
PHYSICAL REVIE%' 8 VOLUME 43, NUMBER 1 1 JANUARY 1991

Electronic structure studies on the n-type doped superconductors R ~ „M„Cu04
(R =Pr,Nd, Sm; M =Ce,Th) and Nd2Cu04 „F„byelectron-energy-loss spectroscopy

M. Alexander, H. Romberg, N. Niicker, P. Adelmann, and J. Fink
Kernforschungszentrum Karlsruhe, Institut fii r Nukleare Festkorperphysik, P.O. Box 3640,

D-7500 Karlsruhe, 8'est Germany

J. T. Markert and M. B.Maple
Department of Physics and Institute for Pure and Applied Physical Science, Uniuersity of California,

San Diego, La Jolla, California 92093

S. Uchida, H. Takagi, and Y. Tokura
Uniuersity of Tokyo, Bunkyo ku, T-okyo, Japan

A. C. W. P. James and D. W. Murphy
AT& T Bell Laboratories, Murray Hill, ¹mJersey 07974

(Received 7 June 1990)

The electronic structure of the high-T, superconductors R2 „M Cu04 z (R=Pr, Nd, Sm;
M= Ce, Th) and Nd2Cu03 8FO ~ has been studied by high-energy electron-energy-loss spectroscopy
in transmission. Core-level spectroscopy, particularly on 0 1s and Cu 2p levels yields information
on the partial unoccupied density of states near the Fermi level, while that on R and Ce 3d and 4d
levels may serve as a valence monitor for these constituents. A pre-edge structure in the 0 1s spec-
trum is polarized in the Cu02 plane and assigned to transitions into a two-dimensional conduction
band consisting of Cu 3d hybridized to 0 2p states. In the Cu 3d configuration we found a slight
admixture ( —10%%uo) of Cu 3d 2 to the Cu 3d 2 & hole states similar to the p-type doped super-

3z x —y

conductors. Upon doping we recognized a reduction ( —14%%uo) of the excitonic Cu 2p3/2 line, indi-
cating that the introduced electrons go onto the Cu sites, thus producing charge carriers having
predominantly Cu 3d character.

I. INTRODUCTION

Since their discovery' the n-type doped superconduc-
tors R z „M,CuO~ s (R =Pr, Nd, Sm;M =Ce,Th) have
attracted a widespread interest among the high-T, com-
munity. That the charge carriers are electrons and not
holes as in p-type doped systems is based on chemical ar-
guments; i.e., trivalent R is replaced by tetravalent M, on
the observation of a negative Hall coeKcient, and the
measured sign of the Seebeck coeKcient, ' both opposite
to p-type doped superconductors. Since both quantities
strongly depend on the band structure and the Hall
coe%cient shows an anomalous temperature dependence,
the determination of the nature of the charge carriers
from these quantities is not straightforward.

For an understanding of the normal-state properties of
high-T, superconductors, the determination of the nature
of the charge carriers is of particular importance. It is
still controversial whether the additional charge has Cu
3d, Cu 4s, Cu 4p, or 0 2p character. By performing Cu
K-edge x-ray-absorption (XAS) measurements, Tranqua-
da et al. concluded by comparing Nd2 Ce„Cu04
with Cu20 spectra that, upon Ce doping, Cu+ is formed.
Alp et al. , from the same kind of experiment, conclude
that no Cu+ is formed upon doping, the extra electrons
rather being transferred to a delocalized band. Perform-

ing x-ray-induced photoemission (XPS) measurements on
the Cu 2p level, Ishii et al. and Fujimori et a/. have
determined the intensity ratio between the satellite struc-
ture and main peak. While for the unreduced samples
this ratio decreases upon doping, this ratio is constant for
well-prepared samples, and hence no change in the Cu
valence upon doping is observed. On the other hand,
Grassmann et al. , using a simple cluster approach' for
the evaluation of their XPS spectra, deduced a substan-
tial increase of Cu+ upon doping. Our own results on the
Cu L3 edge published previously" did not permit unam-
biguously to decide whether Cu+ is formed or not.

Band-structure calculations by Massidda et al. ' using
the local-density approximation (LDA) were not able to
reproduce a semiconducting NdzCu04 compound, but
their work resulted in a metallic behavior similar to that
from calculations on the parent compounds of p-type
doped superconductors. ' A rigid-band-like Fermi
level upon Ce doping as suggested by band-structure cal-
culations was observed by Reihl et al. using ultraviolet
photoemission spectroscopy (UPS). In their resonant
photoemission measurements, Allen et al. observed a
filling of the gap upon doping, the Fermi level being at
the same position for p- and n-type doped systems. Also,
other authors ' put forth a picuture in which, upon
doping, a midgap (or impurity) band is formed in the
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charge-transfer gap.
In this paper we report on core-level electron-energy-

loss spectroscopy (EELS) in transmission on 0 ls and Cu
2p 3/2 absorption edges of the superconducting corn-
pounds R, s'Mo»CuO' 6 (R =Pr, Nd, Sm; M=Ce, Th)
and Nd2Cu03 8FQ 2 and their semiconducting parent
compounds R2Cu04. Information on the nature of unoc-
cupied states and on the character of charge carriers is
obtained. From measurements of R 3d5&2 and R 4d ab-
sorption edges, the valence of rare-earth ions was derived
from a comparison to related rare-earth oxides. Parts of

11,28 —30these results have been published previously.

II. EXPERIMENT

We used high-energy EELS in transmission, which is a
non-surface-sensitive method in contrast to XPS, brems-
strahlung isochromate spectroscopy (BIS), or XAS in the
total yield mode. Bulk properties on a scale of —1000 A
are measured. The energy and momentum resolution of
the spectrometer ' was chosen to be AE =0.4 eV and
Aq =0.2 A ', respectively. The primary energy of the
electrons was EQ =170 keV. The spectra were taken at
small momentum transfer, where dipole selection rules
apply. As the oxygen K and copper L3 edges did not
show any time-dependent changes during the measure-
ments, radiation damage effects can be excluded.

The symmetry of empty states in Nd2Cu04 has been
determined by measurements on a single-crystalline sam-
ple with momentum transfer parallel and perpendicular
to the copper-oxygen planes as described in Ref. 32.

The polycrystalline samples of R2 M Cu04 & were
prepared as described in Ref. 1. They were synthesized
from a mixture of rare-earth (RE) metal oxides (Ce02,
Th02, Pr60», Ndz03, and Sm203) and CuO. The mixed
powders were first calcined at -950 C for 10 h in air.
Then the samples were quenched to room temperature in
air. To obtain superconductivity, procedures of anneal-
ing the Ce- or Th-doped samples under a reducing atmo-
sphere were necessary. Without reduction no supercon-
ductivity could be obtained. The Nd2CuO3 8FQ p sample
was prepared as described by James, Zahurak, and Mur-
phy: First, a stoichiometric mixture of CuO, Nd203,
and freshly prepared NdF3 was heated in air at 900'C for
14 h, then pressed into pellets, and annealed at 890 C for
14 h in fIowing N2. To make sure that we investigated
only single-phase samples, the purity was checked by
both x-ray and electron diffraction. Measurements of the
resistivity of the samples R2 „M„Cu04 6 (x=0. 15)
showed that the M =Ce compounds had a slightly higher
T, value than those with M =Th. The T, values ranged
from about 16 K for Ndl 8gThQ»Cu04 & up to 23 K for
Nd I 85CeQ»Cu04 &. The fluorinated sample showed
bulk superconductivity with a T, of about 27 K, but the
superconducting transition was very broad. The sam-
ples were cut with an ultramicrotome using a diamond
knife and, as a liquid, alkaline water. The thickness of
the films was about 1000 A. By measurements with a su-
perconducting quantum interference device (SQUID), it

was verified in some cases that the transition temperature
of the superconducting samples did not change during
the cutting process or during Aoating the films in alkaline
water onto standard electron microscope grids. Further-
more, the lattice structure of the films was checked by
elastic electron scattering.

III. RESULTS

I—

LLj

Cuo

/ ~

—e--~ gags~ (
~ V

Cap 86Sro 14CuO)

Pr&Cu04
/

ego ~ e—g-~

Pr, 85Cep, sCu4 6
~ a a

PI 1.85Thp. 15CU04-6
II Oa-

~ MO ~~
Nd&Cu04

Nd1.8sCeo 1sCu

Nd1. 85Tho. 1sCu04-6

0'~V e= -0= hs

Nd2CU038F p

Sm2Cu04

~ yV~V
Sm185Cep, sCu04 6

04 0

520 525 530 535
ENERGY (eV)

540

FIG. 1. 0 1s absorption edges of CuO, Cao. 86Sro. 14Cu02,
Pr2Cu04, Pr1.8sCeo»Cu04 z, Pr1.8sTho. 1sCu04 —z, Nd2Cu04,
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Figure 1 shows the 0 1s absorption edges of CuO,
Cap s6Sro I4Cu02, R2 „M CuO' 6 (R =Pr, Nd;
M=Ce, Th; x =0, 0. 15), Nd2Cu038Fo2, Sm2Cu04, and
Sm I 85CeQ»Cu04 &. The background was subtracted
and the spectra were normalized in the energy region
532—537 eV. The solid line in aH figures is a guide to the
eye. Clearly visible j.n all spectra is a pre-edge structure
at about 529 eV. A similar feature has been observed in
p-type doped systems. ' As outlined in these previous
papers, the 0 1s absorption edges probe in a first approxi-
mation the local unoccupied density of states (DOS) with
2p symmetry at the oxygen sites. The interaction of the
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final states with the core hole is probably smaller than the
width of the 0 2 bo e p bands, and therefore excitonic effects
are small. This is su opp rted by core-level measurements
on similar systems, such as transition-metal carbides and
nitrides, where the measured ab t'a sorption edges are very

0 1sah
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In Fig. 2 the 00 1s spectra of single-crystalline
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p, p, and p, are degenerate in a tetrahedral environ-
ment. In the T' structure the R ions are closer to the 02
plane, thus favoring the p, orbital for a hole, in contrad-
iction to the experimental results. Even the inclusion of
hybridization should not be able to reverse this result to-
tally.

The possibility (iii) for the prepeak to be caused by the
R 4f hybridized with 0 2p states may be ruled out. Allen
et al. derived from their resonant photoemission spec-
tra that there are no 4f states near the Fermi level. Fur-
ther on, we found no such prepeak structure in the 0 1s
spectrum of Nd20&. Finally, it is expected that the 4f
levels shift toward lower energies, when going from Pr
via Nd to Sm, while the prepeak remains at the same en-
ergy.

In interpretation (iv) the prepeak is caused by transi-
tions into the two-dimensional conduction band. This
band is often called the upper Hubbard band. This ex-
planation is supported by the observation of a prepeak in
the 0 ls spectra of CuO and Cao s6Sro, 4Cu02 (see Fig. 1)
at threshold energies (E,h) of 529.6 and 528.8 eV, respec-
tively. In the latter compound and in Rz M Cu04
(R =Pr, Nd, Sm; M= Ce,Th) (E,h =528. 6 eV), there are no
apex oxygen atoms, and it is remarkable that the thresh-
old energies are almost the same. In the related insulat-
ing compounds with one or two apex oxygen atoms, the
threshold of the corresponding prepeak appears at about
529.4 and 529.9 eV, respectively. Systematic measure-
ments of the 0 1s threshold energies for various undoped
and p-type doped cuprates are plotted in Fig. 13 versus
the Cu—0 distance in the Cu02 planes. In addition, the
gap energy for various insulating cuprates as derived
from optical measurements is plotted. In particular, we
note that also for undoped La2CuO4 a well-pronounced

FIG. 13. Plot of the gap energy Eg and the 0 1s threshold
energy E,h for various undoped (open symbols) and doped (solid
symbols) cuprates: diamonds, compounds with two apex 0
atoms; triangles, compounds with one apex 0 atom; squares,
compounds with no apex 0 atom.

prepeak appears at 529.7 eV, and upon doping this peak
disappears, whereas another one due to hole states in the
valence band increases at 528.4 eV (see Refs. 36 and 46).
The shift in threshold energy for the insulating com-
pounds is due to both a change in the gap energy and a
chemical shift of the 0 1s level. There is a linear relation-
ship between E,h and the Cu—0 distance for the un-
doped systems, indicating that in all the insulating com-
pounds the threshold is caused by transitions into the
same conduction band. At present it is unclear why the
insulating (Ca,Sr)Cu02 compound is not found on that
line. The decrease of E,h with increasing Cu—0 distance
can be explained by the fact that at larger Cu—0 dis-
tances (weaker covalency) there are more 0 2p electrons
at the 0 sites. This leads to a better shielding of the nu-
clear charge and thus reduces the binding energy of the 0
1s level. Also, the reduced gap widths with increasing
Cu—0 distance may be explained by weaker covalency.
For the p-type doped systems, the appearance of a thresh-
old about 1.5 eV (-the gap energy) below the threshold
for the insulating compounds indicates that in these sys-
tems the Fermi level is close to the top of the valence
band.

Summarizing the above given arguments, we conclude
that the observed prepeak in the 0 1s spectra of
R2 M Cu04 & is caused by an excitation into the O 2p
states of the conduction band having predominantly Cu
3d character. In a similar way Grioni et aI. and de
Groot et ah. attributed the first peak in the O 1s spec-
trum of CuO to an excitation into a conduction band
with mainly 3d character. This interpretation for the
prepeak is also supported by Takahashi, Katayama-
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Yoshida, and Matsuyama. The interpretation of their
XAS 0 1s measurements on Bi2Sr2CaCu 208 and
Nd& 8gCeo»Cu04 & is based on 0 1s XPS data from
Fujimori et ah. ' ' on these systems. The XPS measure-
ments indicated the same 0 1s binding energy for both
compounds. From this they concluded that the XAS
threshold energy is related in Bi2Sr2CaCu208 to a Fermi
level in the valence band, while the threshold in
Nd& 85Ceo, 5Cu04 & about 1 eV higher is caused by an
excitation into the upper Hubbard band. In their inter-
pretation the Fermi level for Nd, 85Ceo &5Cu04 & is not
in the upper Hubbard band. They concluded that
Nd, »Ceo, 5Cu04 & is indeed an n-type superconductor,
but the character of the doped electrons remained un-
clear. To align their XPS and XAS data, they assumed
an equal excitonic shift in both systems. However, we be-
lieve that there are at least two arguments against their
evaluation of the experimental results. First, the uncer-
tainty in the determination of the binding energies by
XPS is very high (-1 eV), and energies quoted in the
literature differ from group to group. ' A comparison
of XPS binding and EELS threshold energies for various
cuprates has been given previously. Moreover, the 0 1s
XPS line is expected to be composed of several lines relat-
ed to different oxygen sites. Within experimental resolu-
tion these lines cannot be separated even if the energies
differ by 1 eV. Furthermore, it is not clear why in an in-
sulator such as Nd2Cu04 and in metals such as
Nd ) 85Ceo, 5Cu04 & or Bi2Sr2CaCu208 the excitonic
efFect should be the same. In addition, as outlined in Sec.
III, excitonic effects in the 0 1s spectra are expected to be
small.

It is interesting to note that the intensity of the 0 1s
prepeak normalized to the intensity of the Cu 2p3/2 line
is almost the same for all compounds shown in Fig. 1.
This indicates a similar amount of oxygen 2p admixture
to the Cu 3d conduction band. A comparison with
La& Sr„Cu04 yields an admixture ~ 10%, in fair
agreement with recent calculations by Schluter.

Allen et al. suggested that upon doping, states origi-
nating from the valence and conduction bands arise in
the band gap. They concluded that the Fermi level is at
the same energy in both Nd and La compounds. A simi-
lar picture has been developed by Matsuyama et al.
and Takahashi, who propose the formation of an "im-
purity" band in the gap upon doping. These ideas are not
compatible with our 0 1s absorption edges. When inter-
preting the prepeak in R2Cu04 in terms of excitations
into the upper Hubbard band, a partially filled impurity
band should be observable in n-type doped systems as an
additional peak at lower energies. This is clearly not ob-
served in the present experiments. Therefore, we suggest
that for n-type doped systems the Fermi level is close to
the bottom of the conduction band. On the other hand,
for p-type doped systems we have deduced from 0 1s ab-
sorption edges that the Fermi level is close to the top of
the valence bands. These results are in contradiction to
the results of Allen et al. , but in agreement with recent
theoretical calculations.

We now turn to the Cu 2@3/2 spectra as shown in Fig.

3. The intensity in the energy region beginning at about
933.2 eV is enhanced for the n-type doped superconduc-
tors when compared to the undoped compounds. This
enhancement must be assigned to Cu 3d states because, as
mentioned above, the 2@3/2 +4s transitions are a factor
of 30 less intense than 2@3/p +3d transitions. This addi-
tional unoccupied Cu 3d DOS may be caused by a mixing
of Cu 3d-4s, 4p states" ' ' due to the potential of
dopant atoms. An inhuence of the Ce 3d3/2~4f line
with a maximum at about 901.5 eV can be excluded be-
cause the same spectral weight above -933 eV appears
in the Th- and F-doped compounds, and Th, as well as F,
has no strong absorption lines in the neighborhood of the
investigated Cu 2@3/2 edge. As reported by Grioni
et al. ' many nominally monovlanet Cu compounds ex-
hibit a similar spectral structure as do the n-type doped
superconductors at an energy above -933 eV. There-
fore, it may be an indication for the existence of mono-
valent Cu or Cu atoms with a higher number of 3d elec-
trons (closer to 3d' ) in the doped compounds. Another
much stronger indication for either the local formation of
Cu+ or the filling of a band with predominantly Cu 3d
character is given by the reduction of the excitonic Cu
2@3/2 line upon doping as shown in Fig. 4. Since the
spectral weight of this line is a measure of the number of
empty states with Cu 3d character, a reduction indicates
the filling of empty Cu 3d states. For a doping concen-
tration of x =0.15, the line is found to be reduced by an
amount of —14% with an uncertainty of -4%. From
this reduction we conclude that the introduced electrons
go onto the Cu sites and have predominantly 3d charac-
ter. This is in agreement with several previous high-
energy spectroscopy investigations. ' '

The widths and shapes of the Cu 2@3/2 line give a fur-
ther indication of the nonexistence of holes on oxygen
sites. In all known p-type doped superconductors, a
slight broadening of the Cu line or an additional shoulder
at higher energy is observed when compared to the un-
doped compounds. This broadening as well as the asym-
metry of the Cu line is ascribed to the infIuence of holes
on oxygen sites. Thus the lacking of asymmetry in the
n-type doped superconductors and their parent com-
pounds is a strong hint against the formation of holes on
oxygen sites.

The shift (-0.2 eV) of the Cu 2@3&2—+3d line toward
higher energies as observed in the doped compounds in
comparison to the undoped ones may be caused by at
least three different reasons. First, it is possible that the
free charge carriers with mainly Cu 3d character in the
doped compounds are able to screen the core hole poten-
tial on the Cu atom, and therefore the excitonic effect
may be reduced, thus resulting in a slightly higher excita-
tion energy. Second, the bands with 3d character may be
shifted toward higher energies due to the potential of Th,
Ce, or F ions. Third, the charge of the Ce, Th, or F ions
may change the Madelung potential on the Cu ions, thus
shifting the Cu 2p level.

The orientation-dependent measurements of the Cu
2p3/2 edge of the single-crystalline NdzCu04 compound
indicate that there is, as in all of the high-T, materials, a
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slight admixture of unoccupied Cu 31 2 2 states
(-10%) to the dominant 3d» ones. The slightlyx —y
enhanced intensity above the white line may again be ex-
plained by the existence of Cu 3d-4s or Cu 3d-4p hybridi-
zation.

The spectral feature of the 3d edges in the trivalent RE
compounds is mainly influenced by pure atomic process-
es, and therefore, with the exception of Pr + and Ce +

compounds, the shape is independent of the environ-
ment the ions are embedded in. Thus we can compare
the 3d edges of the RE's in the n-type doped supercon-
ductors and their parent compounds with those of the
RE oxides to get information on their valence. In the
case of Ce + and Pr +, there are, in addition to the pure
atomic transitions, multielectron effects causing at least
one additional peak at higher energies compared to the
position of the main peak. This peak is always similar to
that calculated for the RE element with a nuclear charge
Ze, decreased by le with respect to the investigated one,
but the spectral width is increased by about 40—50%.
Therefore, it is also possible to decide whether Ce or Pr
are in the formally tetravalent or trivalent state by using
a theory of 4f states first introduced by Gunnarson and
Schonhammer for intermetallic compounds and further
developed for the case of insulating systems by Kotani,
Jo, and Parlebas.

In the case of the 4d absorption edges, in general it is
not so easy to determine the charge of the investigated
RE ions because hybridization has an effect on line
strength, line position, and linewidth in the pre-edge re-
gion of the 4d~4f transition. Nevertheless, a descrip-
tion within a free-ion model with slightly reduced Slater
integrals is possible. The spectral shape of the lines
caused by autoionization cannot be described by a free-
ion model and varies from solid to solid. ' Thus a
comparison between the multiplet structure of the 4d
transitions of R2 M„Cu04 & compounds and those re-
lated to the R oxides is meaningful only due to the fact
that the R ions are embedded in a comparable environ-
ment. We think that it is meaningful to compare the
multiplet structure of doped and undoped samples as well
as those of the related oxides because the dopant concen-
tration is small enough not to disturb the environment of
the RE ions. We could get information on the question if
the additional electron possibly changes the charge struc-
ture of the RE ions. The only exception to the state-
ments mentioned above would be Ce because the pre-edge
structure of the Ce 4d transitions of formally tetravalent
Ce (in Ce02) has a very difFerent spectral shape in com-
parison to the trivalent compounds. ' Thus a measure-
ment of the 4d ~4f pre-edge structure gives an addition-
al possibility to determine the valence state of the Ce ion.
Unfortunately, because of the low Ce concentration, the
Ce 4d absorption could not be measured.

From Figs. 6—8 and using the theory of the 3d edges of
RE's, we readily conclude that the RE ions Pr, Nd, and

Sm are in the trivalent state. The overall agreement be-
tween the 3d edges of the RE's in R2 „M,Cu04 & and
those of the related oxides Rz03 is very good, and thus
no change in the charge structure of the RE's Pr, Nd,
and Sm upon doping with Ce, Th, or F can be observed.
The agreement of the Pr, Nd, and Sm 4d edges between
the R2 M Cu04 & and the related R203 compounds
confirmed the trivalency of the R ions.

The 3d5&2 edge of Ce (Fig. 9) reveals by application of
the theory of Kotani, Jo, and Parlebas "the forrnal tetra-
valency of Ce as is the case in CeOz. The 4f count (n4f )
of the Ce ion is -0.5. The only exception is detected in
the Ce 3d edge of the Pr compound, which shows a
shoulder at the low-energy side of the main peak. This
shoulder is usually assigned to Ce +. Therefore, there
may be a small difference in the Ce 4f count between the
compounds with R =Pr and those with R =Nd, Sm.

V. SUMMARY

We investigated the n-type doped superconductors
R 2 „M„Cu04 & (R =Pr, Nd, Sm; M= Ce,Th),
Nd2CuO3 8F02, and their semiconducting parent com-
pounds. The observed prepeak in the 0 1s absorption
edges is interpreted in terms of transitions into the con-
duction band having predominantly Cu 3d character and
an admixture of 0 2p states. In contrast to p-type doped
cuprate superconductors, there are only minor changes in
the occupation of 0 2p states upon doping and annealing
in a reducing atmosphere. Upon doping the Fermi level
appears at the bottom of the conduction band. We ob-
served a clear decrease of unoccupied Cu 3d density of
states when going from the semi- to the superconducting
compound by an amount of 14+4%. Therefore, the con-
duction electrons have mainly Cu 3d character. Because
of the low cross section of a Cu 2p ~4s transition, an ad-
ditional 4s character of the charge carriers, if present, is
not easily detected in high-energy spectroscopies. As in
all p-type doped superconductors and their parent com-
pounds, the holes on Cu in Nd2Cu04 have again predom-
inantly 3d» character and —10% admixture of
3d 2 & states. The valence of the rare-earth ions Pr,
Nd, and Sm is found to be +3. The 4f count of Ce is
about 0.5, comparable to that of formally tetravalent Ce
in Ceoz for the Nd and Sm compounds, but possibly with
a small admixture of formally trivalent Ce in

, „Ce, »CuO4
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