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FIG. 18. Residuals of the data from the calculated profiles
(lower curves) for the data of (a) Fig. 16(a) and (b) Fig. 16(b}, re-

spectivelyy.

analysis (Table VI) given by rms range between 0.05 and
0.10. The low-current measurements of the 0.12-pm-
thick Permally film are likely at the edge of our spatial
resolution capabilities.

We tested the micromagnetic model for the additional
effects of surface anisotropy. We found in Fe, for exam-
ple, that a surface anisotropy as high as 5.0 erg/cm
produced rms deviations in the surface-domain-wall mag-
netization profile of less than 0.01 from that calculated
without surface anisotropy. We therefore cannot experi-
mentally identify the significance of the role of surface
anisotropy in surface-domain-wall structure with our
data at the current signal-to-noise level. We note further
that the rms deviations in the surface-domain-wall profile
due to surface anisotropy are still less than those devia-
tions produced by varying the input parameters by
+5.0%. We conclude that the magnetic parameters will
additionally have to be known to much higher precision

before surface anisotropy effects on surface domain walls
can be investigated.

We present our data in two additional formats to illus-
trate the agreement between the model calculations and
measurements. In Figs. 17(a) and 17(b) we show the data
for the 0.24-pm-thick Permalloy film acquired at I=0.6
and 1.6 nA, respectively. The experimental data are plot-
ted on the vertical scale as a function of the calculated
values of the horizontal scale. Perfect agreement would
yield a straight line of slope 1 on each graph. Note that
the graphs have different vertical scales which reAect the
range of the magnetization values. The data are plotted
versus the theory convolved with the 0.110-pm-diam
probe in Fig. 17(a), and the theory convolved with the
0.210-pm-diam probe in Fig. 17(b). The solid straight
line is for perfect agreement. The agreement between the
model calculations and data are nicely displayed in this
format.

Finally, we search for patterns in the difference be-
tween the model and measurements. The residuals, i.e.,
e;, for data from the 0.24-pm-thick Permalloy film for
I=0.6 and 1.6 nA, are plotted in Figs. 18(a) and 18(b), re-
spectively. Interestingly, we can identify some correla-
tion in the rms deviation structure, most evident in Fig.
18(b) as "bumps" in the M deviations near x=0.2 pm.
By examining the original data in Fig. 16(b), we can see
that the deviations result from the waviness near the edge
of the domain wall. This waviness is present in several of
the other data sets, but is most evident in Fig. 16(b).
These waves are possibly the result of rippling within
the uniform domain adjacent to the domain wall. We
would require very good statistics to analyze such small
magnetization deviations systematically.

V. DISCUSSION

We have calculated and measured 180' surface-
domain-wall profiles in Fe and Permalloy. The agree-
ment between the micromagnetic simulations and mea-
sured profiles was quantitatively presented in Tables
III—VI and Figs. 12—18. We find very good agreement
using only bulk parameters in the calculations. An in-
teresting question is whether the agreement can be im-
proved by including explicitly surface parameters, for ex-
ample, a surface anisotropy. As we pointed out, by in-
cluding even a rather large surface anisotropy of 5
erg/cm in the calculation for the Fe surface-domain-wall
profile, the change in the rms deviation was less than
0.01. Basically, the surface anisotropy has only a very
small inAuence on the surface-domain-wall profile. In
fact, it is smaller than the present experimental uncer-
tainty and the uncertainty in the simulation caused by the
uncertainty in the input parameters.

These results indicate that bulk micromagnetic models
accurately predict the behavior of the magnetization in a
surface-domain-wall profile. The calculations further
give a "window" on the magnetization distribution in the
bulk which is not otherwise readily determined. In one
case where some experimental data was available, we
compared and found agreement between our micromag-
netic simulations and "bulk" asymmetric Bloch-wall
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widths measured by Lorentz microscopy for suSciently
thin Fe films. Our micromagnetic calculations with
periodic boundary conditions to simulate a bulk Bloch
wa11 in an infinite sample were shown to agree well with
the analytical solutions. For an infinite sample with cu-
bic anisotropy, the calculated 180' wall was found to
break into two 90' walls, as expected. Significantly, in a
realistic sample with a surface, the magnetostatic energy
at the surface was found to be sufficient, without intro-
ducing magnetostriction, to prevent the 180' wall from
breaking up. The calculations showed that the width of a
bulk Bloch wall is typically about half that of a surface
Neel wall.

The understanding of the behavior of domain walls
near the surface has interesting consequences for the ob-
servation of magnetic microstructure. By examining the
cross-sectional view of the calculated domain walls for Fe
and Permalloy shown in Figs. 5 and 10(a), respectively,
we can see the depth which the surface domain wall
penetrates into the bulk of the ferromagnet. For the
thick-film (crystal) case depicted for Fe, the penetration
depth is on the order of a Bloch-wall width. For thin
films such as the case depicted for Permalloy, the
penetration depth of the magnetic disturbance associated
with the surface is limited by the film thickness. For
films which are thinner than about three Bloch-wall
widths, which leads to asymmetric Bloch walls, the
penetration depth is about one-third of the film thickness.
For films which are thicker than three Bloch-wall widths,
the penetration into the bulk of the surface wall is fixed
to roughly one Bloch-wall width and does not further in-
crease with film thickness. Because of this relatively
large length scale over which changes in magnetic mi-
crostructure occur at the surface, there is no difference in
a surface-domain-wall profile measured by SEMPA with
a probing depth of about 1 nm and that measured with
the magneto-optic Kerr effect with a probing depth of
about 15 nm beyond, of course, the difference in lateral
spatial resolution of the techniques. This has been
confirmed experimentally in the observation of domain
walls in thin Permalloy films. For very "hard" magnet-
ic materials, that is, with high anisotropy, the Bloch-wall
width could be very narrow, and some differences be-
tween SEMPA and Kerr measurements would be expect-
ed owing to their different probing depths. However, a
surface-domain-wall profile of such a material would be
beyond the resolution of a Kerr measurement, and so, in
practice, our assertion about the similarity of the results
of the two techniques holds.

Whereas magnetic microstructure changes occur on a
I

length scale of approximately a Bloch-wall width, we not-
ed in the Introduction other measurements for which
changes are observed in the outer atomic layer or two.
This difference in length scale is a distinctive feature dis-
tinguishing surface magnetic microstructure from some
other surface phenomena. The temperature dependence
of surface magnetism is different from the bulk ' be-
cause the spin waves giving rise to the low-temperature
spin deviations have different boundary conditions at the
surface. Also, there is the additional effect of a softened
exchange coupling of the outer layer to the bulk.
Surface hysteresis curves different from the bulk have
been attributed to domain nucleation sites in the surface
layers. Increased magnetic moments at the surface
have as their origin the lower coordination of the outer
layer of atoms. Each of these effects is directly related
to some differences in the outer atomic layer. In contrast,
magnetic microstructure is inAuenced by the surface pri-
marily through the long-ranged magnetostatic interaction
and changes in domains, and domain walls take place
over a longer length scale.

In summary, a quantitative comparison between
surface-domain-wall profiles measured by SEMPA and
calculated using bulk magnetic parameters has been
presented. The excellent agreement gives us confidence
in the calculations which have provided further insight
into the transition of domain-wall structure that takes
place between the surface and bulk.
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APPENDIX

We include explicit expressions in this appendix for the
energy and effective-field terms used in our micromagnet-
ic simulations. The square discretized elements have
edge length 6, and the ordering scheme is shown in Fig.
4. The (nearest-neighbor) exchange energy is given by

N +2N +1
E,„=22g g [1 a(J,I) a(J+1,I)—]+22

N N+1
[1 a( J,I) a( J,I + 1)—]

I=1 J=1 I=2
N +1

+43 $ [2—a(J, 1) a(J, 2) a(J,N, + 1).a(J,S,+2)]—. (A 1)

In the absence of surface anisotropy, the last term would be 0, but in the presence of surface anisotropy
mX [BEk, /Bz —(2A /M, )BM/Bz]=0, and the last term in (Al) is nonvanishing. The eff'ective magnetic field at loca-
tion (J,I) due to exchange is given by the Laplacian for a square mesh as
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H,„=[22/M, A )][x[a(J+1,I)+a(J —1,I)+a(J I +1)+a(J,I —1) —4a(J, I))
+z[y(J+1,I)+y(J —1,I)+y(J,I+1)+y(J,I —1)—4y(J, I)]j . (A2)

The magnetocrystalline anisotropy energies and effective fields for uniaxial symmetry (easy axis in y) and cubic sym-
metry, respectively, are given by

N +1N +1
Ex„=g g 6 [K„,[1 f3(J—, I) ]+K„~[1—P(J, I) ] j,

I=2 J=2

H „=2K„,(1/M, )yP(J, I)[1+2(K„/K„,) [1 P(J,I—)]j,
N +1 N„+1

Ez, = g g 6 [K,&[a(J,I) P(J,I) +P(J,I) y(J, I) +y(J, I) a(J, I) ]+K,za(J, I) P(J,I) y(J, I) j,

(A3)

(A4)

(A5)

Hx., = —2K„(1/M,)(x[a(J I)[P(J I) +y(J I) +(K,~/K„)P(JI) y(J, I) ] j

+y[P(J, I)[a(J,I) +y(J, I) +(K,z/K, i)a(J, I) y(J, I) ] j

+z [ y ( J,I)[a(J,I) +P(J,I) + (K,q/K, i )a(J,I) P(J,I) ] j ),
N +1

Ez, = g (K, &h/2)[y(J;1) +y(J, IiI, +2) ]+(K,zb, /2)[a(J, 1)P(J, 1)+a(J,X, +2)P(J, IiI, +2)],
J=2

H~, = —zK„y(J,I)/b, —(K,~/2b, )[xP(J,I)+ya(J, I)] .

(A6)

(AS)

The effective fields for the surface anisotropy are evaluated at I=2 or N, +2 only.
The expressions for the self-energy are derived from integrating the total energy due to all of the effective magnetic

charges in the wall region. We use the formulation for the magnetostatic self-energy as derived by Laaonte. " The
magnetostatic energy can be determined from the following expression:

E, =—' fp, p&G (r& ~r, )dr . (A9)

The magnetic charge densities p, and p& result from a divergence in the magnetization at the source s and field f points,
respectively. G(r&jr, ) is the Green s function for the sealer potential, which for our two-dimensional formulation is
given by —ln(r& —r, ) . dr is the infinitesimal volume of the appropriate dimension. The effective charge densities in
this numerical formulation mill be isolated at the boundaries of the magnetic elements of the grid in Fig. 4. This is a
boundary element approach.

We will consider two separate formulations for the magnetic self-energy. The first formulation is applicable for sys-
tems where the boundary conditions have the magnetization oriented in the y direction and for films with two surfaces.
In this "cubic" formulation, we determine the effective charges on the boundaries of each magnetic subelement in the
grid. The magnetic charge is p=M. n, where n is the outward facing normal of each cubic subelement. The energy can
be expressed as a double sum over the grid subelements as follows:

~2g2 N +1N +1N +1N +1

[ 3 (K,L)[a(J„I,)a(J/, II ) y(J„I,)y(J& If)]-
I~=2 J~=2 I, =2 J =2

+C (K,L)[a(J„I,)y(J/, II ) —y(J„I,)a( J~,II ) ] j (A 10)

The coupling constants A (K,L) and C(K,L) originally given by LaBonte" are integrals over the Green's functions
summed over all of the faces of the two cubes and depend only on the distance between the subelements in the grid,
K =J, —J& and L =I, —I&. The coupling coefficients are given explicitly as follows:"

3 (K,L)=I, (K —1,L —1)—2I, (K,L —1)+I,(K+1,L —1)—2I, (K —1,L)+4I, (K,L) 2I, (K+1,L)—
+I, (K —1,L +1)—2I, (K,L +1)+I,(K+1,L +1),

C(K,L) =I~(K —1,L —1) 2Iq(K, L —1)+I~(K +—1,L —1)—2I~(K —1,L)+4Iq(K, L) 2Iq(K +1,L)—
+ Iq(K —1,L + 1) 2Iq(K, L + 1)+I~—(K + 1,L + 1),

I, (K,L)= —,'(L —K )ln(L +K )+2KL tan '(L/K),

Iz(K, L)=KL ln(L +K )+(K L~)t na'(L/K) . —

(A 1 1)

(A13)

(A14)

lt can be recognized that the integrals Ii and Iz (LaBonte's" Gi and Gz) are symmetric and antisymmetric, respective-
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ly, with respect to changing sign on K or L, that is, A (K,L)= A ( K—,L)= 3 (K, L—)= A ( K—, L—) and
C(K,L)= —C( K—,L)= —C(K, L—)=C( —K, L—). The magnetostatic self energy for a cell on itself can be deter-
mined by examining the coupling coefficients when K and L are zero. The self-energy of a single cell on itself is
7rM, b, (n +y ). An alternative representation for this self-energy which incorporates the constraint equation
~a(r)

~

=1 is ~M, 6 (1—13 ). LaBonte" discusses the interpretation of these alternative representations, although the
real effective fields for integrating the Landau-Lifshitz-Gilbert equation must be derived from the original energy ex-
pression mM, b, (a +y ).

The effective fields resulting from the magnetostatic self-energy take the following form:

N +1N +1
H, = —M, g g x[3 (K,L)a(J,I)+C(K,L)y(J, I)]+zt —2 (K,L)y(J, I)+C(K,L)a(J,I)] .

I =2 J=2

Alternatively, if the I =J term is removed from the above sum, then an effective field in the y direction can be included
in the energy minimization as

H, ( self ) =2rrM, y13(J,I), (A16)

where it is understood that this substitution is only appropriate for the energy-minimization method. It is attractive
here because the energy-minimization problem becomes more stable numerically when formulated in this manner.

The second formulation for the magnetic self-energy can be used for cases where the boundary conditions force the
magnetization to be along a direction other than along y and for cases where infinite or bounded crystals are to be ex-
amined. This is the "interface" formulation. Here we consider the source of the magnetic charge at the interfaces to be
the difference in M between two neighboring subelements. Thus the charge on the interface between M(J, I) and
M(J —1,I) is a;(J,I)=a(J, I)—a(J —1,I). The expression for the self-energy in this formulation is given as

N +1N +1N +2N +2
E, = g g g g I 2 (K,L)a, (J„I,)a(Jf, If)+ A, (K,L)y, (J„I,)y(Jf, If)

If =2 Jf =2 I, =2 J, =2

+C„,( K,L )a,. (J, ,I, )y (J„I, )y (Jf,If ) +C,„(K,L )y, (J„I, )a(Jf, If ) ] (A17)

The "interface" coupling coefficients are given explicitly as follows, where K and L are as defined above:

A„(K,L)= Ii (K,L —1)+—Ii (K+1,L —1)+2I, (K,L) —2Ii (K+1,L) Ii (K,L +1)+—Ii (K+1,L +1), (A18)

A, (K, L) = I„(K—1, 'L)+2I—„(K,L) I~, (K +1,L)—
+Ii, (K —1,L +1)—2I„(K,L +1)+I„(K+1,L +1), (A19)

C, (K,L)= I2„,(K —1,L—)+2I2, (K,L)—I2, (K + 1,L)

+I~„(K—1,L + 1) 2I2„,(K,L + 1—)+I~„,(K +1,L + 1), (A20)

C, (K,L)= I2„,(K,L —1)—+I2„,(K + 1,L —1)+2I2,(K,L)—2I2„,(K + 1,L) I2, (K,L + 1)—+I2, (K + 1,L + 1),
(A21)

I& (K,L)=—,'(L —K )ln(L +K )+2KL tan '(L/K) —3L /2,

I„(K,L)= —,'(K L)ln(L +K )+—2KL tan '(K/L) —3K /2,

I2, (K,L)=KL ln(L +K )+K tan '(L/K)+L tan '(K/L) —3KL .

(A22)

(A23)

(A24)

Special care should be taken at the surfaces for the periodic boundary condition case (where the top layer of pixels,
I=2, is equated with the bottom layer of pixels, I =X,+1, and no surface pixels, I= 1, N, +2, are allowed), where the
contribution to the self-energy due to the top and bottom surfaces must to be subtracted. The effective magnetic field
for this formulation is explicitly

N +1N +1
H, =M, g g x[A„(K,L)a, (J I)+C, (K,L)y;(J I)]+z[A,(K,L)y, (J I)+C, (K,L)a;(J I)] .

I=2 J=2
(A25)
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Finally, the energy and effective-field contributions due to external fields Ho=(HO, HO~, Ho, ) are given as

N +1N +1

Eh = —M, h g g Ho, ct(J, I)+Ho P(I,J)+Ho, y(J, I),
I=2 J=2

H& =XHP&+&HOy+Z~Oz .

(A26)

(A27)
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