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Spontaneous dimerization in quantum-spin chains
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A bosonic approach allowing one to detect a region of a spontaneously dimerized phase in an
S= 1 quantum-spin chain and to develop the critical theories on both phase boundaries is presented.
The results obtained agree, in general, with the field-theoretical predictions involving the W'ess-

Zumino-Wit ten nonlinear cr model.

I. INTRODUCTION

In the past decade there has been considerable interest
in the study of various properties of quantum-spin chains.
This interest was, to a great extent, initiated by the intri-
guing conjecture made by Haldane' that the ground state
of Heisenberg antiferromagnets with interaction between
nearest neighbors depends crucially on the parity of 2S:
for integer S, quantum fluctuations completely restore
the symmetry so that the paramagnetic state remains
stable at zero temperature as well (and since no symmetry
is broken the excitations have a finite gap), while, for
half-integer S, the orientational ordering (implying the
existence of gapless excitations) survives at T =0.

A large amount of efFort undertaken just after the ap-
pearance of Haldan's paper allowed a number of argu-
ments supporting the conjecture to be found. First of all,
the difference between integer and half-integer S (more
precisely, between S =

—,
' and 1) is now clearly seen in nu-

merical experiments for chains of length up to L =32.
The estimated value of the gap for S =1 is about 0.4 J.
Moreover, the paramagnetic singlet ground state with a
finite gap for excitations was recently observed in a rather
isotropic and very one-dimensional (1D) S =1 antifer-
romagnet Ni(C2HsN2)2NOzC104.

From the theoretical point of view, the first question to
be answered is which part of the Haldane conjecture is
more unexpected, or, equivalently, what is necessary to
prove. Really, the naive treatment of a 1D antiferromag-
net immediately leads to a theory of the three-component
unit vector of antiferromagnetism, n(t, x), with the La-
grangian

L= 8 nB"n .1

2 P

But this 0(3) cr model in 1+ 1 dimensions was solved ex-
actly and the expected result is that fIuctuations com-
pletely restore the symmetry, thus producing a mass gap

2"
exp( —2m. /g) .

g

According to Affleck, "from this perspective what is
more difficult to understand is what was previously taken
for granted: the non-existence of a gap for half-integer
S."

The first attempts in this direction had a goal to im-
prove the mapping of the quantum antiferromagnetic
spin chain onto the 0(3) nonlinear o model. " As a
main discovery, it was established that since the descrip-
tion in terms of the unit vector of antiferromagnetism im-
plies the doubling of the unit cell, then the none-
quivalence of the effective distance between neighbors (it
is zero or twice the interatomic spacing) ensures an addi-
tional so-called 8 term to appear in the long-wavelength
action. Roughly speaking, this term retains a memory
about the parity of the site spins since, after doubling,
one deals only with the total spin of a pair which is al-
ways an integer. This additional term, which enters into
the Euclidean action with the coefficient i 8, where
8=2trS, is the integer-valued topological charge (a wind-
ing number, measuring the degree of mapping of the or-
der parameter space S2 onto the real space S2). Evident-
ly, it plays no role for integer S and does not distinguish
between various half-integer spin values (at least for large
S since, strictly speaking, the mapping is valid only for
S))1). It was argued ' that this term, although it is a
total derivative and, hence, does not appear in the pertur-
bation theory, may stop the increase of the coupling con-
stant g at the scales when g (initially small for S ))1) be-
comes of the order of unity and nontrivial configurations
with nonzero topological charge begin to inhuence the /3

function. Strictly speaking, the only thing clearly seen
from this approach is that the behavior of all Heisenberg
antiferromagnets with difI'erent half-integer spin values is
universal, at least for large S.

The lack of knowledge of the properties of the o. model
with 8=~ forced one to look for other approaches which
could clarify the situation. The first step in this direction
was made by Lieb and Aleck. ' They extended the old
S=—,

' result of Lieb, Shultz, and Mattis' to higher values
of S and proved exactly that the ground state of any
half-integral spin system with a translationally and rota-
tionally invariant Hamiltonian is either degenerate or has
a zero gap for excitations. Later Aleck et al. ' exactly
solved (after having reformulated the problem in terms of
valence bonds) the S = 1 model with both bilinear and bi-
quadratic interactions present and with the ratio of ex-
change integrals J and J' (both positive), J'/J =

—,'. It was
rigorously proved (see also Ref. 17) that the ground state
is really nondegenerate, all excitations have finite gaps,
and the spin-spin correlation function decays exponen-
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tially. Since there are absolutely no reasons to expect any
principle difference between the model solved and the
purely Heisenberg one (except for some fine details, see
Ref. g), then, from the formal point of view, these two re-
sults can be considered as a direct proof of the Haldane
conjecture.

But apart from the initial discussion on the Heisenberg
systems there are another questions to be answered in or-
der to understand the T =0 properties of the spin chains.
Really, for any value of S independently of its parity, a
gapless Bethe ansatz solvable "antiferromagnetic" model
is known. ' ' This family of models includes the Heisen-
berg one for S = 1/2. Although for general S these mod-
els are only the special points in the space of parameters
of the generic spin S nearest-neighbor exchange Hamil-
tonians which, we recall, are the polynomials of the order
of 2S, the existence of massless excitations for integer S
needs to be explained since it seems to contradict the
mapping onto the o. model with the 8 term. Formally,
this mapping is unsensitive to the switching of the poly-
nomial interactions. '

The explanation based on the field-theory approach
was given by Aleck and Haldane. They claimed that
the integrable models represent the special multicritical
transition points into the spontaneously dimerized phase
where the symmetry with respect to translations by one
site is spontaneously broken. These unusual ground
states are definitely known to exist in some 1D systems. '

Roughly speaking, the possibility of the ground state to
be dimerized comes from the fact that a separate pair of
spins with antiferromagnetic interaction tends to form a
spin singlet. Corresponding1y, if to combine each spin on
an even site with its right (or left) neighbor and to first re-
strict only with the interactions inside the pairs, then the
(twofold degenerate) ground state will be a product of
noninteracting singlets. Note that this ground state is or-
dered: the order parameter + can be defined as

(s,. s,„—s, s, , )=(—I)'e.
The switching of the interactions between pairs gives rise
to the zero-point fluctuations which tend to destroy
long-range dimer order. However, in some part of a
phase diagram the ordering can survive even in the limit
of a translationally invariant interaction.

A foregoing discussion will be focused on the case of
S =1. The most general Hamiltonian contains the bilin-
ear and biquadratic products of nearest neighbors and
can be parameterized by a single parameter y:

SPI N

FERROMAGNET NEMATI C ANTI FERROMAGNET

5~r4 3n Z2 7'/4

FIG. 1. "Classical" phase diagram of the generic S = I model
(1) for m & y & 2~ (Refs. 23 and 24). The ferromagnetic
(y & 5~/4) and antiferromagnetic (y & 3m/2) phases are separat-
ed by the intermediate spin nematic phase with quadruple or-
dering (shown hatched). y=7~/4 is a Bethe ansatz solvable
point.

but with the quadrupolar ordering (S„)
(S2)~(S2) 23, 24

V Z

In one dimension the classical phase diagram is no
longer correct in all regions except the ferromagnetic
one: fluctuations restore the continuous symmetry. This
happens both in the antiferromagnetic phase (as a realiza-
tion of the Haldane conjecture, hereafter I wi11 refer to
this phase as a Haldane one) and in the quantum version
of the spin nematic phase. The point, however, is that
these two disordered ground states are quali tati Uely

different Rough. ly speaking, the Haldane phase involves
the states of a given pair with the total spin M =0 and
1, ' while the spin nematic phase is formed by the states
with M =0 and 2. To make this statement more pre-
cise, it is worth noticing that the topological "long-range
order" in the string correlation function

shown by Girvin and Arovas to be present in the Hal-
dane phase does not exist in the spin nematic phase.
Moreover, there is no doubling in the spin nematic state
(nematic ordering arises on each site) and, hence, the cor-
responding long-wavelength action does not contain the
topological 8 term. Thus, these two different disordered
states must be separated by an intermediate phase, which
was predicted by Aleck and Haldane to be a dimerized
one and to merge with the Haldane phase exactly at the
integrable point y =7'/4.

AfBeck and Haldane also resolved an apparent con-
tradiction between the Bethe ansatz solution for y =7m/4
and the mapping onto the o. model with the 6 term by
claiming that the transition to dimerization is governed
exactly by the softening of longitudinal fiuctuations of
what was usually referred to as a "unit" vector of antifer-
romagnetism n:

H = gcosyst St+, +siny(S, St+, ) L L=S2t S2I+ &23/S (S + 1 )
(2)

where O~y ~2m. For y=0 and m it reduces to the usual
Heisenberg antiferromagnet and ferromagnet, corre-
spondingly. Below only the lower half-circle ~(y (2~
will be considered. The integrable point mentioned above
corresponds to y =7m/4 (Fig. 1).

I start with the classical phase diagram of (1). It con-
sists of three phases: the ferromagnetic phase, which is
stable at y (5'/4, the antiferromagnetic one, stable at
y &3m/2, and the intermediate so-called spin nematic
phase with unbroken time-reversal symmetry (S)=0,

These fluctuations exist since the total spin of a pair may
have different values. Correspondingly, just at the transi-
tion point, the order-parameter space is isomorphic to
SU(2), not to S2 as inside the Haldane phase. By making
use of the knowledge of which Lagrangian describes the
conformally invariant SU(2) models, Afileck and Haldane
predicted the critical theory at y=7m/4 to be given by
the k =2 (or, generally, k =2S) SU(2) Wess-Zumino-
Witten model (this proposal was originally formulated in
Ref. 27). The shifting from the transition point was
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shown to lead to dimerization or to generate a gap in the
longitudinal component of the SU(2) matrix (which plays
the role of a "unit vector" in the group manifold) which
reduces the order parameter space to a surface of a unit
sphere S2 and converts the Wess-Zumino term into the 6
term of the o. model.

The calculation of the zero-temperature susceptibility
and specific heat on the basis of the field-theoretical ap-
proach lead to the same results as were obtained from the
Bethe ansatz solution. Moreover, recently the prediction
of dimerization at y) 7~/4 was confirmed both by nu-
merical experiments and by an exact solution of the
purely biquadratic model (y =3'/4).

The location of the other boundary of the dimerized
phase is not known exactly. Solyom proposed this
phase to be the only intermediate state between the fer-
romagnetic and Haldane phases. In my opinion, this is
very unlikely since completely different symmetries are
broken in dimerized and ferromagnetic phases and there
are absolutely no reasons to expect a direct transition be-
tween them to occur. In a recent paper, I have investi-
gated quantum fluctuations in the spin nematic phase in
the vicinity of the ferromagnetic liability point y =5~/4,
and did not find any trails of instability which might lead
to a spontaneous dimerization.

In this article I want to reexamine this issue. I will
make use of a direct transformation of spin operators to
bosons, suitable to a dimerized state. The standard per-
turbative analysis of the bosonic version of the original
spin Hamiltonian will allow one to detect a stability re-
gion of the spontaneously dimerized phase in the S =1
generalized translationally invariant spin chain (1) and
also in the presence of the imposed staggered interac-
tions. My second aim is to point directly on the mecha-
nism which makes the theory critical at the phase boun-
daries. It is worth noticing that, in the field-theoretical
approach to the problem, the additional Wess-Zumino
term producing a fixed point of the renormalization-
group equations at @=7m/4 was introduced by hands
namely in order to manifest the conformal invariance.

The paper is organized as follows. I wi11 begin, in Sec.
II, with the transformation which allows one to construct
a bosonic version of the S =1 Hamiltonian supposing the
ground state is spontaneously dimerized. In Sec. III the
results of the mapping will be presented and the liability
lines of the dimerized state as functions of the strength of
the staggered interaction will be determined by restrict-
ing with only quadratic-order terms in bosons, i.e., in the
"spin-wave" approximation. Next, in Sec. IV, I will con-
struct the critical theory on the boundaries and present
the arguments favoring that one of the "spin-wave" tran-
sition lines, ending at the integrable point y =7~/4, is an
exact one. The one-loop renormalization-group equation
with a nontrivia1 fixed point present will be derived,
though, to some extent, approximately. Finally, Sec. V is
devoted to the discussion of the results.

II. BOSONIZATION FOR THE DIMERIZED PHASE

The standard way to bosonize the antiferromagnetic
quantum-spin chain is to presume the existence of a

short-range Neel order and to introduce two types of bo-
sons via the Dyson-Maleev transformation (the latter is
more convenient for the isotropic antiferromagnets then
the Holstein-Primakoff one). In principle, this procedure
is exact at zero temperature. In the leading order in
1/S when only quadratic terms in the boson operators
are retained, the excitations obtained via the diagoniliza-
tion of the quadratic form are two identical gapless
(linear in k) spin-wave modes, which evidently corre-
spond to the transverse fluctuations of the vector of anti
ferromagnetism L. Meanwhile, as was already mentioned
in the Introduction, the transition to dimerization is
governed by the softening of the longitudinal fluctuations
of L, —the collective excitations in the framework of the
Dyson-Maleev formalism. Thus, the dimerized state
can be identified as a state with a finite condensate of col-
lective excitations, which by no doubts makes the stan-
dard approach very inconvenient.

Instead, I will take advantage of the fact that, up to
zero-point fluctuations, the dimer state is constructed
from the singlet configurations of the pairs of neighboring
spins and will link first a total spin of each pair with bo-
sons. Since the aim is to find a stability region of the
dimerized phase, it is convenient to introduce a separate
boson for each excited state of a given pair. The realiza-
tion of this procedure is elementary: the total spin of a
pair

M( —S2(+S2(+

is expressed as

Ml'=altal bl bl+e—ltel qltql+2(d—l dl tl tl ), —

Ml+ =(Ml )' =+2[al cl cl bl —v'2(—dl el —
ql tl )

+&3(eltfl fltql )] . —

(3)

(4)

The analogous transformation for S =1/2 was presented
in Ref. 40.

By definition, the physical states correspond to a vacu-
um state and to eight states with only one boson excited.
The excitations created by a, b, and c correspond to
M=1 and M'=1, —1 and 0, correspondingly, while
those created by e, q, ,f, d, and t represent five different
states of M =2. One can make sure that all the commu-
tation relations [M, ,M ]=ie, „M„,[L, ,LJ ]=ie; k.Mk, .

The analogous transformation for L is slightly more
complicated:

Ll'= —[&8/3(cl U, + Ulcl )+(2/'&3)(cl fl +fl cl )

+a l el +el a l + 'ql b l +b l 'ql ]

Ll =(Ll )*=&2[&8/3(al Ul+ Ulbl)

—(1/V'3)(f, b, +a, f, )

+(eltcl+cl ql ) &2(dl al+—bl tl )],
where

Ul = [1—(al al +bl bl +cl cl +el el +ql ql
2=

+fl fl+dl dl+tl tl)] .
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[M;,LJ ]=ie~/, L/, together with the constraint

M +L =45(S+1)=8
are satisfied in a physical subspace. Moreover, as the ma-
trix elements between physical and nonphysical sub-
spaces are equal to zero, the transformation is exact at
zero temperature just as the Holstein-Primakoff transfor-
mation for S =

—,'.
In order to map the initial spin-chain Hamiltonian

onto the system of interacting bosonic fields, one must
break a chain into pairs and link both spins of a separate
pair with the same bosons according to

S2/ =(M/+ L/)/2, S2/+, = (M/ —L/)/2 . (6)

A resulting bosonic Hamiltonian consists of two parts.
The first represents an "on-site" interaction S2I.S2I+, and
is diagonal and quadratic in boson operators. In con-
trast, the second part —the bosonic version of
S2& S21,—represents the interaction between bosonic
fields in different points (with the lattice spacing twice the
interatomic distance) and gives rise to the zero-point vi-
brations.

III. "SPIN-WAVE" THEORY
FOR THE DIMERIZED PHASE

I start with the modified version of (1) which also in-
cludes staggered interaction (0 & 5 & 1):

H =cosy g (S2/. S2/+/+5S~/. S2/, )

and

H2 = g (e/, e„+q/,q/, +f/ f/, +d/, d/, + t/, t/, )
k

25X 3 cosy —siny vk

+ [d/: t —g +dg t —g +e /; q —
/&
+ e/& q —/I.,

+ l(f/'f'-/+f/, f /, ))5v/,-(2 siny/3) (9)

1/2

eI,
' =cosy(1 —3 tany) 1 —

v/,
(/) 45(2 —tany )" 3(1—3 tany)

(10)

e/,
'= —3 cosy(tany —1) 1 —

v/,
(2)— 45 tany

9( tany —1 )

Here vk =cos2ka.
Note that, in spite of the apparent breaking of the

reflection symmetry (the spin on the right of a given pair
interacts only with the spin on the left of the neighboring
pair), the bosonic Hamiltonian is invariant under the re-
placement k -=---- —k in contrast to the case of Heisenberg
antiferromagnetic where the odd in k terms were respon-
sible for the appearance of the 8 term in the effective ac-
tion. "

The diagonalization of the quadratic form gives two
branches of excitations, threefold degenerate and fivefold
degenerate, correspondingly:

+siny g [(S~/ S~/+, ) +5(S~/. S~/ /) ) . (7)

H =H)+H2,
where

II/ = g (a/, a/, +b/, b/, +c/, c/, ) cosy 1—45

k 3

25—slny 3 — vk

+[a/, b k+akb / + , (c/, c ~+cue / )]—
X [5v/, (2 siny —4 cosy)/3] (8)

The translationally invariant Hamiltonian (1) is a special
version of (7) with 5=1, while for 5=0 the spin-chain
model evidently breaks into a set of separate noninteract-
ing pairs. In the latter case the dimerized state is obvi-
ously favorable at 5m. /4~y ~tan '

—,'. The nonzero 5
gives rise to the interaction between different pairs and
evidently diminishes the stability region of the dimerized
phase. In order to find the phase boundaries as functions
of 5, I will make use of transformations (4)—(6) and map
the original model onto the system of eight interacting
bosonic fields.

To quadratic order in the bosonic operators and after
the transition to momentum space, the Hamiltonian
reads

The demand of both energies to be positive immediately
gives a stability region of the dimerized phase as an inter-
val

y& —y —yz ~

where

y, =++tan '(1 —45/9)

ye=tan '[(1—85/3)/(3 —45/3)] .

(12)

(13)

At 5=0, y& =5~/4 and y2=tan '
—,', as expected. For

nonzero 5 the stability interval diminishes due to quan-
tum fluctuations but remains Pnite even in the limiting
case of the translationally invariant Hamiltonian (5=1)
when the dimer order arises as a result of a spontaneous
symmetry breaking (Fig. 2). In the latter case
y&=m. +tan ' —', , while y2= —~/4, which is exactly the
Bethe ansatz solvable point.

The dashed line with the error bars in Fig. 2 represents
the results of numerical calculations of Singh and Cxel-
fand. The agreement with the present results is rather
good, though the theoretical curve (13) is situated slightly
lower.

One may ask what the accuracy of the results obtained
is since the anharrnonic corrections are by no means
small even in the limit of small 5. In order to answer to
this question I now pass to the anharmonic terms.
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number of anharmonic terms. Nevertheless, I believe
that the qualitatively correct critical behavior can be ob-
tained if one proposes that the density of quasiparticles is
small and restricts with the lowest-order anharmonic
terms. Namely, I will show that the competition between
cubic and quartic anharmonisms produces a fixed point
in the one-loop approximation.

The cubic anharmonisms H3 come from the L&.MI+&
interaction. When rewritten in terms of the operators of
quasiparticles and in the limit of small momenta, H3
reads ( 1 = k „etc., k;:—2k;a)

FIG. 2. T =0 quantum phase diagram in the y, 5 plane of the
modified S =1 model (7). Two different disordered phases, 1D
versions of antiferromagnetic and spin nematic states, are
separated by the dimer phase with broken translational symme-
try. The phase boundaries are calculated in the "spin-wave" ap-
proximation. The anharmonic corrections are believed not to
shift the boundary line ending at the Bethe ansatz solvable point
y=7~/4. The dashed line is a result of numerical calculations
of Ref. 30. where

x(f,~
—f23 —f„)]+H.c. ,

H3 =iJ/4 + (Ik, k2k3 ~ )'

+(r )m 2r3+p3mpp) )

(17)

IV. CRITICAL THEORIES
FOR THE PHASE BOUNDARIES

H= Jg E(pkkpk+rkrk ™kmk),—(1)

k

(14)

where 7=cosy(l —3tany)/&2 and the spin-wave spec-
trum

E (1)—Q2( 1 )1/2
k +k (15)

I will start with the phase boundary y2(5) ending at
the integrable point y=7m/4, where a triplet of M=1
excitations undergo softening at k =0. Since, from the
technical point of view, it is simpler not to deal with the
particles-bosons but with the quasiparticles, I will begin
with a diagonalization of the quadratic form. As usual,
this procedure forces one to restrict only with the vertices
on resonance.

After a Bogoliubov transformation, the quadratic part
of the Hamiltonian takes the form dg

(g )= =g /2' .
d ln(1/k)

(18)

If this was the only contribution to the one-loop /3 func-
tion, then fluctuations would generate a mass dynamical-
ly and, hence, destroy the phase boundary. However, the
bo sonic Hamiltonian contains fourfold anharmonisms
which are also quadratic in gradients. I will propose (and

f;, =
I k; I k, —Ik) I k;,

and the bare value of the coupling constant g is
g =(—32&2)' (the normalization was chosen to obtain a
correct one-loop /3 function). One can see that the anhar-
monic terms of H3 fit the Adler principle and thus do not
shift the "spin-wave" critical line y2(5). Note also that
the bare coupling g remains unchanged along the phase
boundary.

As it is obvious for isotropic systems in one dimension,
the coupling constant grows logarithmically in passing to
larger scales. In a one-loop approximation, the renormal-
ization of g is given by the diagrams of Fig. 3. The result
1s

is linear in k at small momenta.
The new boson operators of quasiparticles are linked

with the initial ones by the canonical transformation

+k k(pk +xkr —k )

bk lk(rk +Xkp —k )

ck k™k+xkm—k)

where

lk =II+(1—vk)'~ ](1—vk) '~4/2,
1/2

Xk =
2 —vk+ 2~1—vk

In principle, the square root in (5) generates an infinite

FIG. 3. The on-loop coupling constant g renormalization due
to cubic anharmonisms. Solid, dashed, and wavy lines represent
m, p, are r bosons, correspondingly.
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then will confirm by calculations) that the most impor-
tant parts of the fourfold vertices are those containing the
scalar products of two momenta. Consider first the case
of a purely bilinear interaction, y=o (i.e., 5= —', ). One
can make sure that, after a transformation to quasiparti-
cles, the contributions of interest coming from different
particle-particle interaction terms cancel each other.
However, this turns out to be a property of a bare theory
only. A way to see this is to consider one of the fourfold
terms, say m, m zr3p4, and to insert two different coupling
constants, g& and g2, for positive and negative contribu-
tions with the scalar products. Namely,

&2 1

x[g, (/k, //a, f

—I,k, )

+g, (/k, /[k, +u, k, )j

X m &m 2r3P4 . (19)

In a bare theory, g& =gz= —', and the scalar product
disappears from (19). Meanwhile, in the one-loop renor-
malization, when only two fourfold terms are involved,

gi does not change while g2 diminishes according to
g~ = gz &8' —just as the current-current interaction
term in the field-theoretical approach to the problem.
It is thus natural to assume that, at large scales, g2=—0
and to focus only on the first term in (19). To the lowest
order in the coupling constant, the renormalization of
this term comes from the interaction with cubic anhar-
monisms. The diagrams are presented in Fig. 4, and the

result is

~ = 3 2 (20)

Comparing this expression with Eq. (18) for g, I conclude
that g& =kg . The coefficient is fixed by the boundary
condition A, (g ) =—,'and does not undergo any renormal-
ization.

The next step is to find contribution fourfold terms
make to the P function (18), but in order to convince one
that they produce a fixed point, it is easier to calculate
the corrections to the Green function of quasiparticles,
G =Z /( 0—

~
k

~ ), which determines linear in T specific
heat and, in contrast to the Green function or particles,
has no amomalous dimension and, hence, no logarithmi-
cal contributions at the fixed point. The corresponding
diagrams are presented in Fig. 5. The cubic terms give a
negative contribution to self-energy while the fourfold
terms are known from previous calculations for Heisen-
berg antiferromagnets ' to give a positive contribution.
The calculation of diagrams gives

g 1 g
1 3 2 ~ 4

Z 8w 12m
(21)

For nonzero y, the number of fourfold terms increases
and new coupling constants enter into the bare theory,
but since there are absolutely no reasons to expect the
point y=0, 6=—', to be an exceptional member of the
boundary line, it is natural to assume the additional cou-
pling constants to Aow to zero at large distances.
Meanwhile, the bare value of g&, g&

=—,', remains un-

changed along all the critical line [only the total
coefficient 1//2 in (19) is replaced by Jl, that is, the
renormalization-group equations and, hence, the critical
theory seem to be universal along all the phase boundary

The last point is to consider the role of the M =2 exci-
tations. I have checked that, in the random-phase ap-
proximation (i.e., when all the pair products of M =2 bo-
sons are replaced by their expectation values), they do
not influence the renormalization-group equations but
simply renormalize the spin-wave velocity. This result is
believed to also be true when higher-order corrections are
included.

Note that the coefficient +8/3, which enters into the

As is seen from (21), the competition between cubic and
quartic terms actually produces a fixed point

&12~
c =

FIG. 4. Diagrams for the fourfold vertex renormalization in
the leading order in the coupling constant. One-half of the dia-
grams is presented. The other one-half results from a replace-
ment of the internal wave lines to the dashed ones and vice ver-
sa with a simultaneous replacement of the directions of all inter-
nal arrows.

FIG. 5. Diagrams for the renormalization of the Green func-
tion of quasiparticles. The contributions coming from qubic
and quartic terms are opposite in sign. One-half of the dia-
grams is presented. The others are organized in the same way
as in Fig. 4.
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expression (5) linking the vector of antiferromagnetism
with bosons and defines the bare values of g and g, (and,
hence, g, ), is simply a properly normalized sum of the
Clebsh-Gordan coefficients for total spin M =1 multi-
plied by the current Z projections of S = 1. For arbitrary
S, &8/3 is substituted by R =2&S(S+1)/3 (for S=

—,',
R = 1). Assuming, as in Ref. 20, that all the SU(2) integr-
able "antiferromagnetic" models belong to the boun-
daries of the spontaneously dimerized phases, where the
M =1 excitations are soft, one has (g ) =2+2R
g &

=R, that is, for large S, g, ~ 1/S. Calculation of an
exact proportionality coefficient as well as the critical ex-
ponents are out of the limits of the present approach
since I have neglected all short-range corrections and re-
stricted only with the vertices on resonance.

The general critical theory for the SU(2) integrable
models with arbitrary S was developed in Refs. 20 and 27
and shown to be the same as for the k =2S SU(2) Wess-
Zumino-Witten (WZW) model. The critical coupling g,
was proved to be exactly

g, =4m/k =2m/S . (23)

The present results qualitatively agree with the field-
theoretical predictions: the o. model behavior is realized
on cubic terms while fourfold anharmonisms mimic the
role of the Wess-Zumino term. Note that, in the limit of
large S, g, ~ 1/S, as in (23). Also in agreement with Ref.
20, the shifting from the critical line freezes longitudinal
fiuctuations (i.e., produces a one-particle condensate of m

bosons) and generates the phase factors in the vertices
representing the interaction between initially soft r and p
bosons that were shown" to produce the 8 term in the
long-wavelength action. The theory developed in Ref. 20
also predicts that the k =2 WZW model is a correct criti-
cal theory only for a translationally invariant S = 1 Ham-
iltonian while, along a whole transition line, a critical
theory is given by a o. model with B=~, which, in turn,
was predicted to be equivalent to the k = 1 WZW mod-
el. In the frameworks of the present approach this would
mean that only transverse fiuctuations (described by r
and p bosons) undergo softening on a transition line while
the longitudinal fiuctuations (described by m bosons) are
frozen in the presence of the imposed staggered interac-
tion.

The present analysis does not show any difference be-
tween the ending point and the rest of the transition line,
yz(5), which seems, to some extent, natural since the
one-particle condensate of m-type bosons definitely does
not exist within the dimerized phase.

I thus tentatively conclude that the critical theory on
the whole boundary line y2(5) is the same as it its ending
point, i.e., is given by the k =2 WZW model.

Now I turn to the second phase boundary y=y, (6),
where the dimer phase merges the 1D spin nematic state.
A simple analysis shows that, in contrast to the previous
case, anharmonic terms at y=y&(5) do not fit the Adler
principle. So, first, the spin-wave critical line ceases to be
an exact one and, secondly, the degeneracy of the spec-
trum removes when anharmonic corrections are taken
into account. The finiteness of the spin nematic phase

width in the "spin-wave" approximation makes it very
unlikely that the whole region of this phase will disappear
when anharmonic corrections are taken into account. I
will thus presume that M, =+2 excitations (favoring fer-
romagnetic ordering) will retain a finite gap at the bound-
ary of the dimerized state. As to the remaining three
would be massless excitations, the absence of doubling in
the spin nematic phase points that transverse
fluctuations —the vibrations of the "on-site" order
parameter —and longitudinal fluctuations involving the
pairs of neighboring spins are completely decoupled.
Thus, at the transition line y, (5), which differs from

y&(6) due to finite anharmonic corrections, only longitu-
dinal fluctuations (evidently created by an f boson which
generates excitations with M =2 and M, =0) will under-

go softening while transvers ones will retain a dynamical-
ly generated mass. This seems rather natural since the
remaining symmetry in the spin nematic phase is
SO(2) XZ2 (the order-parameter space is isomorphic to
Pz). The interactions between two would be Goldstone
modes in one dimension tend to restore the whole S2
symmetry, they favor the Ising-like transition into the
state where the "additional" Z2 symmetry is frozen,
which clearly means a dimerized state.

V. CONCLUSION

I will summarize brieAy the main results of the work.
(i) The new transformation linking the spin operators

of S =1 with bosons is presented. The state with no bo-
sons corresponds to the dimer configuration. The analo-
gous transformation can easily be written for arbitrary S.

(ii) The semiclassical phase boundaries of the dimerized
phase in the generalized S =1 spin chain are obtained as
functions of the strength of the staggered interaction.
For the translationally invariant Hamiltonian, one of the
boundaries is exactly an SU(2) integrable point.

(iii) The dimerized and ferromagnetic phases are
separated by a disordered phase —a 1D version of the
spin nematic state. The loss of a dimer long-range order
occurs via an Ising-like transition.

(iv) Another critical line y2(6) coming out of
y = tan '

—,
' and approaching the Bethe ansatz solvable

point y = —~/4, as 6 moves to unity, is predicted to be in
the same universality class of k =2S =2 Wess-Zumino-
Witten model as its ending point y= —vr/4 The one-.
loop perturbation theory is developed which produces a
fixed point due to competition between threefold and
fourfold anharmonic terms. The latter were shown to
mimic the role of the Wess-Zumino term in the field-
theoretical treatment of the problem.

The result that the whole critical line yz(5) is in the
same universality class as its ending Bethe ansatz solvable

point contradicts the prediction made in Ref. 20 (see also
Ref. 42) and evidently means that, even in presence of the
imposed staggered interactions, the transition to dimeri-
zation is governed by the softening of the longitudinal
fluctuations of the SU(2) matrix. This, in turn, allows one
to predict that, out of all Heisenberg antiferromagnets
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with half-integer spins only, the S =1/2 system, which
belongs to a family of SU(2) integrable models and has
three massless bosons in a bare theory, becomes dimer-
ized for an arbitrary small staggered interaction (in agree-
ment with the exact result ), while for higher spins the
imposed alternation does not produce long-range dimer
order. This question needs further investigation.
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